几种氢氟醚(HFEs)与OH自由基反应的微观机理及速率常数的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢氟醚(HFEs)已被作为全氯氟烷(CFCs)的第三代替代物在诸多工业领域得到广泛应用。然而,有些氢氟醚可能存在造成温室效应的潜力,因此,为了更好地了解氢氟醚对大气环境的影响,确定它们在同温层中的寿命是必要的。深入研究氢氟醚在大气中的反应机理及其动力学行为,揭示它们的大气寿命及其对环境潜在的影响,对控制环境污染方面有着重要意义。
     本论文利用量子化学理论,分别对三种氢氟醚(CH_2FCF_2OCHF_2, CH_2FOCH_2F,CF_3CH_2OCH_3)与活泼OH自由基反应在反应势能面及反应动力学性质计算两个方面进行了研究。这些反应为: CH_2FCF_2OCHF_2 + OH→products CH_2FOCH_2F + OH→products CF_3CH_2OCH_3 + OH→products
     本论文的主要内容概括如下:
     1. CH_2FCF_2OCHF_2/CH_2FOCH_2F与OH自由基反应的反应机制及动力学性质研究。在B3LYP/6-311G(d,p),BH&H-LYP/6-311G(d,p)和MP2(full)/6-311G(d,p)水平下,研究了两反应相关势能面信息(各稳定点的几何构型、振动频率和单点能等),反应焓和反应吉布斯自由能等热力学性质及反应速率常数和分支比等动力学性质。并利用同构反应,理论上估算了CH_2FCF_2OCHF_2, CHFCF_2OCHF_2, CH_2FCF_2OCF_2, CH_2FOCH_2F和CHFOCH_2F自由基的标准生成焓。结合小曲率隧道效应校正的正则变分过渡态速率常数(CVT/SCT)与相应的可利用的文献值相吻合。220-2000K温度范围内的速率常数计算结果表明,两反应体系的速率常数都是正温度效应。两个反应速率的三参数Arrheniun表达式分别为(单位:cm~3 molecule~(-1) s~(-1)): k_1 = 1.62×10~(-20) T~(2.75) exp(-1011/T); k_2 = 3.40×10~(-21) T~(3.04) exp(-384/T)。
     2. CF_3CH_2OCH_3与OH自由基反应的反应机制及热力学性质研究。在MP2/6-311G(d,p)和BH&H-LYP/6-311G(d,p)水平下,研究了各稳定点的几何构型、振动频率及基于结构信息在BMC-CCSD和BMC-QCISD水平下的稳定点的单点能校正。另外,在相同计算水平下计算了反应体系的反应焓和反应吉布斯自由能,在BMC-CCSD//MP2/6-311G(d,p)水平下计算了CF_3CH_2OCH_3,CF_3CHOCH_3和CF_3CH_2OCH_2)的标准生成焓等热力学性质。
Hydrofluoroethers (HFEs) have been the third generation alternatuvel compounds to CFCs and are used in various industrial applications. However, they may be evaluated as possible greenhouse gases because of absorption in the terrestrial infrared radiation. So assessing its atmospheric chemistry and environmental impact is necessary by determining its atmospheric lifetime. Detailed investigations on the reaction mechanisms and kinetics of HFEs are very important to control atmospheric pollutions.
     By the quantum chemistry theory, the mechanisms and dynamics studies of reactions of CH_2FCF_2OCHF_2/ CH_2FOCH_2F/CF_3CH_2OCH_3 + OH have been carried out theoretically. These reactions are described as: CH_2FCF_2OCHF_2 + OH→products CH_2FOCH_2F + OH→products CF_3CH_2OCH_3 + OH→products
     The important and valuable results in this work are summarized as follows:
     1. Theoretical Studies on the Mechanisms and Dynamics of OH Radicals with CH_2FCF_2OCHF_2 and CH_2FOCH_2F. The geometries, frequencies of all the stationary points were carried out at the B3LYP/6-311G(d,p), BH&H-LYP/6-311G(d,p) and MP2(full)/6-311G(d,p) levels. In this work we studied the potential energy surface information(including optimized geometries, harmonic vibrational frequencies and the single-point energy calculations of the stationary points), the reaction enthalpies (ΔH_( r,298)~0 ) and reaction gibbs free energiesΔG_(r,298)~0 . Also, the heoretical prediction of the rate constants, the temperature dependence of branching ratios are provided. Moreover, standard enthalpies of formation of CH_2FCF_2OCHF_2,CHFCF_2OCHF_2,CH_2FCF_2OCF_2,CH_2FOCH_2F和CHFOCH_2F radical are estimated theoretically using group-balanced isodesmic reactions. The rate constants calculated by canonical variational transition state theory with small-curvature tunneling (CVT/SCT) correction are consistent with the available experimental values. The result of rate constant calculations in over the temperature range of 220-2000K show that the rate constants of two reactions have positive temperature dependence. The three-parameter Arrhenius expressions are as follows (in units of cm3 molecule~(-1) s~(-1)): k_1 = 1.62×10~(-20) T~(2.75) exp(~-1011/T); k_2 = 3.40×10~-(21) T~(3.04) exp(-384/T)。
     2. Theoretical Studies on the Potential Energy Surfaces and Thermodynamics of CF_3CH_2OCH_3 with Radicals. The geometries, frequencies of all the stationary points were carried out at the MP2/6-311G(d,p) and BH&H-LYP/6-311G(d,p) levels. The single-point energy calculations for the stationary points were carried out at BMC-CCSD andBMC-QCISD level by using the MP2/6-311G(d,p) and BH&H-LYP/6-311G(d,p) optimized geometries. Moreover, the reaction enthalpies (ΔH_( r,298)~0 ), reaction gibbs free energiesΔG_(r,298)~0 , and standard enthalpies of formation of CF_3CH_2OCH_3, CF_3CHOCH_3 and CF_3CH_2OCH_2 estimated theoretically using group-balanced isodesmic reactions carried out at several different levels.
引文
[1]刘静玲.环境污染与控制[M].化学工业出版社, 2001. p282.
    [2]王殿勋. 2001科学发展报告[R].北京科学出版社,2001,p86.
    [3]寒冬,寒之.臭氧层[M].中国环境科学出版,2001. p116.
    [4]秦大河.大气臭氧层和臭氧空洞[M].气象出版社,2003. p187.
    [5] McElroy M B, Wofsy S C, Salawitch R J, et al. Reductions of antarctic ozone due to synergistic interactions of chlorine and bromine[J]. Nature, 1986, 321(6072): 759–762.
    [6] McConnell J C, Barrie L, Henderson G S, Barrie L, et al. Photochemical bromine production implicated in Arctic boundary-layer ozone depletion[J]. Nature, 1992, 355(6356): 150–152.
    [7] Fan S M, Jacob D J. Surface ozone depletion in Arctic spring sustained by bromine reactions on aerosols[J]. Nature, 1992, 359(6395): 522–524.
    [8] Montzka S A, Mayers R C, Butler J H, Mayers R C, et al. Decline in the tropospheric abundance of halogen from halocarbons: Implications for stratospheric ozone depletion[J]. Science, 1996, 272(5266): 1318–1322.
    [9] Redeker K R, Wang N Y, Low J C, et al. Emissions of methyl halides and methane from rice paddies[J]. Science, 2000, 290(5493): 966–969.
    [10] Sekiya A, Misaki S J. The potential of hydrofluoroethers to replace CFCs, HCFCs and PFCs[J]. Fluorine Chem, 2000, 101: 215–221.
    [11] Hehre W J, Radom I, Schleyer P V R, Pople J A , Ab Initio Molecular Orbital Theory[M]. 1986.
    [12] Robert G, Zewail A H. Femtosecond real-time probing of reactions. 7. A quantum- and classical-mechanical study of the cyanogen iodide dissociation experiment[J]. J Phys Chem,1991, 95(21): 7973–7993;
    [13] Foresman J B, Frisch M J, Exploring Chemistry with Electronic Structure Methods[M]. 1993.
    [14] Pedersen S, Banares L, Zewail A H. Femtosecond vibrational transition-state dynamics in a chemical reaction[J]. J Chem Phys,1992, 97(11): 8801–8804.
    [15] Seetula J A, Slagle I R. Kinetics of the reaction of the CH2Cl radical with oxygen atoms[J]. Chem PhysLett, 1997, 277(4): 381–386.
    [16] Smith I W M. Radiative associaton in collisions between neutral free radicals[J]. Chem Phys, 1989, 131(2-3): 391–401.
    [17] Rayson L, Huang S H, Goh S H O著,穆光照,甘礼骓等译,自由基化学[M].上海:上海科学技术出版社, 1983, p258.
    [18]穆光照.自由基反应[M].北京:高等教育出版社,1985, 7, 239.
    [19] Berson M, Baird J C. An introduction of electron paramagnetic resonance[M]., W. A. Benjiamin, New York, 1966.
    [20] Hey D H, Waters W A. Some organic reactions involving the occurrence of free radicals in solution[J]. Chem Review, 1937, 21(1): 169–208.
    [21] Kharasch M S. Photodecomposition of chlorine dioxide in carbon tetrachloride solution[J]. J Am Chem Soc, 1937, 59(6): 1155–1156.
    [22] Ravishankara R A, Turnipseed A A, Jensen N R, Do hydrofluorocarbons destroy stratospheric ozone[J]. Science, 1994, 263:71–75.
    [23] Sekiya, A.; Misaki, S. Chemtech. 1996, 26, 44.
    [24] Warnatz, J. In Combustion Chemistry, edited by Gardiner, W. C.; Jr. Springer-Verlag: New York, 1984.
    [25] Finlayson-Pitts, B. J.; Jr.; Pitts, J. N. Atmospheric Chemistry; Wiley: New York, 1986.
    [26] T.J. Wallington, O.J. Nielsen, Atmospheric chemistry and environmental impact of hydrofluorocarbons (HFCs) and hydrofluoroethers (HFEs), in: A.H. Neilson (Ed.), The Handbook of Environmental Chemistry, vol. 3, Part N—Organofluorines, Springer-Verlag, Berlin Heidelberg, Germany, 2002.
    [27] WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion: Geneva, Switzerland, 2002.
    [28] Yu Y.B., Jia X.J., Gao Y., et al. Theoretical investigation on the reaction mechanism of CF3OCHF2+O(1D)[J], Molecular Physics, 2011, 109: 373–383.
    [29]Jia X.J., Liu Y.J., Sun J.Y., et al. Theoretical Investigation of the Reactions of CF3CHFOCF3 with the OH Radical and Cl Atom[J], J Phys Chem A, 2010, 114(1):417-424.
    [1]陈念陔,高坡,乐征宇.量子化学理论基础[M].哈尔滨:哈尔滨工业大学出版社,2002.
    [2]金松寿.量子化学基础及其应用[M].上海:上海科学技术出版社,1980.
    [3]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法[M].北京:科学出版社, 1985.
    [4]唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社, 1982.
    [5]Truong TN. A direct ab initio dynamics approach for calculating thermal rate constants using variational transition state theory and multidimensional semiclassical tunneling methods. An application to the CH4+H?CH3+H2 reaction[J]. J Chem Phys, 1994, 100:8014-8025.
    [6]Truhlar DG, Gordon MS, Steckler R. Potential energy surfaces for polyatomic reaction Rev, 1987, 87:217-236.
    [7]Born M, Huang K. Dynamical Theory of Crystal Lattices[M]. New York: Oxford University Press, 1954.
    [8]赵学庄,罗渝然,臧雅茹等.《化学反应动力学原理》下册[M].高等教育出版社,1990.
    [9]Fukui K. Varational principles in a chemical reaction[J]. Int J Quantum Chem, 1981, 15: 633–641.
    [10]Fukui K, Tachibana A, Yamashita K. Toward chemodynamitcs[J]. Int J Quantum Chem, 1981, 15: 621–632.
    [11]Pople J A, Head-Gordon M, Raghavachari K. Quadratic configuration interaction: A general technique for determining electron correlation energies[J]. J Chem Phys, 1987, 87(10): 5968–5975.
    [12]Vestal C, Devore T. Proceedings of the conference on high temperature corrosion and materials chemistry[M]. Opila Ed, Mcnallan E J, Shores M J, et al. Washington DC: Electrochemical Society, 2001: p285.
    [13]施嵘,沈利英.乙烯酮的生产及下游产品的开发[J].河南化工, 2001, 8: 4–6.
    [14]Szabo A, Ostlund N S. Modern Quantum Chemistry, Introduction to Advanced Electronic Structure Theory[M]. Dover, New York, 1996.
    [15]Head-Gordon M, Pople J A, Frisch M J. MP2 energy evaluation by direct methods[J]. Chem. Phys Lett., 1988, 153(6): 503–506.
    [16]M?ller C , Plesset M S. Note on an Approximation Treatment for Many-Electron Systems[J]. Phys Rev, 1934, 46: 618–622.
    [17]Hohenberg P, Kohn W. Inhomogeneous Electron Gas[J]. Phys Rev, 1964, 136: B864-B871.
    [18]Fukui K. Varational principles in a chemical reaction[J]. Int J Quantum Chem, 1981, 15: 633-641.
    [19]Fukui K, Tachibana A, Yamashita K. Toward chemodynamitcs[J]. Int J Quantum Chem, 1981, 15: 621–632.
    [20]Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Phys Rev, 1965, 140: A1133–A1138.
    [21]Labanowski J K, Andzelm J W, eds. Density Functional Methods in Chemistry[M]. Springer-Verlag: New York, 1991.
    [22]Pople J A, Gill P M W, Johnson B G. Kohn-Sham density-functional theory within a finite basis set[J]. Chem Phys Lett, 1992, 199(6): 557–560.
    [23]Slater J C. Quantum Theory of Molecular and Solids: The Self-Consistent Field for Molecular and Solids McGraw-Hill[M]. New York, 1974.
    [24]Johnson B G, Fisch M J. An implementation of analytic second derivatives of the gradient-corrected density functional energy[J]. J Chem Phys, 1994, 100(10): 7429–7442.
    [25]Salahub D R, Zerner M C, et al. The Challenge of d and f Electrons[M]. Washington, D.C, 1989.
    [26]Garrett B C, Truhlar D G. Generalized transition state theory. canonical variational calculations using the bond energy-bond order method for bimolecular reactions of combustion products[J]. J Am Chem Soc, 1979, 101(18): 5207–5217.
    [27]Garrett B C, Truhlar D G. Generalized transition state theory. Bond energy-bond order method for canonical variational calculations with application to hydrogen atom transfer reactions[J]. J Am Chem Soc, 1979, 101(16): 4534–4548.
    [28]Garrett B C, Truhlar D G. Semiclassical Tunneling Calculations[J]. J Phys Chem, 1979, 83(11): 2921–2925.
    [29]金家骏.《分子化学反应动态学》[M].上海交通大学出版社,1988.
    [30]傅献彩,沈文霞,姚天扬.《物理化学》下册[M].高等教育出版社,1990.
    [1]Sekiya A, Misaki S J. The potential of hydrofluoroethers to replace CFCs, HCFCs and PFCs[J]. Fluorine Chem, 2000, 101: 215–221.
    [2]Sekiya, A.; Misaki, S. A continuing search for new refrigerants. Chemtech. 1996, 26: 44-48.
    [3]Ravishankara R A, Turnipseed A A, Jensen N R, et al. Do hydrofluorocarbons destroy stratospheric ozone[J]. Science, 1994, 263: 71–75.
    [4]Jia X.J., Liu Y.J., Sun J.Y., et al. Theoretical Investigation of the Reactions of CF3CHFOCF3 with the OH Radical and Cl Atom[J]. J Phys Chem A, 2010, 114(1):417-424.
    [5] Yu Y.B., Jia X.J., Gao Y., et al. Theoretical investigation on the reaction mechanism of CF3OCHF2+O(1D)[J], Molecular Physics, 2011, 109: 373–383.
    [6]Chen, L.; Kutsuna, S.; Tokuhashi, K.; et a. Kinetics for the Gas-Phase Reactions of OH Radicals With the Hydrofluoroethers CH_2FCF_2OCHF_2, CHF2CF2OCH2CF3, CF3CHFCF2OCH2CF3, and CF3CHFCF2OCH2CF2CHF2 at 268–308 K[J]. Int. J. Chem. Kinet, 2003, 35: 239.
    [7]Goto, M.; Kawasaki, M.; Wallington, T. J.; et al. Atmospheric chemistry of CH2FOCH2F: Reaction with C1 atoms and atmospheric fate of CH2FOCHFO·radicals[J]. Int. J. Chem. Kinet, 2002, 34: 139.
    [8] Chandra, A. K.; Uchimaru, T.; Urata, S.; et al. Estimation of rate constants for hydrogen atom abstraction by OH radicals using the C-H bond dissociation enthalpies: Haloalkanes and haloethers[J]. Int. J. Chem. Kinet, 2003, 35: 130.
    [9] Truhlar, D. G. In The Reaction Path in Chemistry: Current Approaches and perspectives; Heidrich, D., Ed.; Kluwer Dordrecht: The Netherlands, 1995: 229.
    [10] Hu W P, Truhlar D G. Factors affecting competitive ion-molecule reactions: CIO- + C2H5Cl and C2D5Cl via E2 and SN2 channels[J]. J Am Chem Soc, 1996, 118: 860–865.
    [11] Truhlar, D. G.; Garrett, B. C.; Klippenstein, S. J. J. Phys. Chem. A, 1996, 100, 12771.
    [12] Truhlar D G, Garrett B C. Variational transition-state theory[J]. Acc Chem Res, 1980, 13:440–448.
    [13]Truhlar D G, Isaacson A D, Garrett B C, Baer M. (Ed.), [J]. The Theory of Chemical Reaction Dynamics, CRC Press, Boca Raton, 1985, 4: 65.
    [14] Chuang Y Y, Corchado J C, Truhlar D G. Mapped Interpolation Scheme for Single-Point Energy Corrections in Reaction Rate Calculations and a Critical Evaluation of Dual-Level Reaction Path Dynamics Methods[J]. J Phys Chem, 1999, 103: 1140–1149.
    [15]Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, revision C.02. Gaussian, Inc., Wallingford. 2004.
    [16] Lynch, B.J.; Zhao, Y.; Truhlar, D.G. The 6-31B(d) Basis Set and the BMC-QCISD and BMC-CCSD Multicoefficient Correlation Methods[J]. J. Phys. Chem. A, 2005, 109: 1643-1649.
    [17]Fast P L, Truhlar DG. MC-QCISD: Multi-coefficient correlation method based on quadratic configuration interaction with single and double excitations[J]. J Phys Chem A, 2000, 104: 6111-6116.
    [18] Good, D. A.; Francisco, J. S. Bond dissociation energies and heats of formation for fluorinated ethers: E143A (CH3OCF3), E134 (CHF2OCHF2), and E125 (CF3OCHF2) [J]. J. Phys. Chem. A, 1998, 102: 7143-7148.
    [19] Lu D H, Truong T N, Melissas V S, Lynch G C, Liu Y P, Grarrett B C, Steckler R, Issacson A D, Rai S N, Hancock G C, Lauderdale J G, Joseph T, Truhlar D G. POLYRATE 4: a new version of a computer program for the calculation of chemical reaction rates for polyatomics[J]. Comput Phys Commun, 1992, 71: 235–262.
    [20] Liu Y P, Lynch G C, Truong T N, Lu D H, Truhlar D G., Garrett B C. Molecular Modeling of the Kinetic Isotope Effect for the [ 1,5] Sigmatropic rearrangement of cis- 1,3-Pentadiene[J]. J Am Chem Soc, 1993, 115: 2408–2415.
    [21] Garrett, B. C.; Truhlar, D. G. [J]. J. Chem. Phys, 1979, 70, 1593.
    [22] Garrett, B. C.; Truhlar, D. G. [J]. J. Am. Chem. Soc, 1979, 101, 4534.
    [23] Garrett B C, Truhlar D G, Grev R S, Magnuson A W. Improved treatment of threshold contributions in variational transition-state Theory[J]. J Phys Chem, 1980, 84: 1730–1748.
    [24] Corchado J C, Chuang Y Y, Fast P L, et al. POLYRATE version 9.1, Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, 2002.
    [25] Chuang Y Y, Truhlar D G. Statistical thermodynamics of bond torsional modes[J]. J Chem Phys, 2000, 112: 1221–1228.
    [26] Truhlar D G. A simple approximation for the vibrational partition function of a hindered internal rotation[J]. J Comput Chem, 1991, 12: 266–270..
    [27] Lide, D. R. CRC Handbook of Chemistry and Physics, 80th ed.; CRC Press: New York, 1999.
    [28] Ulic, S. E.; Oberhammer, H. Fluorinated Dimethyl Ethers, CH2FOCH2F, CHF2OCHF2, and CF3OCHF2:Unusual Conformational Properties[J]. J. Phys. Chem. A, 2004, 108: 1844-1850.
    [29] Nam, P. C.; Nguyen, M. T.; The′re`se Z. H. Effects of fluorine-substitution on the molecular properties of dimethyl ethers: A theoretical investigation[J]. J. Mol. Struct.: THEOCHEM,2007, 821, 71-81.
    [30] Shimanouchi, T. Tables of Molecular Vibrational Frequencies Consolidated; National Bureau of Standards, U.S. Government Printing Office: Washington, DC, 1972.
    [31] Kondo, S.; Takahashi, A.; Tokuhashi, K.; et al. Theoretical calculation of heat of formation for a number of moderate sized fiuorinated compounds[J]. J. Fluorine Chem, 2002, 117, 47-53.
    [32] Lazarou, Y. G.; Papagiannakopoulos, P. Theoretical investigation of the thermochemistry of hydrofluoroethers[J]. Chem. Phys. Lett, 1999, 301, 19-28.
    [33] Papadimitriou, V. C.; Kambanis, K. G.; Lazarou, Y. G.; Papagiannakopoulos P. Kinetic Study for the Reactions of Several Hydrofluoroethers with Chlorine Atoms[J]. J. Phys. Chem. A, 2004, 108, 2666-2674.
    [1]Sekiya A, Misaki S J. The potential of hydrofluoroethers to replace CFCs, HCFCs and PFCs[J]. Fluorine Chem, 2000, 101: 215–221.
    [2] Sekiya, A.; Misaki, S. Chemtech,. 1996, 26, 44.
    [3] Imasu, R.; Suga, A.; Matsuno, T. J. Meteorol. Soc. Jpn, 1995, 73,1123.
    [4] Houghton, J. T.; Ding Y.; Griggs, D. J. et al. Climate Change, 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the IntergoVernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2001.
    [5]Warnatz, J. In Combustion Chemistry, edited by Gardiner, W. C.; Jr. Springer-Verlag: New York, 1984.
    [6]Finlayson-Pitts, B. J.; Jr.; Pitts, J. N. Atmospheric Chemistry; Wiley: New York, 1986.
    [7]Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, revision C.02. Gaussian, Inc., Wallingford, 2004.
    [8] Good, D. A.; Francisco, J. S. Bond dissociation energies and heats of formation for fluorinated ethers: E143A (CH3OCF3), E134 (CHF2OCHF2), and E125 (CF3OCHF2) [J]. J. Phys. Chem. A 1998, 102: 7143-7148.
    [9]Lide D R. CRC Handbook of Chemistry and Physics, 80th ed. CRC Press, Boca Raton, 1999.
    [10]Shimanouchi T. Tables of Molecular Vibrational Frequencies Consolidated Volume 1, National Bureau of Standards, U. S. GPO, Washinton, D. C., 1972.
    [11]Chase M W Jr, NIST-JANAF Themochemical Tables (4th ed.), J Phys Chem Ref Data, Monograph 9, 1998, 1.
    [12]Frenkel M, Kabo G. J, Marsh K N, Roganov G. N, Wilhoit R C. Thermodynamics of Organic Compounds in the Gas State; Thermodynamics Research Center: College Station, TX, Vol. I. 1994.
    [13]Chen S S, Rodgers A S, Chao J, Wilhoit R C, Zwolinski B J. Ideal gas thermodynamic properties of six fluoroethanes[J]. J Phys Chem Ref Data, 1975, 4: 441–456. [1]Sekiya A, Misaki S J. The potential of hydrofluoroethers to replace CFCs, HCFCs and PFCs[J]. Fluorine Chem, 2000, 101: 215–221.
    [2] Sekiya, A.; Misaki, S. Chemtech,. 1996, 26, 44.
    [3] Imasu, R.; Suga, A.; Matsuno, T. J. Meteorol. Soc. Jpn, 1995, 73,1123.
    [4] Houghton, J. T.; Ding Y.; Griggs, D. J. et al. Climate Change, 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the IntergoVernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2001.
    [5] Yu Y.B., Jia X.J., Gao Y., et al. Theoretical investigation on the reaction mechanism of CF3OCHF2+O(1D)[J], Molecular Physics, 2011, 109: 373–383.
    [6]Li Z J, Jeong G R, Hansen J C, et al. Rate constant for the reactions of CF3OCHFCF3 with OH and Cl[J]. Chem Phys Lett, 2000, 320: 70–76.
    [7]Jia X.J., Liu Y.J., Sun J.Y., et al. Theoretical Investigation of the Reactions of CF3CHFOCF3 with the OH Radical and Cl Atom[J], J Phys Chem A, 2010, 114(1):417-424.
    [8]Warnatz, J. In Combustion Chemistry, edited by Gardiner, W. C.; Jr. Springer-Verlag: New York, 1984.
    [9]Finlayson-Pitts, B. J.; Jr.; Pitts, J. N. Atmospheric Chemistry; Wiley: New York, 1986.
    [10]Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, revision C.02. Gaussian, Inc., Wallingford, 2004.
    [11] Lynch, B.J.; Zhao, Y.; Truhlar, D.G. The 6-31B(d) Basis Set and the BMC-QCISD and BMC-CCSD Multicoefficient Correlation Methods. J. Phys. Chem. A 2005, 109: 1643-1649.
    [12] Good, D. A.; Francisco, J. S. Bond dissociation energies and heats of formation for fluorinated ethers: E143A (CH3OCF3), E134 (CHF2OCHF2), and E125 (CF3OCHF2). J. Phys. Chem. A 1998, 102: 7143-7148.
    [13]Lide D R. CRC Handbook of Chemistry and Physics, 80th ed. CRC Press, Boca Raton, 1999.
    [14]Shimanouchi T. Tables of Molecular Vibrational Frequencies Consolidated Volume 1, National Bureau of Standards, U. S. GPO, Washinton, D. C., 1972.
    [15]Chase M W Jr, NIST-JANAF Themochemical Tables (4th ed.), J Phys Chem Ref Data, Monograph 9, 1998, 1.
    [16]Frenkel M, Kabo G. J, Marsh K N, Roganov G. N, Wilhoit R C. Thermodynamics of Organic Compounds in the Gas State; Thermodynamics Research Center: College Station, TX, Vol. I. 1994.
    [17]Chen S S, Rodgers A S, Chao J, Wilhoit R C, Zwolinski B J. Ideal gas thermodynamic properties of six fluoroethanes[J]. J Phys Chem Ref Data, 1975, 4: 441–456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700