活泼自由基与氢氟醚CF_3OCHF_2、CHF_2OCHF_2反应机制的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢氟醚(HF_Es)因为它的零平流层臭氧耗竭和相对较低的GWP,因此被选作氯氟碳CF_Cs的第三代替代物。HF_Es已经被广泛应用于各种工业领域。从环境,生态,健康的观点看,了解商业应用和工业生产中使用的各种HF_Es对环境的危害是很重要的。因此,为了更好的评价氢氟醚对大气环境的影响以及确定它们在同温层中的大气寿命,很多理论工作深入研究了HF_Es与自由基的反应机理和动力学行为。这些研究对控制和解决它们对环境的环境污染有重要的意义。
     本论文利用现代量子化学理论详细阐述了CF_3OCHF_2 + O(1D)反应的反应机理。利用从头算和密度泛函直接动力学方法研究了CHF_2OCHF_2 + Cl反应的微观机理和速率常数。从而为进一步研究和利用这些反应提供了理论依据。
     本论文的主要工作概括如下:
     一、CF_3OCHF_2 + O(1D)反应机理的理论研究。运用密度泛函DF_T (B3LYP)和MC-QCISD方法在6-311 G(d,p)基组水平上对CF_3OCHF_2 + O(1D)的反应机理进行了全面细致的研究。获得了该反应中势能面上各稳定点的几何构型、振动频率和单点能等信息。利用同构反应(Ra-Rc),在理论上估算了反应物CF_3OCHF_2的标准生成焓数据。另外,计算了主要反应通道的反应焓。计算结果表明,CF_3OCHF_2 + O(1D)反应可能有三种起始络合方式,分别是O(1D)插入到C-H键;O(1D)插入到C-O键;O(1D)进攻F_原子。共形成七个前期络合物。通过分析比较,有五条反应路径是可以实现的。在这些反应中我们认为P2,P3和P4是主要产物,而P1和P5是次要产物。
     二、CHF_2OCHF_2 + Cl的微观反应机理的理论研究。应用G_3MP_2//UMP_2/6-311 G(d,p)方法研究了CHF_2OCHF_2 + Cl的H-提取反应机理。计算结果表明,在UMP_2/6-311G(d,p)理论水平下计算得到的反应物、产物的几何构型和频率值分别与可获得的实验值吻合得比较好。我们在G_3M_2//UMP_2/6-311G(d,p)水平上应用同构反应估算了CHF_2OCHF_2的标准生成焓。我们希望我们的计算对于深入研究该反应的机制可能有帮助作用,并且对于将来的实验研究也能够提供参考和帮助。
Hydrofluoroethers (HFEs) are being used as third generation replacements to chlorofluorocarbons (CFCs) because of their nearly zero stratospheric ozone depletion and relatively low global warming potential. HFEs have been used in various industrial applications. From the environmental, ecological, and health points of view, it is important to understand their environmental risks for these HFEs from a diversity of commercial applications and industrial processes. Therefore, in order to better assess the atmospheric and environmental impact of HFEs, the mechanisms and kinetics of the HFEs with radicals have been studied deeply by many theoretical investigations. They are very important to control atmospheric pollutions.
     The quantum chemistry methods were used to investigate the reaction mechanisms of CF3OCHF2 + O(1D) reaction. Using ab initio and density function theory (DFT) chemistry methods, we studied the the detailed mechanisms and rate constant of CHF_2OCHF_2 + Cl. Thus, useful information and elementary theoretical evidence are provided for further studying these reactions experimentally.
     The results of this work are summarized as follows:
     1. The theoretical study on the of CF_3OCHF_2 + O(1D) reaction are investigated deeply using DFT (B3LYP) and MC-QCISD methods with 6-311G(d,p) basis set. The geometries, vibrational frequencies and the singlet point energy of all stationary points on potential energy surfaces (PESs) are obtained. Standard enthalpies of formation of CF_3OCHF_2 are estimated theoretically using group-balanced isodesmic reactions (Ra-Rc). Moreover, The reaction enthalpies of the major reaction channels are calculated. The results show that seven different intermediates are located at the reactant side by three initial association ways: i.e. insertion into C-H bond, insertion into C-O bond, or addition to the F atom of CF3OCHF2, respectively. There are five reaction pathways are feasible and five products may be obtained. Among them, P_2, P_, and P_4 are primary products, while P1 and P5 are minor products.
     2. The theoretical investigation on the H-abstraction reaction mechanism of the reaction CHF_2OCHF_2 + Cl. The optimized geometries and harmonic frequencies of the reactants, products, hydrogen-bonded complex and transition states are obtained at the G3MP_2//UMP2/6-311G(d,p) level for the H-abstraction reaction mechanism of CHF2OCHF2 + Cl. The results are consistant with the available experimental data. Standard enthalpies of formation of CHF2OCHF2 radical are estimated theoretically using group-balanced isodesmic reactions. We hope our calculation may be useful for gaining insight into the mechanism and may provide useful information for future experimental studies of the title reaction.
引文
[1]Berson M, Baird J C. An introduction of electron paramagnetic resonance[M]., W. A. Benjiamin, New York, 1966.
    [2]Rayson L, Huang S H, Goh S H O著,穆光照,甘礼骓等译,自由基化学[M].上海:上海科学技术出版社, 1983, 258.
    [3]穆光照.自由基反应[M].北京:高等教育出版社, 1985, 7, 239.
    [4]Smith I W M. Radiative associaton in collisions between neutral free radicals[J]. Chem Phys, 1989, 131(2-3): 391–401.
    [5]Kharasch M S. Photodecomposition of chlorine dioxide in carbon tetrachloride solution[J]. J Am Chem Soc, 1937, 59(6):1155–1156.
    [6]Wilson S. Theoretical-studies of Inter-Stellar Radicals and Ions[J] . Chem Rev , 1980 80(3):263-267.
    [7]Bedjanian Y, Poulet G. Kinetics of halogen oxide radicals in the stratosphere[J]. Chem Rev, 2003, 103(12):4639-4655.
    [8]Orlando J J, Tyndall G S, Wallington T J. The atmospheric chemistry of alkoxy radicals[J]. Chem Rev, 2003, 103(12):4657-4689.
    [9]Kurylo M J, Orkin V L. Determination of atmospheric lifetimes via the measurement of OH radical kinetics[J]. Chem Rev, 2003, 103(12):5049-5076.
    [10]Atkinson R. Kinetics and Mechanisms of the Gas-Phase Reactions of The Hydroxyl Radical With Organic-Compounds UnderAtmospheric Conditions[J]. Chem Rev, 1986, 86(1):69-201.
    [11]Whittaker J W. Free radical catalysis by galactose oxidase[J]. Chem Rev, 2003, 103(6):2347-2363.
    [12]Himo F, Siegbalm P E M. Quantum chemical studies of radica-containing enzymes[J]. Chem Rev, 2003, 103(6):2421-2456.
    [13]Ragsdale S W. Pyruvate ferredoxin oxidoreductase and its radical intermediate[J]. Chem Rev, 2003, 103(6):2333-2346.
    [14]Stubbe J, GNocera D, Yce C S, et a1. Radical initiation in the class I ribonucleofide reductase: Long-range proton-coupled electron transfer?[J]. Chem Rev, 2003, 103(6):2167-2201.
    [15]Fontecave M, Ollagnier-de-Choudens S, Mulliez E. Biological radical sulfur insertion reactions[J]. Chem Rev, 2003, 103(6):2149-2166.
    [16]Banerjee R. Introduction: Radical enzymology[J]. Chem Rev, 2003, 103(6):2081-2081.
    [17]Follmann H. Deoxyfibonucleotides: the unusual chemistry and biochemistry of DNA precursors. Chem Society Rev, 2004, 33(4):225—233.
    [18]Stubbe J, vail der Donk W A. Protein radicals in enzylme catalysis[J]. Chem Rev, 1998, 98(2):705-762.
    [19]Stubbe J, van der Donk W A. Protein radicals in enzylme catalysis[J]. Chem Rev, 1998, 98(7):2661-2661.
    [20]Easton C J. Free-radical reactions in the synthesis of alpha-amino acids and derivatives[J]. Chem Rev, 1997, 97(1):53—82.
    [21]Hansch C, Gao H. Comparative QSAR: Radical reactions of benzene derivatives in chemistry and biology[J]. Chem Rev, 1997, 97(8):2995—3059.
    [22]Charles Grissom B. Magnetic Field Effects in Biology: A Survey of Possible Mechanisms with Emphasis on Radical-Pair Recombination[J]. Chem Rev, 1995, 95(1):3-24.
    [23]Frey P A. Importance of Organic Radicals in Enzymatic Cleavage of Unactivated C-H Bonds[J]. Chem Rev, 1990, 90(7):1343-1357.
    [24]Walden P, Audrieth L F. Free Inorganic Radicals[J]. Chem Rev, 1928, 5(3):339-359.
    [25]Uri N. Inorganic Free Radicals in Solution[J]. Chem Rev, 1952, 50(3):375-454.
    [26]Garcia H, Roth H D. Generation and reactions of organic radical cations in zeolites[J]. Chem Rev, 2002, 102(11):3947-4007.
    [27]Foreman J B, Frisch M J. Exploring Chemistry with Electronic Structure Methods[M]. 1993.
    [28]Hehre W J, Radom I, Schleyer P V R, Pople J A. Ab Initio Molecular Orbital Theory[M]. 1986.
    [29]Force AP, Wiesenfeld JR. Collisional deactivation of oxygen(1D2) by the halomethanes. Direct determination of reaction efficiency[J], J Phys Chem, 1981, 85(7):782-785.
    [30]Cvetanivic RJ. Can J Chem, 1974, 1452.
    [31]王明星.大气化学[M].气象出版社,1999年05月第2版, p467.
    [32]McElroy M B, Salawitch R J, Wofsy S C, et al. Reductions of antarctic ozone due to synergistic interactions of chlorine and bromine[J]. Nature, 1986, 321(6072): 759–762.
    [33]Fan S M, Jacob D J. Surface ozone depletion in Arctic spring sustained by bromine reactions on aerosols[J]. Nature, 1992, 359(6395): 522–524.
    [34]McConnell J C, Henderson G S, Barrie L, et al. Photochemical bromine production implicated in Arctic boundary-layer ozone depletion[J]. Nature, 1992, 355(6356): 150–152.
    [35]Montzka S A, Butler J H, Mayers R C, et al. Decline in the tropospheric abundance of halogen from halocarbons: Implications for stratospheric ozone depletion[J]. Science, 1996, 272(5266): 1318–1322.
    [36]Redeker K R, Wang N Y, Low J C, et al. Emissions of methyl halides and methane from rice paddies[J]. Science, 2000, 290(5493): 966–969.
    [37]王殿勋. 2001科学发展报告[R].北京:科学出版社,2001,p86.
    [38]刘静玲.环境污染与控制[M].化学工业出版社, 2001年02月(第1版) p282.
    [39]寒冬,寒之.臭氧层[M].中国环境科学出版, 2001年4月第1版p116.
    [40]秦大河.大气臭氧层和臭氧空洞[M].气象出版社, 2003年3月第一版, p187.
    [41]Tsai WT. A review of environmental hazards and adsorption recovery of cleaning solvent hydrochlorofluorocarbons (HCFCs), J Loss Prevent Proc, 2002, 15:147-157.
    [42]Wallington TJ, Nielsen OJ. Atmospheric chemistry and environmental impact of hydrofluorocarbons (HFCs) and hydrofluoroethers (HFEs), in: A.H. Neilson (Ed.), The Handbook of Environmental Chemistry, vol. 3, Part N—Organofluorines, Springer-Verlag, Berlin Heidelberg, Germany, 2002.
    [43]WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion: 2002. Geneva, Switzerland, 2002.
    [44]Ravishankara R A, Turnipseed A A, Jensen N R, et al. Do hydrofluorocarbons destroy stratospheric ozone?[J]. Science, 1994, 263:71–75.
    [45] Sekiya A, Misaki S. The potential of hydrofluoroethers to replace CFCs, HCFCs and PFCs[J]. J Fluorine Chem, 2000, 101:215-221.
    [46]Yamada Y, Kondo S, Urano Y, Takubo M, Sekiya A. presented at the 16th International Symposium on Fluorine Chemistry, Durham, 2000, pp 1-108.
    [47]Yamada Y, Kondo S, Maruo K, Sekiya A. presented at the 13th European Symposium on Fluorine Chemistry, Bordeaux, 2001, pp 1-P70.
    [48]Otake K, Uchida Y, Yasumoto M, Yamada Y, Furuya T, Ochi K. Critical Parameters Measurements of Four HFE+HFC Binary Systems: Pentafluoromethoxyethane (HFE-245Mc) + Pentafluoroethane(HFC-125), + 1,1,1,2-Tetrafluoroethane (HFC-134a), + 1,1,1,2,3,3,3-Heptafluo roroethane (HFC-134a), + 1,1,1,2,3,3,3-Heptafluoropropane (HFC-227ea), and + ,1,1,2,3,3-Hexa fluoropropane (HFC-236ea)[J]. J Chem Eng Data, 2004, 49(6):1643-1647.
    [49]Yang L, Liu JY, Wan SQ, Li ZS. Theoretical studies of the reactions of CF3CHClOCHF2/CF3CHFOCHF2 with OH radical and Cl atom and their product radicals with OH[J]. J Comput Chem, 2009, 30(4): 565-580.
    [50]Marchionni G, Maccone P, Pezzin G, Thermodynamic and other physical properties of several hydrofluoro-compounds[J], J Fluorine Chem, 2002, 118:149-155.
    [51]Newsted JL, Nakanishi J, Cousins I, Werner K, Giesy JP. Predicted distribution and ecological risk assessment of a "segregated" hydrofluorrother in the Japanese environment[J], Environ Sci Technol, 2002, 36(22):4761-4769.
    [52]Díaz-de-Mera Y, Aranda A, Bravo I, Rodríguez D, Rodríguez A, Moreno E. Atmospheric chemistry of HFE-7000 (CF3CF2CF2OCH3) and 2,2,3,3,4,4,4-heptafluoro-1-butanol (CF3CF2CF2CH2OH): kinetic rate coefficients and temperature dependence of reactions with chlorine atoms[J], Environ Sci Pollut Res, 2008, 15:584-591.
    [53]Young CJ, Hurley MD, Wallington TJ, Mabury SA. Atmospheric lifetime and global warming potential of a perfluoropolyether[J], Environ Sci Technol, 2006, 40 (7): 2242-2246.
    [54]Li Z J, Jeong G R, Hansen J C, et al. Rate constant for the reactions of CF3OCHFCF3 with OH and Cl[J]. Chem Phys Lett, 2000, 320: 70–76.
    [55] Beach S D, Hickson K M, Smith, Ian W M, et al. Rate constants and Arrhenius parameters for the reactions of OH radicals and Cl atoms with CF3CH2OCHF2, CF3CHClOCHF2 and CF3CH2OCClF2, using the discharge-flow/resonance fluorescence method [J]. Phys Chem Chem Phys, 2001, 3: 3064–3069.
    [56]Takahashi K, Matsumi Y, Wallington T J, et al. Atmospheric chemistry of CF3CFHOCF3: Kinetics of the reaction with Cl atoms and fate of CF3CFO(.)OCF3 radicals[J]. Chem Phys Lett, 2002, 352:202–208.
    [57]Urata S, Takada A, Uchimaru T, Chandra A K. Rate constants estimation for the reaction of hydrofluorocarbons and hydrofluoroethers with OH radicals[J]. Chem Phys Lett, 2003, 368:215–223.
    [58]Wu JY, Liu JY, Li ZS, Sun CC. Theoretical study of the reactions of CF3OCHF2 with the hydroxyl radical and the chlorine atom[J], Chem Phys Chem, 2004, 5(9):1336-1344.
    [59]Oyaro N, Sellev?g S R, Nielsen C J. Atmospheric chemistry of hydrofluoroethers: Reaction of a series of hydrofluoroethers with OH radicals and Cl atoms, atmospheric lifetimes, and global warming potentials[J]. J Phys Chem A, 2005, 109:337–346.
    [60]Díaz-de-Mera Y, Aranda A, Bravo I, Moreno E, Martínez E, Rodríguez A. Atmospheric HFEs degradation in the gas phase: Reaction of HFE-7500 with Cl atoms at low temperatures[J]. Chem Phys Lett, 2009, 479:20–24.
    [61]Jia XJ, Liu YJ, Sun JY, Sun H, Su ZM, Pan XM, Wang RS. Theoretical Investigation of the Reactions of CF3CHFOCF3 with the OH Radical and Cl Atom[J], J Phys Chem A, 2010, 114(1):417-424.
    [62]Good DA, Francisco JS, Rate Constants for Reactions of O(1D) with Partially Fluorinated Ethers, E143A (CH3OCF3), E134 (CHF2OCHF2), and E125 (CHF2OCF3)[J], J Phys Chem A, 1999, 103(26):5011-5014.
    [63]Liu HX, Liu JY, Zhang G, Sun CC. Theoretical studies on the reaction mechanism of O(1D) with CH3OCF3, Chem Phys Lett, 2009, 471:202-209.
    [64]Kambanis KG, Lazarou YG, Papagiannakopoulos P. Kinetic Study for the Reactions of Chlorine Atoms with a Series of Hydrofluoroethers[J], J Phys Chem A, 1998, 102:8620-8625.
    [65]Sulbaek Andersen MP, Hurley MD, Andersen VF, Nielsen OJ, Wallington TJ. CHF2OCHF2 (HFE-134): IR Spectrum and Kinetics and Products of the Chlorine-Atom-Initiated Oxidation, J Phys Chem A, 2010, 114:4963-4967.
    [1]徐光宪,黎乐民,王德民,量子化学基本原理和从头计算法[M].北京,科学出版社, 1985.
    [2]唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社, 1982.
    [3]金松寿.量子化学基础及其应用[M].上海:上海科学技术出版社, 1980.
    [4]陈念陔,高坡,乐征宇.量子化学理论基础[M].哈尔滨:哈尔滨工业大学出版社, 2002.
    [5]Born M, Oppenheimer R. Zur Quantentheorie der Molekeln Ann. Phsik. (Quantum Theory of the Molecules Ann.Phys.) 1927, 84, 457.
    [6]赵学庄,罗渝然,臧雅茹等.《化学反应动力学原理》下册[M].高等教育出版社,1990.
    [7]Szabo A, Ostlund NS. Modern Quantum Chemistry, Introduction to Advanced Electronic Structure Theory[M]. Dover, New York. 1996.
    [8]Pople JA, Seeger R, Krishnan R. Variational Configuration Interaction Methods and Comparison with Perturbation Theory[J]. Int J Quant Chem Symp, 1977, 11:149-163.
    [9]Pople JA, Head-Gordon M, Raghavachari K. Quadratic configuration interaction. A general technique for determining electron correlation energies[J]. J Chem Phys, 1987, 87:5968-5975.
    [10]Parr RG, Yang W. Density-Functional Theory of Atoms and Molecules[M]. Oxford Univ. Press: Oxford, 1989.
    [11]Hohenberg P, Kohn W. Inhomogeneous Electron Gas[J]. Phys Rev, 1964, 136: B864-B871.
    [12]Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects[J].Phys Rev, 1965, 140: A1133–A1138.
    [13]Fukui K. Varational principles in a chemical reaction[J]. Int J Quantum Chem, 1981, 15:633-641.
    [14]Fukui K, Tachibana A, Yamashita K. Toward chemodynamitcs[J]. Int J Quantum Chem, 1981,15: 621–632.
    [15]Slater J C. Quantum Theory of Molecular and Solids: The Self-Consistent Field for Molecular and Solids McGraw-Hill[M]. New York, 1974.
    [16]Salahub D R, Zerner M C, et al. The Challenge of d and f Electrons[M]. Washington, D.C, 1989.
    [17]Pople J A, Gill P M W, Johnson B G. Kohn-Sham density-functional theory within a finite basis set[J]. Chem Phys Lett, 1992, 199(6): 557–560.
    [18]Johnson B G, Fisch M J. An implementation of analytic second derivatives of the gradient-corrected density functional energy[J]. J Chem Phys, 1994, 100(10): 7429–7442.
    [19]Labanowski J K, Andzelm J W, eds. Density Functional Methods in Chemistry[M]. Springer-Verlag: New York, 1991.
    [20]Fast P L, Truhlar D G, MC-QCISD: Multi-Coefficient Correlation Method Based on Quadratic Configuration Interaction with Single and Double Excitations[J]. J Phys Chem A, 2000, 104(26):61l1-6116.
    [21]Wang Y, Liu J Y, Li Z S, et a1. Direct Dynamics Study on Hydrogen Abstraction Reaction of CF3CF2CH2OH with OH Radical[J]. J Phys ChemA, 2006, 110(17):5853-5859.
    [22]Wang Y, Liu J Y, Yang L, et a1. Direct Dynamics Studies on Hydrogen Abstmtion Reactions of CH3CHFCH3 and CH3CH2CH2F with OH Radicals[J]. J Phys ChemA, 2007, 111(32):7761-7770.
    [23]Pople J A, Head-Gordon M, Fox D J, et al. Gaussian-1 theory: A general procedure for prediction of molecular energies[J]. J Chem Phy, 1989, 90(10):5622—5629.
    [24]Curtiss LA, Raghavachari K, Trucks G W, et a1. Gaussian-2 theory for molecular energies offirstand second-row compounds[J]. J Chem Phys, 1991, 94(11):7221-7230.
    [25]Curtiss L A, Raghavachari K, Pople J A, Gaussian-2 theory using reduced M?ller—Plesset orders[J]. J Chem Phys, 1993, 98(2):1293-1298.
    [26]Curtiss L A, Raghavachari K, Redfem P C, et a1. Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation[J]. J Chem Phys, 1997, 106(3):1063-1079.
    [27]Curtiss LA, Raghavachari K, Redfern P C, et a1. Gaussian-3. G3. theory for molecules containing first and second-row atoms[J]. J Chem Phys, 1998, 109(18):7764-7776.
    [28]Curtiss LA, Redfem P C, Raghavachari K, et a1. Gaussian-3 theory using reduced M ?ller-Plesset order[J]. J Chem Phys, 1999, 110(10):4703-4709.
    [29]Bauschlicher C W, Partridge H, Extension of Gaussian-2(G2) theory to bromine-and iodine-containing molecules: Use of effective core potentials[J]. J Chern Phys, 1995, 103(5):1788-1885.
    [30]Baboul A G, Curtiss LA, Redfem P C, et a1. Gaussian-3 theory using density functional geometries and zero-point energies[J]. J Chem Phys, 1999, 110(16):7650—7657.
    [31]Curtiss L A, RedfemP C, Raghavachari K, Gaussian-4 Theory[J]. J Chem Phys, 2007, 126(8):084108-l-084108-12.
    [32]王宝山,多通道化学反应的机理和动力学研究[D]: [博士学位论文].山东:山东大学化学学院, 2000.
    [1]Sekiya A, Misaki S. The potential of hydrofluoroethers to replace CFCs, HCFCs and PFCs[J]. J Fluorine Chem, 2000, 101:215-221.
    [2]Yamada Y, Kondo S, Urano Y, Takubo M, Sekiya A. presented at the 16th International Symposium on Fluorine Chemistry, Durham, 2000, pp 1-108.
    [3]Yamada Y, Kondo S, Maruo K, Sekiya A. presented at the 13th European Symposium on Fluorine Chemistry, Bordeaux, 2001, pp 1-P70.
    [4]Otake K, Uchida Y, Yasumoto M, Yamada Y, Furuya T, Ochi K. Critical Parameters Measurements of Four HFE+HFC Binary Systems: Pentafluoromethoxyethane (HFE-245Mc) + Pentafluoroethane(HFC-125), + 1,1,1,2-Tetrafluoroethane (HFC-134a), + 1,1,1,2,3,3,3-Heptafluor oroethane (HFC-134a), + 1,1,1,2,3,3,3-Heptafluoropropane (HFC-227ea), and + ,1,1,2,3,3-Hexafl uoropropane (HFC-236ea)[J]. J Chem Eng Data, 2004, 49(6):1643-1647.
    [5]Yang L, Liu JY, Wan SQ, Li ZS. Theoretical studies of the reactions of CF3CHClOCHF2/CF3CHFOCHF2 with OH radical and Cl atom and their product radicals with OH[J]. J Comput Chem, 2009, 30(4): 565-580.
    [6]Marchionni G, Maccone P, Pezzin G. Thermodynamic and other physical properties of several hydrofluoro-compounds[J], J Fluorine Chem, 2002, 118:149-155.
    [7]Newsted JL, Nakanishi J, Cousins I, Werner K, Giesy JP. Predicted distribution and ecological risk assessment of a "segregated" hydrofluorrother in the Japanese environment[J], Environ Sci Technol, 2002, 36(22):4761-4769.
    [8]Díaz-de-Mera Y, Aranda A, Bravo I, Rodríguez D, Rodríguez A, Moreno E. Atmospheric chemistry of HFE-7000 (CF3CF2CF2OCH3) and 2,2,3,3,4,4,4-heptafluoro-1-butanol (CF3CF2CF2CH2OH): kinetic rate coefficients and temperature dependence of reactions with chlorine atoms[J], Environ Sci Pollut Res, 2008, 15:584-591.
    [9]Young CJ, Hurley MD, Wallington TJ, Mabury SA. Atmospheric lifetime and global warming potential of a perfluoropolyether[J], Environ Sci Technol, 2006, 40 (7): 2242-2246.
    [10]Good DA, Francisco JS, Jain AK, Wuebbles DW. Lifetimes and global warming potentials for dimethyl ether and for fluorinated ethers: CH3OCF3 (E143a), CHF2OCHF2 (E134), CHF2OCF3 (E125)[J], J Geophys Res A, 1998, 103:28181-28186.
    [11]Force AP, Wiesenfeld JR. Collisional deactivation of oxygen(1D2) by the halomethanes. Direct determination of reaction efficiency[J], J Phys Chem, 1981, 85(7):782-785.
    [12]Cvetanivic RJ. Can J Chem, 1974, 1452.
    [13]Force P, Wiesenfeld JR. Collisional deactivation of oxygen(1D2) by the halomethanes. Direct determination of reaction efficiency[J], J Phys Chem, 1981, 85:782-785.
    [14]Kurosaki Y, Takayanagi T. Ab initio molecular orbital study of O(1D) insertion into C-C bond in cyclopropane and ethane[J], Chem Phys Lett, 2002,355:424-430.
    [15]Chang AHH, Lin SH. A theoretical study of the O(1D) + CH4 reaction II, Chem Phys Lett, 2004, 384: 229-235.
    [16]Chang AHH, Lin SH. A theoretical study of the O(1D) + CH4 reaction I, Chem Phys Lett, 2002, 363:175-181.
    [17]Chiang HC, Wang NS, Tsuchiya S. Reaction dynamics of O((1)D,(3)P) + OCS studied with time-resolved Fourier transform infrared spectroscopy and quantum chemical calculations[J], J Phys Chem A, 2009, 113(47):13260-13272.
    [18]Good DA, Francisco JS. Rate Constants for Reactions of O(1D) with Partially Fluorinated Ethers, E143A (CH3OCF3), E134 (CHF2OCHF2), and E125 (CHF2OCF3)[J], J Phys Chem A, 1999, 103(26):5011-5014.
    [19]Liu HX, Liu JY, Zhang G, Sun CC. Theoretical studies on the reaction mechanism of O(1D) with CH3OCF3, Chem Phys Lett, 2009, 471:202-209.
    [20]Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, revision C.02. Gaussian, Inc.,Wallingford. 2004.
    [21]Fast P L, Truhlar DG. MC-QCISD: Multi-coefficient correlation method based on quadratic configuration interaction with single and double excitations[J]. J Phys Chem A, 2000, 104: 6111-6116.
    [22]Chase MW Jr, Davies C A, Downey Jr, Frurip DJ, McDonald RA, Syverud AN. J Phys Chem Ref Data, 1985, 14, Suppl. 1.
    [23]LeRoy RJ. Improved Parameterization for Combined Isotopomer Analysis of Diatomic Spectra and Its Application to HF and DF[J], J Mol Spectrosc, 1999, 194:189-196.
    [24]Shimanouchi T. Tables of Molecular Vibrational Frequencies, Consolidated Volume 1, NSRDS NBS-39.
    [25]Shimanouchi T. Tables of Molecular Vibrational Frequencies, Consolidated Volume 2, J Phys Chem Ref Data, 197, 993.
    [26]Yang L, Liu JY, Li ZS. Computational Studies on the Mechanisms and Dynamics of OH Reactions with CHF2CHFOCF3 and CHF2CH2OCF3[J], J Chem Theory Comput, 2008, 4(7):1073-1082.
    [27]Jia XJ, Liu YJ, Sun JY, Sun H, Su ZM, Pan XM, Wang RS. Theoretical Investigation of the Reactions of CF3CHFOCF3 with the OH Radical and Cl Atom[J], J Phys Chem A, 2010, 114(1):417-424.
    [28]Pittam DA, Pilcher G. Measurements of heats of combustion by flame calorimetry. Part 8.-Methane, ethane, propane, n-butane and 2-methylpropane[J], J Chem Soc Faraday Trans, 1972, 68:2224-2229.
    [29]Chase M W Jr. NIST-JANAF Themochemical Tables (4th ed.), J Phys Chem Ref Data, Monograph 9, 1998, 1.
    [30]Wu E, Rodgers AS. Thermochemistry of gas-phase equilibrium CF3CH3 + I2 = CF3CH2I + HI. The carbon-hydrogen bond dissociation energy in 1,1,1-trifluoroethane and the heat of formation of the 2,2,2-trifluoroethyl radical[J], J Phys Chem, 1974, 78:2315-2317.
    [31]Pilcher G, Pell AS, Colernan DJ. Measurements of heats of combustion by flame calorimetry. Part 2.—Dimethyl ether, methyl ethyl ether, methyl n-propyl ether, methyl isopropyl ether[J], Trans Faraday Soc, 1964, 60:499-505.
    [32]NIST Thermodynamic Tables, Table 6. November 30, 2006, pp. 389-416.
    [33]Cox JD, Wagman DD, Medvedev VA. CODATA Key Values for Thermodynamics, Hemisphere, New York, 1989.
    [34]Gurvich LV, Veyts IV, Alcock CB. Thermodynamic Properties of IndiVidual Substances Vol 2 (4th ed), Hemisphere, New York, 1991.
    [35]Wu JY, Liu JY, Li ZS, Sun CC. Theoretical study of the reactions of CF3OCHF2 with the hydroxyl radical and the chlorine atom[J], Chem Phys Chem, 2004, 5(9):1336-1344.
    [1]Ravishankara R A, Turnipseed A A, Jensen N R, et al. Do hydrofluorocarbons destroy stratospheric ozone?[J]. Science, 1994, 263: 71–75.
    [2] Sekiya A, Misaki S. The potential of hydrofluoroethers to replace CFCs, HCFCs and PFCs[J]. J Fluorine Chem, 2000, 101:215-221.
    [3]Yamada Y, Kondo S, Urano Y, Takubo M, Sekiya A. presented at the 16th International Symposium on Fluorine Chemistry, Durham, 2000, pp 1-108.
    [4]Yamada Y, Kondo S, Maruo K, Sekiya A. presented at the 13th European Symposium on Fluorine Chemistry, Bordeaux, 2001, 1-P70.
    [5]Otake K, Uchida Y, Yasumoto M, Yamada Y, Furuya T, Ochi K. Critical Parameters Measurements of Four HFE+HFC Binary Systems: Pentafluoromethoxyethane (HFE-245Mc) + Pentafluoroethane(HFC-125), + 1,1,1,2-Tetrafluoroethane (HFC-134a), + 1,1,1,2,3,3,3-Heptafluo roroethane (HFC-134a), + 1,1,1,2,3,3,3-Heptafluoropropane (HFC-227ea), and + ,1,1,2,3,3-Hexa fluoropropane (HFC-236ea)[J]. J Chem Eng Data, 2004, 49(6):1643-1647.
    [6]Yang L, Liu JY, Wan SQ, Li ZS. Theoretical studies of the reactions of CF3CHClOCHF2/CF3CHFOCHF2 with OH radical and Cl atom and their product radicals with OH[J]. J Comput Chem, 2009, 30(4): 565-580.
    [7]Marchionni G, Maccone P, Pezzin G. Thermodynamic and other physical properties of several hydrofluoro-compounds[J], J Fluorine Chem, 2002, 118:149-155.
    [8]Newsted JL, Nakanishi J, Cousins I, Werner K. Giesy JP. Predicted distribution and ecological risk assessment of a "segregated" hydrofluorrother in the Japanese environment[J], Environ Sci Technol, 2002, 36(22):4761-4769.
    [9]Young CJ, Hurley MD, Wallington TJ, Mabury SA. Atmospheric lifetime and global warming potential of a perfluoropolyether[J], Environ Sci Technol, 2006, 40 (7): 2242-2246.
    [10]Díaz-de-Mera Y, Aranda A, Bravo I, Rodríguez D, Rodríguez A, Moreno E. Atmospheric chemistry of HFE-7000 (CF3CF2CF2OCH3) and 2,2,3,3,4,4,4-heptafluoro-1-butanol (CF3CF2CF2CH2OH): kinetic rate coefficients and temperature dependence of reactions with chlorine atoms[J], Environ Sci Pollut Res, 2008, 15:584-591.
    [11]Kambanis KG, Lazarou YG, Papagiannakopoulos P. Kinetic Study for the Reactions of Chlorine Atoms with a Series of Hydrofluoroethers[J], J Phys Chem A, 1998, 102:8620-8625.
    [12]Sulbaek Andersen MP, Hurley MD, Andersen VF, Nielsen OJ, Wallington TJ. CHF2OCHF2 (HFE-134): IR Spectrum and Kinetics and Products of the Chlorine-Atom-Initiated Oxidation, JPhys Chem A, 2010, 114:4963-4967.
    [13] Curtiss LA, Redfern PC. Gaussian-3 theory using reduced M?ller-Plesset order[J], J Chem Phys, 1999, 110:4703-4709.
    [14]Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 03, revision C.02. Gaussian, Inc., Wallingford, 2004.
    [15] Lide D R. CRC Handbook of Chemistry and Physics, 80th ed. CRC Press, Boca Raton. 1999.
    [16] Chase M W Jr, Davies C A, Downey J R, et al. JANAF Thermochemical Tables(3rd ed.), Ref Data, 1985, 14, Suppl. 1.
    [17]Yang L, Liu JY, Li ZS. Computational Studies on the Mechanisms and Dynamics of OH Reactions with CHF2CHFOCF3 and CHF2CH2OCF3[J], J Chem Theory Comput, 2008, 4(7):1073-1082.
    [18]Jia XJ, Liu YJ, Sun JY, Sun H, Su ZM, Pan XM, Wang RS. Theoretical Investigation of the Reactions of CF3CHFOCF3 with the OH Radical and Cl Atom[J], J Phys Chem A, 2010, 114(1):417-424.
    [19] Frenkel M, Kabo G. J, Marsh K N, Roganov G. N, Wilhoit R C. Thermodynamics of Organic Compounds in the Gas State; Thermodynamics Research Center: College Station, TX, Vol. I. 1994.
    [20] Chen S S, Rodgers A S, Chao J, Wilhoit R C, Zwolinski B J. Ideal gas thermodynamic properties of six fluoroethanes[J]. J Phys Chem Ref Data, 1975, 4: 441–456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700