珠江三角洲地区大气中与全球变化相关的痕量卤代烃的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于对平流层臭氧的损耗作用以及潜在的温室效应,大气中卤代烃的观测一直以来备受科学界的关注。自20世纪70年代以来,全球已经建立了30多个臭氧层损耗物质(Ozone Depletion Substances,简称ODS)的本底观测站,旨在研究世界各国停止生产和使用ODS之后若干年内滞留在对流层中的卤代烃水平及其对平流层中臭氧浓度变化的影响。随着工业化加速和经济迅速发展,中国已经成为生产和使用氟氯烃的大国,其排放和淘汰CFCs、HCFCs以及其它卤代烃的情况受到各国关注。但我国大气环境相关数据还十分缺乏。珠江三角洲地区作为中国工业化和城市化程度较高的地区,其卤代烃的使用和排放在我国占有相对重要地位。本研究利用预浓缩-GC-MS方法,以大气中7种主要的痕量ODS为研究对象,研究其在包括珠江三角洲在内的中国岭南地区的区域分布特征以及本底浓度水平,观测其日变化、季节变化特征,并对各种ODS的变化趋势进行了初步估计和预测,目的在于揭示近几年中国在《蒙特利尔议定书》及其一系列修正案的影响下ODS的生产、消费、排放情况及区域大气浓度水平。
     区域分布特征方面,珠三角地区多数卤代烃(除CH_3Cl外)总体上在人口密集的中心城市(深圳,香港,澳门,广州)有较高的浓度水平,而CH_3Cl则在鼎湖山森林地区高于城市地区。与全球本底值比较,珠三角地区大气中CFC-12,CFC-11,HCFC-22以及CH_3Cl的浓度高于全球本底值,尤其是HCFC-22和CH_3Cl与本底值的浓度差别较大。以Cape Grim的观测值作为对比,广州和鼎湖山HCFC-22的浓度分别比Cape Grim高了324.9pptv和136.3pptv,是全球本底值的2~3倍;氯甲烷的浓度比本底高了291.1pptv和481.0pptv,是本底值的1.6~2.0倍,显示出该地区是HCFC-22和CH_3C1的强源;CFC-113和CCl_4的浓度与本底值相当,表明已经不存在它们的局地排放源。
     广州4种CFCs浓度表现出较明显的季节差异性,峰值出现在气温较高的夏秋季节,并且各卤代烃的月均值与气温呈正相关,各种CFCs的平均浓度都在5
Measurement of halocarbons in the atmosphere has been of great concern for their effects on depleting stratospheric ozone-layer and for their global warming potential. More than 30 global background stations have been established since 1970s to study the changes of these ozone depletion substances (ODS) after reduced production and consumption, and to investigate the response of stratospheric ozone to the changes of the world's use of these gases. With the rapid industrialization and economic development, China has played a role of increasing importance in the production and consumption of chlorofluorocarbons (CFCs), therefore attentions have been paid to the emissions and phase-out of ODS in China. A large portion of these halocarbons in China might be consumed in the Pearl River Delta (PRD), one of the most industrialized regions in China. In the Pearl River Delta region, observations of seven trace gases, namely CFC-12 (CCl2F2), CFC-11 (CCl3F), CFC-113 (CCl2FCClF2), CFC-114 (CClF2CClF2), HCFC-22 (CHClF2), carbon tetrachloride (CCl4) and methyl chloride (CH3Cl), have been conducted by canister sampling and pre-concentration-GC-MSD analysis in recent years. The study focused on the background levels and spatial and temporal variations of these halocarbons, as well as a preliminary estimation of their annual trends. The purpose is to elucidate the situation of production, comsumption, emiision and atmospheric levels of these ODS
    under the influence of Montreal Protocol and its amendments in China.Mixing ratios of most halocarbons (except CH3C1) were highest in the densly populated metropolitans (such as Shenzhen, Macau, Hong Kong and Guangzhou) and lowest in remote area (such as Dinghu Mountain). Mixing ratios for CH3CI, however, were higher in Dinghu Mountain than in Guangzhou and other cities. Compared to global background values, the mean mixing ratios for CFC-12, CFC-11, HCFC-22 and CH3CI in the Pearl River Delta were much higher. Especially for HCFC-22 and CH3CI, the levels in PRD presented a striking contrast to those in the global background monitoring stations. The average concentrations of HCFC-22 in Guangzhou and Dinghu Mountain are 324.9pptv and 136.3pptv higher than that in Cape Grim, respectively. Mean mixing ratios of HCFC-22 in fact were 2-3 times of that in Cape Grim. CH3CI in Guangzhou and Dinghu Mountain are 291.1pptv and 481.0pptv higher than that in Cape Grim, respectively, and were about 1.6-2.0 times of the CH3CI levels in Cape Grim. This large contrast of concentrations reveals strong emission sources of these two gases in PRD. Mean mixing ratios for both CFC-113 and CCI4 are comparable with the global background concentrations, indicating very limited local emission of CFC-113 and CCl4in PRD.Significant seasonal variations for four CFCs and HCFC-22 were observed, and peak levels in Guangzhou were found in summer and autumn with higher air temperature. The monthly mean concentrations were positively correlated with the air temperature. The highest monthly mean mixing ratio of CFCs and HCFC-22 occurred in May. They were 341.76±77.42 pptv for CFC-11, 780.05±287.06 pptv for CFC-12, 101.42±20.38 pptv for CFC-113,18.18±6.68 pptv for CFC-114 and 860.8±829.1 pptv for HCFC-22. The lowest levels were found in winter time, which were 226.67±37.66 pptv for CFC-11, 538.76±67.41 pptv for CFC-12, 68.44±13.34 pptv for CFC-113, 12.79±1.05 pptv for CFC-114 and 149.8±24.2 pptv for HCFC-22. Their higher monthly mean concentrations in summer and autumn are mainly due to the use of CFCs and HCFC-22 as refrigerants and spraying agents. Air-conditioners, chillers, cold storage refrigerators and sprayers are largely used in hot seasons, thus larger emission ocuured. The average concentrations of 7 halocarbons were high in summer
    and autumn and low in winter and spring in Dinghu Mountain, as is similar to other air pollutants mainly controlled and influenced by diffusion conditions and monsoons in Pearl River Delta.The diurnal variation for mixing ratios of CFCs was within limited scales in Guangzhou, though the concentrations for the four CFCs were higher during 8:00-9:00, 12:00-13:00 and 18:00-19:00, which are traffic rush hours when the air-conditioner in motor vehicles may release these CFCs. HCFC-22 and CH3CI in Guangzhou, however, showed large diurnal variation without obvious diurnal pattern. In Dinghu Mountain, the diurnal variations for all gases but CH3CI is even smaller than in Guangzhou, but larger diurnal variation of CH3CI mixing ratios is observed.Priliminary estimation shows that in PRD atmospheric levels of CFC-12, CFC-11, CFC-114, CCl4and CH3C1 peaked around 2001 and decreased slowly afterwards, whereas levels of CFC-113 monotonously decreased in 1997 to 2005. Although this decrease lagged behind about 7-10 years compared to the global trends, it reveals that actions for the phase-out of ODS are taking effects in China under the control of Montreal Protocol and its amendments. HCFC-22 in PRD, however, presented much higher mixing ratios and continually rapid growth rates more than four times of the global background, and the mixing ratios for HCFC-22 are expected to rise continually in the following years in PRD.
引文
1. AFEAS (Alternative Fluorocarbons Environmental Acceptability Study), Production, Sales and Atmospheric Release of Fluorocarbons Through 2000 (see www.afeas.org), Arlington, Va., 2001
    2. Andreae M O, Atlas E, Harris G Wet al, Methyl halide emissions from savanna fires in southern Africa [J], J. Geophys. Res., 1996, 101:14531~14541
    3. Ashford P, Development of a Global Emission Function for Blowing Agents Used in Closed Cell Foam: Final Report to AFEAS, Arlington, Va., 2000.
    4. ATSDR, Toxicological Profile for Chloromethane. US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, 1995
    5. Baker J, Mobile air conditioning: HFC-134a emissions and emission reduction strategies, in Proc. of the Joint IPCC-TEAP Expert Meeting on Options for the Limitation of Emissions of HFCs and PFCs, Petten, The Netherlands, 26-28 May 1999, 181~188, Intergovernmental Panel on Climate Change, Nairobi, Kenya, 1999.
    6. Berends A G, Rooij C G, Shin-Ya Set al. Biodegradation and ecotoxicity of HFCs and HCFCs Arch. Environ. Contam. Toxicol., 1999, 36: 146~151.
    7. Bingfeng Y, Yezheng W and Zhigang W, Phase out and replacement of CFCs in China [J], Int. Inst. Refrig. Bull., 2000, 1:3~11
    8. Bivens D B, Minor B H, Fluoroethers and other next generation fluids[J], J. Refrig., 1998, 21: 567~576.
    9. Blake N J, Blake D R, Sive B C et al, Biomass burning emissions and vertical distribution of atmospheric methyl halides and other reduced carbon gases in the South Atlantic region [J], J. Geophys. Res., 1996, 101:24151~24164
    10. Bronmimann S, Vosgi S, Wanner H, The influence of changing UV-B radiation in near-surface ozone time series [J], J. Geophyis. Res. 2000, 105(D7):8901~8913
    11. Brown M, Deduction of fluxes of source gases using an objective inverse algorithm and a chemical transport model [J], J. Geophys. Res., 1993, 98:12, 639~12, 660
    12. Butler J H, Battle M, Bender Met al, A twentieth century record of atmospheric halocarbons in polar firn air [J], Nature, 1999, 399:749-755
    13. Calm J M, Emissions and environmental impacts from air-conditioning and refrigeration systems, in Proc. of the Joint IPCC-TEAP Expert Meeting on Options for the Limitation of Emissions of HFCs and PFCs, Petteu, The Netherlands, 26-28 May 1999, 125~138, Intergovernmental Panel on Climate Change, 1999, Nairobi, Kenya
    14. Chen L, Makide Y, and Tominaga T, Determination of 1, 2-dichlorotetrafluoroethane (CFC-114) concentration in the atmosphere [J], Chem. Lett., 1994, 571~574
    15. Culbertson J A, Prins J M, and Grirnsrud E P, Improvements in the detection and analysis of CF3-containing compounds in the background atmosphere by gas chromatography-high-resolution mass spectrometry [J], J. Chromatogr. A, 2000, 903: 261~265
    16. Cunnold D M et al, Atmospheric lifetime and annual release estimates for CFCl_3 and CF_2Cl_2 from 5 years of ALE data J]. Geophys. Res. 1986, 91(D10):10797~10817
    17. Cunnold D M, Fraser P J, Weiss R F et al, Global trends and annual releases of CFCl_3 and CF_2Cl_2 estimated from ALE/GAGE measurements from July 1978 to June, 1991 [J], J. Geophys Res., 1994, 99:1107~1126
    18. DeMore W B, and Bayes K D, Rate constants for the reactions of hydroxyl radicals with several alkanes, cycloalkanes, and dimethyl ether [J], J. Phys. Chem. A, 1999, 103: 2649-2654
    19. Diana H B, Steven C W, Brian P F, et al. Urban/industrial pollution for the New York City-Washington, D. C. corridor, 1996-1998: 2. A study of the efficacy of the Montreal Protocol and other regulatory measures [J], Journal of Geophysics Research, 2003,108: 4186-4206.
    20. Dimmer C H, Simmonds P G, Nickless G et al, Biogenic fluxes of halomethanes from Irish peatland ecosystems, Atmos. Environ., 2001, 35: 321-330
    21. Doherty S O, Cunnold D M, Manning A, et al.Rapid growth of hydrofluorocarbon 134a and hydrochlorofluorocarbons 141b, 142b, and 22 from Advanced Global Atmospheric Gases Experiment (AGAGE) observations at Cape Grim, Tasmania, and Mace Head, Ireland [J], Journal of Geophysics Research, 2004,109: 6310-6325
    22. Elkins J W, Thompson T M, Hall B D et al, NOAA/GMCC halocarbon and nitrous oxide measurenments at the South Pole[J]. J. U. S. 1988, 23:176-177
    23. Elkins J W, Thompson T M, Swanson T H et al, Decrease in the growth rates of atmospheric chlorofluorocarbons 11 and 12 [J], Nature, 1993, 364, 26 Aug.
    24. Engel A, Schmidt U, and McKenna D S, Stratospheric trends of CFC-12 over the past two decades: Recent observational evidence of declining growth rates [J], Geophys. Res. Lett., 1998, 25:3319-3322
    25. Euglestvedt J S, Johnson JE, Isaksen ISA, Effects of productions in stratospheric ozone on tropospheric chemistry through changes in photolysis rates, Tellus, 1994 46D: 172-194
    26. Fisher D A, and Midgley P M, Uncertainties in the calculation of atmospheric releases of chlorofluorocarbons [J], J. Geophys. Res., 1994, 99:16,643-16,650
    27. Fraser P J, Cunnold D M, Alyea F N et al, Langenfelds, Lifetime and emission estimates of 1,1,2-trichlorotrifluoroethane (CFC-113) from daily global background observations, June 1982 to June 1994 [J], J. Geophys. Res., 1996,101:12585-12599
    28. Fraser P J, Oram D E, Reeves C E et al, Southern Hemispheric halon trends (1978-1998) and global halon emissions [J], J. Geophys. Res., 1999,104: 15985-15999
    29. Galbally I E, Man-made carbon tetrachloride in the atmosphere[J], Science, 1976,193: 573-576 Good D A, Francisco J S, Chem. Rev., 2003,103: 4999-5023
    30. Gamlen P H, Lane B C, Midgley P M et al, The production and release to the atmosphere of CFCl_3 and CF_2Cl_2(chlorofluorocarbons CFC-11 and CFC-12) [J], Atmos. Environ., 1986, 20, 1077-1085
    31. Godish T., Air Quality, second. Lewis Publishers, 1991, London
    32. Graedel T E, and Keene W C, Overview: Reactive Chlorine Emissions Inventory [J], J. Geophys. Res., 1999, 104: 8331-8332
    33. Gunson M R, Abrams M C, Lowes L et al, Increase in levels of stratospheric chlorine and fluorine loading between 1985 and 1992 [J], Geophys. Res. Lett., 1994, 21, 2223-2226
    34. Guo H, Lee S C, Louie P K K, et al. Characterization of hydrocarbons, halocarbons and carbonyls in the atmosphere of Hong Kong [J]. Chemosphere, 2004,57 (10): 1363-1372
    35. Harper D B, The global chloromethane cycle: Biosynthesis, biodegradation, and metabolic role [J], Nat. Product Rep., 2000,17: 337-348
    36. Henson J A, Lacis, Praser M, Greenhouse effect of chlorofluorocarbons and other trace gases[J], J. Geophys. Res., 1989, 94:16417-16421
    37. Houghton J T, Ding Y, Griggs D J et al, IPCC (Intergovernmental Panel on Climate Change), Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2001, Cambridge, U.K.
    38. http://www.ozone.org.cn/Default.aspx?tabid=224
    39. Intergovernmental Panel on Climate Change (IPCC), Climate Change: the IPCC Scientific Assessment, Cambridge, UK, 1990 John H S, Spyros N P, Atmospheric Chem. Istry and Physics U S A: JOHN WILEY&SONS, INC. 1997, 86-87
    40. Jonah J C, Aaron L S, Simone M, et al. Description of the Analysis of a Wide Range of Volatile Organic Compounds in Whole Air Samples Collected during PEM-Tropics A and B [J], Anal. Chem., 2001, 73:3723-3731
    41. Keene W C, Jacob D J and Fan S M, Reactive chlorine: A potential sink for dimethylsulfide and hydrocarbons in the marine boundary layer [J], Atmos. Environ., 1996,30 (6): 1-3
    42. Keene W C, Khalil M A K, Erickson D J et al, Composite global emissions of reactive chlorine from anthropogenic and natural sources: Reactive Chlorine Emissions Inventory [J], J. Geophys. Res., 1999,104: 8429-8440
    43. Keppler F, Eiden R, Niedan V et al, Halocarbons produced by natural oxidation processes during degradation of organic matter [J], Nature, 2000, 403:298-301
    44. Khalil M A K, Moore R M, Harper D B et al, Natural emissions of chlorine-containing gases: Reactive Chlorine Emissions Inventory [J], J. Geophys. Res., 1999,104: 8333-8346
    45. Khalil M A K, and Rasmussen R A, Atmospheric methyl chloride, Atmos. Environ., 1999, 33:1305-1321
    46. Khalil M A K and Rasmussen R A, Soil-atmosphere exchange of radiatively and chemically active gases [J], Environ. Sci. Pollut. Res., 2000,7: 79-82
    47. Kurylo M J, and Rodriguez J(Lead Authors), Andreae M et al, Short-lived ozone-related compounds, Chapter 2 in Scientific Assessment of Ozone Depletion: 1998, Global Ozone Research and Monitoring Project[R], World Meteorological Organization, Geneva, 1999, D44
    48. Libo W, Limin C, Yuansheng L et al, Study on the abundance of CFCs varying with latitude at the bottom of the troposphere in the Southern Hemisphere [J], Environ. Sci. Technol., 35 (12), 2001, doi: 10.1021/es001268t, 2436-2440
    49. Li H -J, Yokouchi Y, Akimoto H et al, Distribution of methyl chloride, methyl bromide, and methyl chloride in the marine boundary air over the Western Pacific and Southeastern Indian Ocean [J], Geochem. J., 2001,35:137-144
    50. Li H -J, Yokouchi Y and Akimoto H, Measurement of methyl halides in the marine atmosphere [J], Atmos. Environ., 1999,33:1881-1887
    51. Lobert JM, Keene W C, Logan J A et al, Global chlorine emissions from biomass burning: Reactive Chlorine Emissions Inventory [J], J. Geophys. Res., 1999,104: 8373-8389
    52. Mahowald N M, Prinn R G and Rasch P J, Deducing CC13F emissions using an inverse method and chemical transport models with assimilated winds [J], J. Geophys. Res., 1997, 102:28,153-28,168
    53. Mangani F, Maione M, Lattanzi L et al, Atmospheric measurements of the halogenated hydrocarbons involved in global change phenomena [J], Atmos. Environ., 2000, 34: 5303-5309
    54. Markert F, and Nielsen O J, The reactions of OH radicals with chloroalkanes in the temperature range 295-360 K [J], Chem. Phys. Lett., 1992,194:123-127
    55. Matthews W A, Johnson P V, Murcray D G et al, Column abundances of hydrogen chloride above Lauder, New Zealand, in Ozone in the Atmosphere, Proc. Quadrennial Ozone Symp. 1988 and Tropospheric Ozone Workshop, Germany, 4-13 August 1988, edited by R.D. Bojkov and P. Fabian, 1989,359-362, A. Deepak Publishing, Hampton, Va.
    56. McAnulla C, McDonald I R and Murrell J C, Methyl chloride utilizing bacteria are ubiquitous in the natural environment [J], FEMS Microbiol. Lett., 2001, 201:151- 155
    57. McCarthy R L, Bower F A and Jesson J P, The fluorocarbon-ozone theory, Production and release-world production and release of CC13F and CC12F2 through 1975[J]. Atmos. Environ., 1977, 11: 491-497
    58. McCulloch A, Midgley P M and Ashford P, Releases of refrigerant gases (CFC-12, HCFC-22, and HFC-134a) to the atmosphere [J], Atmos. Environ., submitted, 2002.
    59. McCulloch A, and Midgely P M, Estimated historic emissions of fluorocarbons from the European Union [J], Atmos. Environ., 1998, 28: 2567-2582
    60. McCulloch A, Ashford P and Midgley P M, Historic emissions of trifluorochloromethane (CFC-11) based on a market survey [J], Atmos. Environ., 2001, 35: 4387-4397
    61. McCulloch A, Aucott M L, Benkovitz C M et al, Global emissions of hydrogen chloride and chloromethane from coal combustion, incineration, and industrial activities: Reactive Chlorine Emissions Inventory [J], J. Geophys. Res., 1999, 104: 8391-8403
    62. Midgley P M and Fisher D A, The production and release to the atmosphere of chlorodifluoromethane (HCFC-22) [J], Atmos. Environ., 1993, 27A: 2215-2223
    63. Mogelberg T E, Nieisen O J, Sehested J et al, Atmospheric chemistry of CF_3COOH kinetics of the reaction with OH radicals[J], Chem.Phys.Lett. 1994, 226:171-177
    64. Montzka S A, Butler J H, Elkins J W et al, Present and future trends in the atmospheric burden of ozone-depleting halogens [J], Nature, 1999, 398: 690-694
    65. Montzka S A, Fraser P J, Butler J H, et al. Controlled substances and other source gases: Halocarbon lifetimes, ozone depletion potentials and global warming potentials, in Scientific Assessment of Ozone Depletion: 2002, Global Ozone Research and Monitoring Project[R], 2003, No 47, Geneva. 498-499
    66. Molina M, Rowland F S. Stratospheric sink for chlorofluoromethanes: Chlorine catalysed destruction of ozone [J], Nature, 1974,249: 810-812
    67. Montzka S A, Fraser P J, Butler J H, et al. Controlled Substances and Other Source Gases, Chapter 1 in Scientific Assessment of Ozone Depletion: 2002, Global Ozone Research and Monitoring Project[R]. No.47, Geneva, 2003
    68. Moore R M, Groszko W and Niven S J, Ocean atmosphere exchange of methyl chloride: Results from NW Atlantic and Pacific Ocean studies [J], J. Geophys. Res., 1996, 101: 28529-28538
    69. Mulquiney J E, Taylor J A, Jakeman A J et al, A new inverse method for trace gas flux estimation, 2: Application to tropospheric CFC13 fluxes [J], J. Geophys. Res., 1998, 103, 1429-1442
    70. Naik V, Jain A K, Patten K O et al. Consistent sets of atmospheric lifetimes and radiative forcings on climate for CFC replacements: HCFCs and HFCs J. Geophys. Res., 2000, 105(D5): 6904-6914.
    71. Naik V, Jain A K, Patten K O et al, Consistent sets of atmospheric lifetimes and radiative forcings on climate for CFC replacements: HCFCs and HFCs [J], J. Geophys. Res., 2000,105: 6903-6914
    72. Oram D E, Trends of long-lived anthropogenic halocarbons in the Southern Hemisphere and model calculations of global emissions, Ph.D. thesis, University of East Anglia, Norwich, U.K., 1999.
    73. Prather M and Ehhalt D (Co-ordinating Lead Authors), Dentener F et al, Atmospheric chemistry and greenhouse gases, Chapter 4 in Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, U.K., 2001, 881 pp
    74. Prather, M and Watson R T, Stratospheric ozone depletion and future levels of atmospheric chlorine and bromine [J], Nature, 1990,344: 729-734
    75. Prinn R G, and Zander R(Lead Authors), Cunnold D M et al, Long-lived ozone-related compounds, Chapter 1 in Scientific Assessment of Ozone Depletion: 1998, Global Ozone Research and Monitoring Project—Report No. 44, World Meteorological Organization, Geneva, 1999.
    76. Prinn R G, Huang J, Weiss R F et al, Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades [J], Science, 2001,292:1882-1888
    77. Prinn R G, Weiss R F, Fraser P G et al, A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE [J], J. Geophys. Res., 2000, 105: 17751-17792
    78. Prinn R G, Weiss R F, Miller B R, et al, Atmospheric trends and lifetime of trichloroethane and global hydroxyl radical concentrations[J]. Science 1995, 269:187-192
    79. Qiu L X, Shi S H, Xing S B et al, Chen, Rate constants for the reactions of OH with five halogensubstituted ethanes from 292 to 366 K[J], J. Phys. Chem., 1992, 96: 685-689
    80. Ramanathan V, Greenhouse effect due to chlorofluorocarbons: Climatic implications, Science, 1975,190:50-52
    81. Ramaswamy V (Co-ordinating Lead Author), Boucher O, Haigh J et al, Radiative forcing of climate change, Chapter 6 in Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, U.K., 2001.
    82. Rasmussen R E and Lovelock J E, The atmospheric lifetime experiment, 2, Calibration. J. Geophys. Res, 1983,88: 8369-8378
    83. Rasmussen R A and Khalil M A K, Atmospheric trace gases: trends and distributions over the last decade[J], 232:1623-1624
    84. Ravishankara A R, Solomon S, Turnipseed A A, et al. Atmospheric lifetimes of long-lived halogenated species [J]. Science, 1993,259:194-199
    85. Reisinger A R, Jones N B, Matthews W A et al, Southern Hemisphere midlatitude groundbased measurements of ClONO_2: Method of analysis, seasonal cycle, and long-term trends [J], J. Geophys. Res., 1995,100:23183-23193
    86. Redeker K R, Wang N Y, Low J C et al, Emissions of methyl halides and methane from rice paddies [J], Science, 2000,290: 966-969
    87. Rhew R C, Miller B R, and Weiss R F, Natural methyl bromide and methyl chloride emissions from coastal salt marshes [J], Nature, 2000, 403: 292-295
    88. Rhew R C, Miller B R, Vollmer M K et al, Shrubland fluxes of methyl bromide and methyl chloride [J], J. Geophys. Res., 2001,106:20875-20882
    89. Rinsland C P, Levine J S, Goldman A et al, Infrared measurements of HF and HC1 total column abundances above Kitt Peak, 1977-1990: Seasonal cycles, long-term increases, and comparisons with model calculations [J], J. Geophys. Res., 1991, 96: 15523-15540
    90. Rowland F S, Chlorocarbon compounds and stratospheric ozone [J], Journal of Photochemistry, 1976,5(3):180
    91. Rudolph J, Khedim A, Koppmann R et al, Field study of the emissions of methyl chloride and other halocarbons from biomass burning in western Africa [J], J. Atmos. Chem., 1995, 22:67-80
    92. James M, Russell L et al, Satellite confirmation of the dominance of chlorofluorocarbons in the global stratospheric chlorine budget[J], Nature, 1996, 379: 526
    93. Ryall D B, Maryon R H, Derwent R G et al, Modeling long-range transport of CFCs to Mace Head, Ireland [J], Q. J. R. Meteorol. Soc., 1998,124, 417-446
    94. Ryall D B, Derwent R G, Manning A G et al, Estimating source regions of European emissions of trace gases from observations at Mace Head[J], Atmos. Environ., 2001a, 32: 2507-2523
    95. Sander S P, Finlayson-Pitts B J, Friedl R R, Golden D M et al, Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evaluation Number 14, JPL Publication 02-25, Jet Propulsion Laboratory, Pasadena, Calif., 2002.
    96. Schauffler S M, Atlas E L, Donnelly S G et al, Chlorine budget and partitioning during SOLVE [J], J. Geophys. Res., 2002, in press
    97. Sellevag S R, Nielsen C J, Sovde O A et al. Atmospheric gas-phase degradation and global wanning potentials of 2-fluoroethanol, 2,2-difluoroethanol, and 2,2,2-trifluoroethanol Atmos. Environ., 2004, 38: 6725-6735
    98. Simmonds P G, Derwent R G, McCulloch A et al, Long-term trends in concentrations of halocarbons and radiatively active trace gases in Atlantic and European air masses monitored at Mace Head, Ireland, from 1987-1994 [J], Atmos. Environ., 1996, 30: 4041-4063
    99. Simmonds P G, Cunnold D M, Weiss R F et al, Global trends and emissions estimates of CCl_4 from in situ background observations from July 1978 to June 1996, J. Geophys. Res., 1998a,103:16017~16027
    100. Simmonds P G, Doherty S O, Huang J et al, Calculated trends and the atmospheric abundances of 1,1,1,2-tetrafluoroethane, 1,1-dichloro-1-fluoroethane, and 1-chloro-1,1-difluoroethane using automated in situ gas chromatography-mass spectrometry measurements recorded at Mace Head, Ireland, from October 1994 to March 1997 [J], J.Geophys. Res., 1998b, 103:16029-16037
    101. Sin D W M, Wong Y C, Louie P K. Monitoring of ambient volatile organic compounds at two urban sites in Hong Kong from 1997 to 1998. Indoor + Built Environ. 2000, 9: 216-227
    102. Singh H B, Halogens in the atmospheric environment [A]. Chemistry and Climate of the Atmosphere [C], New York: Van Nostrand Reinhold, 1995,216-250
    103. Singh H B, Fowler D P and Peyton T O, Atmospheric carbon tetrachloride: Another man-made pollutant [J], Science, 1976,192:1231-1234
    104. Solomon S, Stratosphere ozone depletion: a review of concepts and history [J], Reviews of Geophysics, 1999, 37(31):275~346
    105. Spivakovsky C M, Logan J A, Montzka S A et al, Threedimensional climatological distribution of tropospheric OH: Update and evaluation[J], J. Geophys. Res., 2000, 105: 8931-8980
    106. Stolarski R S and Cicerone R J, Stratospheric chlorine: A possible sink for ozone, Can. J. Chem., 52:1610-1615
    107. Sturrock G A, Porter L W, and Fraser P G, In situ measurement of CFC replacement chemicals and halocarbons at Cape Grim: AGAGE GC-MS program, in Baseline Atmospheric Program (Australia) 1997-98, edited by N.W. Tindale, RJ. Francey, and N. Derek, 43-49, Bureau of Meteorology and CSIRO Division of Atmospheric Research, Melbourne, Australia, 2001.
    108. Sturrock G A, Etheridge D M, Trudinger C M et al, Atmospheric histories of halocarbons from analysis of Antarctic firn air: Major Montreal Protocol species [J], J. Geophys. Res., 2002,107 (D24), 4765, doi: 10.1029/2002JD002548
    109. Sturges W T, McIntyre H P, Penkett S A et al, Methyl bromide, other brominated methanes, and methyl iodide in polar firn air [J], J. Geophys. Res., 2001a, 106:1595-1606
    110. Takahashi K, Nakayama T, Matsumi Y et al, Atmospheric lifetime of SF5CF3 [J], Geophys. Res. Lett., 2002, 29 (15), 1712, doi: 10.1029/2002GL015356
    111. Tromp T K, Kq M KW, Rodriguez J M et al, Potential accumulation of CFC-replacement degradation product in seasonal wetlands[J]. Nature, 1995, 376(27): 327-330
    112. UNEP (United Nations Environment Programme), 1998 Report of the Refrigeration, Air-Conditioning, and Heat Pumps Technical Options Committee: 1998 Assessment, 1998a, 286 pp., Nairobi, Kenya
    113. UNEP(United Nations Environment Programme), Production and Consumption of Ozone Depleting Substances under the Montreal Protocol 1986-2000,Ozone Secretariat, Nairobi, Kenya (see www.unep.org/ozone), 2002
    114. U S Environmental Protection Agency. Compendium Method TO-11.1999 EPA/625/R-96/010b
    115. U.S. Environmental Protection Agency. 40CFR Part 136 Appendix B. 7-1-01 Edition
    116. Varner R K, Crill P M, Talbot R W et al, An estimate of uptake of atmospheric methyl bromide by agricultural soils [J], Geophys. Res. Lett., 1999a, 26,727-730
    117. Wallace L, Livingston W and Hall D N B, A twenty five year record of stratospheric hydrogen chloride [J], Geophys. Res. Lett., 1997,19: 2363-2366
    118. Wang J L, Chang C J, Lin Y H. Concentration distributions of anthropogenic halocarbons over a metropolitan area [J]. Chemosphere, 1998, 36 (10): 2391-2400
    119. Wang X M, Sheng G Y, Fu J M, et al. Urban roadside aromatic hydrocarbons in three cities in the Pearl River Delta region, People's Republic of China [J], Atmospheric Environment, 2002,36(33): 5141-5148
    120. Watling R, and Harper D B, Chloromethane production by wood-rotting fungi and an estimate of the global flux to the atmosphere [J], Mycol. Res., 1998,102:769-787
    121. WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion: 1998, Global Ozone Research and Monitoring Project [R], Geneva, Switzerland, 1999, D44
    122. World Meteorological Organization Scientific assessment of ozone depletion: WMO Global Ozone Research and Monitoring Project Report, 1995, No. 37, Geneva.
    123. World Meteorological Organization Scientific Assessment of Stratospheric Ozone. Geneva: WM0, 1989, 2
    124. Yang Y, Chen L M, Li Y Set al, Study on the Character and Trends of Atmospheric CCI3F and CCl_2FCCIF_2 Varying with Latitude in the Northern Hemisphere[J], Journal of Fudan University (Natural Science), 2001, 40 (4): 416~419
    125. Yokouchi Y, Ikeda M, Inuzuka Yet al, Strong emissions of methyl chloride from tropical plants [J], Nature, 2002, 416:163~165
    126. Yokouchi Y, Noijiri Y, Barrie L Aet al, A strong source of methyl chloride to the atmosphere from tropical coastal land [J], Nature, 2000b, 403:295~298
    127. Yvon-Lewis S and Butler J H, The effect of oceanic uptake on atmospheric lifetimes of selected trace gases [J], J. Geophys. Res., 2002, 107 (D20), 4414, doi: 10.1029/2001JD001267
    128. Zander R, Mahieu E, Demoulin Pet al, Long-term evolution of the loading of CH_4, N_20, CO, CCl_2F_2, CHClF_2, and SF_6 above central Europe during the last 15 years, in Non-CO2 Greenhouse Gases: Scientific Understanding, Control, and Implementation, Proc. 2nd International Symp., Noordwijkerhout, The Netherlands, 8~10 September 1999, edited by J. van Ham, A. Baede, L. Meyer, and R. Ybema, 2000, 211~226, Kluwer Academic Publishers, Boston, Mass
    129. Zurer P S, Delayed CFC Phase-out in Developing Countries Raises Growing Concern[J]. C &EN, 1995, 8:25
    130.曹信孚译,《资源环境对策》(日),2002,38(7)
    131.陈立民,段杨,乐至威等,大气中氟氯烃类物质浓度变化的研究[J],环境科学,1999,20(1):27~29
    132.郭松,周秀骥,张晓春.青藏高原大气O3及紫外辐射UVB观测结果的初步分析[J],科学通报,1994,39(1):50~53
    133.洪紫萍。氟氯烃的代用和处理。环境科学,1991,12(3):62~66
    134.胡少锋,张洁清。国际保护臭氧层合作的发展与展望[J].环境保护,2000,9:45~48
    135.林伟立,胡建信,唐孝炎,臭氧层耗损对对流层大气质量的影响和在中国的响应[J],环境科学研究,2002,15(3):61-64
    136.孟燕军,程从兰。影响北京大气污染物变化的地面天气形势分析[J]。气象与环境,2001,28(4):42~47
    137.孙国忠,赵泉,陈立民等。大气中HCFC-22的浓度的时空变化研究[J].复旦学报(自然科学版),2003,42(3):506~508
    138.孙皓林,陈立民,乐致威等。ECD氧气诱导法分析大气中痕量HCFC-22[J].环境科学,2001,22(7):21~24
    139.王伯光,张远航,邵敏等。预浓缩-GC-MS技术研究室内空气中挥发性有毒有机物[J].环境化学,2001,20(6):606-615
    140.王明星,大气化学(第二版)[M]。北京:气象出版社,1999:51~54,128,356~357,360)
    141.王少彬,唐孝炎,北京地区大气卤代烃含量的初步测定[J],环境科学学报,1993,13(2):127~134
    142.熊孝振,王庚辰。中国地区近地面太阳紫外辐射的分布及其对大气臭氧层耗损的响应[J]大气科学,1993,17(5):611~620
    143.修天阳,王跃思,孙扬,徐新等。北京大气中CFC-11的浓度观测与变化趋势[J]。环境科学,2005,26(1):1~6
    144.徐湘波,氟利昂与环境保护[J].长沙铁道学院学报,2000,18(1):53~57
    145.《中国逐步淘汰消耗臭氧层物质国家方案》(1999年修订稿)
    146.《烟草行业CFC-11整体淘汰计划》(1999)
    147.中国与多边基金执委会,《中国清洗行业逐步淘汰ODS协议》
    148.周秀骥,罗超,李维亮等,中国地区臭氧总量变化与青藏高原低值中心[J]:科学通报,1995,4(15):1396~1398

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700