橡胶模具等离子体清洗方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子体清洗作为一种新兴清洗技术,在满足金属零件清洗的需要,代表清洗技术高效、无污染、低能耗等发展趋势的同时,又具有自身的特点和优势,从而越来越受到国内外学者的高度重视。等离子体清洗是一种利用等离子弧能量将表面的污垢去除的绿色清洗方法。橡胶模具是橡胶硫化过程中所使用的重要工具,它的优劣直接影响橡胶制品外在质量甚至使用寿命及安全性。为了保证橡胶制品的外观质量,必须对结垢的模具定期清洗。因此等离子体清洗技术可望在模具行业中发挥重要作用。
     本文介绍了等离子体清洗技术的国内外发展现状,等离子体清洗模具的原理,将等离子体清洗方法与传统清洗方法和其它清洗方法进行比较。针对模具表面污染物种类以及分布方式的不同,针对橡胶模具表面污染物种类以及分布方式的不同,分别对其进行有限元热-应力耦合分析,利用ANSYS有限元软件模拟了等离子体清洗橡胶模具Q235表面的温度场和应力场,建立了等离子体与橡胶模具间的三维热力耦合模型,并计算了模具表面清洗力,清洗应变和表面温度。通过分析,得到了工艺参量对表面温度、清洗力、清洗应变的影响规律,为等离子体清洗橡胶模具实验参数的合理选择提供了理论依据。
     分别对模具表面的斑状颗粒和层状致密污染物的等离子体清洗技术进行了研究,通过ANSYS软件模拟结果,分别对斑状颗粒和层状致密污染物基体表面不同节点的界面温度、界面清洗力、清洗应变进行分析,揭示了弧功率、扫描速度、基体厚度、污染物厚度等工艺参量对斑状颗粒污染物的界面温度、界面清洗力、清洗应变的影响规律。
     对等离子体清洗橡胶制品模具技术进行了工艺研究。构建等离子体清洗实验装置系统和建立清洗质量的评价方法。通过实验,测量得到的清洗效果与通过界面清洗力、界面温度有限元分析得到的清洗效果是基本吻合,验证了本文对斑状颗粒污染物清洗时能量耦合有限元分析的有效性。
As a new cleaning technology, plasma cleaning can meet needs of metal parts cleaning and development trend of cleaning technology, such as high-performance, non-polluting, low energy consumption and etc. Furthermore, plasma cleaning technology has attracted increasing attention of domestic and foreign scholars. Plasma cleaning is a new type of industrial cleaning technology, which uses plasma energy to remove the dirt on the mold surface, reaching the purpose of green cleaning. Mould is an important tool in the rubber vulcanization process, it directly influences the superiority of rubber product external quality even service life and security. So in order to guarantee the rubber product outward appearance quality, it is necessary to scaling mould regular cleaning; therefore, plasma arc cleaning technology will play an important role in mould industry. This paper introduces the plasma arc cleaning technology developing situation of domestic and foreign, the principle of plasma arc cleaning mould, compare the plasma cleaning method with traditional cleaning methods and other new cleaning methods.
     According to substrate surface for the types of pollutants, as well as the characteristics of distribution, energy coupling mechanism of plasma cleaning speckle particle pollutants and layered dense pollutants have been studied respectively. According to rubber mould substrate surface for the types of pollutants, carried on the finite element hot-stress coupling analysis respectively, using the ANSYS finite element software to simulate the temperature field and stress field on the surface of the plasma cleaning rubber mould Q235, established the 3d coupled model between the plasma and rubber mould, And calculate the surface cleaning force, cleaning strain and surface temperatures of rubber mould. Through the analysis, the influence rule of interface temperature, interface cleaning force and cleaning strain has been revealed, for providing theoretical basis on the choice of parameters during the process of plasma cleaning rubber mould.
     This paper focus on research the process of plasma cleaning rubber mold technology. Construct the plasma cleaning experimental facility system and establish the evaluation methods of cleaning quality. Through experimentation, the cleaning effect Measured by the Experiments to be identical with effect get through the interface clean force, interface temperature finite element analysis.
     The plasma cleaning speckle particle pollutants and layered dense pollutants in mould have been studied respectively in this paper. Through ANSYS software simulation results, analyses the different nodes'interface temperature, interface cleaning force and cleaning strain on speckle particle pollutants and layered dense pollutants substrate surface respectively. The effect of process parameters such as plasma arc power, scanning speed, substrate thickness and contaminant thickness on the interface temperature, interface cleaning force and cleaning strain has been revealed again.
     Plasma cleaning technology as a new process method has a good application prospect and potential predominance especially in mould cleaning field.
引文
[1]梁基照.模具的清洗方法及进展[J].特种橡胶制品.1987.3:43-47.
    [2]张塍.等离子清洗的应用与技术研究[J].电子工业专用设备,2006,137:21-27.
    [3]魏竹波,周继维,等.金属清洗技术[M].北京:化学工业出版社,2007.
    [4]Kittisupakorn P, Kaewpradit P. Integrated data reconciliation with generic model control for the steel pickling process [J]. Korean Journal of Chemical Engineering, 2003,20(6):985-991.
    [5]Daosud W, Thitiyasook P, Arpornwichanop P, et al. Neural network inverse model based controller for the control of a steel pickling process [J]. Computers and Chemical Engineering,2005,29(10):2049-2264.
    [6]英格索兰中国投资有限公司.喷丸清理与空压机的选用[J].中国修船,2005,4:43-44.
    [7]栾伟玲,涂善东.喷丸表面改性技术的研究进展[J].中国机械工程,2005,16(15):1405-1409.
    [8]Elbing F, Anagreh N, Dorn L, et al. Dry ice blasteing as pretreatment of alμ min μm surfaces to improve the adhesive strength of alμminμm bonding joints [J]. International Journal of Adhesion and Adhesives,2003,23(1):69-79.
    [9]刘呈坤.新型橡胶模具清洗方法[J].技术产品版.2006.1:15-39.
    [10]王斌.我国轮胎模具制造和情绪技术概况[J].轮胎工业,2007,27(12):727-730.
    [11]陈菊芳,张永康,等.短脉冲激光清洗细微颗粒的研究进展[J].激光技术,2007,31(3):301-305.
    [12]张魁武.物体表面的激光清洗技术[J].产品与技术,2007,3:84-89.
    [13]Sami B, Awad. Aqueous ultrasonic cleaning and corrosion protection of steel components[J]. Metal Finishing,2004,102(9):56-61.
    [14]周桂莲,赵海霞.激光清洗轮胎模具新工艺[J].特种橡胶制品,2003,24(5):39-41.
    [15]宋峰,邹万芳,等.激光清洗的其它应用[J].清洗世界,2006,22(3):38-41.[15]
    [16]谭荣清,郑光,等.激光除漆对基材力学性能的影响[J],激光杂志,2005,26(6):83-84.
    [17]Mihai Stafe, Constantin Negutu, Ion M. Popescu. Theoretical determination of the ablation rate of metals in multiple-nanosecond laser pulses irradiation regime [J]. Applied Surface Science,2007,253:6353-6358.
    [18]Zhou X, Imasaki K, Furukawa H, et al. Estimation of laser ablation surface cleaning efficiency [J]. The International Journal of Advanced Manufacturing Technology,2002, 19:642-645.
    [19]李德元,赵文珍,董晓强等.等离子技术在材料加工中的应用[M].北京:机械工业出版社,2005.
    [20]赖阳祯.等离子体清洗装置的研究.(博士论文)大连,大连理工大学,2007.
    [21]Kersten H, Rohde D, Steffen H, et al. On the determination of energy fluxes at plasma surface process [J]. Appled Physics A,2001,72:531-740.
    [22]孟建兵,徐文骥,王续跃,宋文庆.大气常压等离子体弧清洗反应动力学模型和参数的研究[J].应用基础与工程科学学报,2009(3):45-46.
    [23]孟建兵.大气常压等离子体弧清洗理论与关键技术.(博士论文)大连,大连理工大学,2009.
    [24]李德元,赵文珍,董晓强等.等离子技术在材料加工中的应用[M].北京:机械工业出版社,2005.
    [25]过增元,赵文华.电弧和热等离子体[M].北京:科学出版社,1986.
    [26]Jung G. Kang, Hyoung S. Kim, Sung W. Ahn, et al. Development of the RF plasma source at atmospheric pressure [J]. Surface and Coatings Technology,2002,171(1-3):144-148.
    [27]Kazutoshi Kiyokawa, Akihiko Itou, Hiroyuki Matsuoka. Surface treatment of steel using non-equilibri u m plasma at atmospheric pressure [J]. Thin Solid Films,1999, 345:119-123.
    [28]Shen Tang, Oh-June Kwon, Na Lu, et al. Surface characteristics of AISI 304L stainless steel after an atmospheric pressure plasma treatment [J]. Surface & Coatings Technology,2005,195:298-306.
    [29]李海江,王守国,赵玲利,等.常压射频低温冷等离子体清洗光刻胶研究[J].半导体技术,2004,29(12):26-29.
    [30]Kersten H, Rohde D, Steffen H, et al. On the determination of energy fluxes at plasma surface process [J]. Appled Physics A,2001,72:531-740.
    [31]S. A. Nair, K. Yan, A. J. M. Pemen, et al. A high-temperature pulsed corona plasma system for fuel gas cleaning [J]. Journal of Electrostatics,2004,61:117-127.
    [32]龙乐.等离子体清洗及其在电子封装中的应用[J].电子与封装,2008,8(4):12-15.
    [33]杨建生.等离子清洗工艺对PBGA组装可靠性的影响[J].电子与封装,2007,7(1):14-35.
    [34]E. S. Senokosov, A. E. Senokosov. Plasma electric-arc cleaning of metal products [J]. Metallurgist,2005,49(3-4):117-122.
    [35]小赫伯特·S·古德,琼·A·尼尔森,拉里·E·尼奇.钛和钛合金的等离子体除锈皮:中国,97192426.0[P].1997,01,20.
    [36]Kersten H, Rohde D, Steffen H, et al. On the determination of energy fluxes at plasma surface process [J]. Appled Physics A,2001,72:531-740.
    [37]S. A. Nair, K. Yan, A. J. M. Pemen, et al. A high-temperature pulsed corona plasma system for fuel gas cleaning [J]. Journal of Electrostatics,2004,61:117-127.
    [38]Yousefi HR, Ghoranneviss M, Tehrani AR, et al. Investigation of glow discharge plasma for surface modification of poloypropylene [J]. Surface and Interface Analysis,2003, 35 (12):1015-1017.
    [39]Shin Chun Hsu, Jehnming Lin. Removal mechanisms of micro-scale particles by surface wave in laser cleaning [J]. Optics & Laser Technology,2006,38:544-551.
    [40]宋峰,邹万芳,田彬,等.一维热应力模型在调Q短脉冲激光除漆中的应用[J].中国激光,2007,34(11):1578-1581.
    [41]Y. F. Lu, W. D. Song, B. W. Ang, et al. A thoretical model for laser removal of particles from solid surfaces [J]. Applied Physics A,1997,65:9-13.
    [42]Yong Feng Lu, Wen Dong Song, Teck Seng Low. Laser cleaning of micro-particles from a solid surface:theory and applications. Materials Chemistry and Physics,1998, 54:181-185.
    [43]X. Zhou, K. Imasaki, H. Furukawa, et al. Simulation study and experiment on laser ablation surface cleaning [J]. Optics & Laser Technology,2001,33:189-194.
    [44]李艳强,吴超,阳富强.微颗粒在表面粘附的力学模型[J].环境科学与技术,2008,31(1):8-11.
    [45]陶文铨.传热学[M].西安:西北工业大学出版社,2006.
    [46]姜任秋.热传导、质扩散与动量传递中的瞬态冲击效应[M].北京:科学出版社,1997.
    [47]孔祥谦.有限单元法在传热学中的应用[M].北京:科学出版社,1998.
    [48]机械工程材料性能数据手册[M].北京:机械工业出版社,1995.
    [49]Maribel de la Garza, Afredo Artigas, Alberto Monsalve, et al. Modeling the spalling of oxide scales during hot rolling of steel strip [J]. Ocidation of Metals,2008, 70:3-4.
    [50]M. Krzyanowski, W.Yang, C. M. Sellars, et al. Analysis of mechanical descaling:modeling and experimental approach [J]. Materials Science and Technology,2003,19:109-116.
    [51]M. Krzyanowski, J. H. Beynon. Finite element model of steel oxide failure duing tensile testing under hot rolling conditions [J]. Materials Science and Technology,1999, 15:1191-2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700