用户名: 密码: 验证码:
大气等离子体抛光系统设计及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代光学及微电子学的发展,对表面质量的要求越来越苛刻,超光滑表面的加工也日趋受到各相关领域的关注。作为光学元件,为获得高反射率特别强调表面的低散射率或极低粗糙度值;作为功能元件,还特别注重表面晶格的完整性。目前现有的加工方法因其自身局限性,很难满足超光滑表面加工的苛刻要求。大气等离子体抛光方法作为一种新兴的表面加工方法,因其特殊的抛光机理,可以实现材料表面的原子量级化学去除,能够获得极低的表面粗糙度,且加工后不会对工件表层及亚表层造成损伤。目前国外已有学者开始对常压大气条件下等离子体抛光进行研究,而国内的相关研究尚处于起步阶段,在该领域亟需有一些突破性的进展。本文围绕等离体抛光系统的设计制造及系统的相关使用方法对大气等离子体抛光进行了初步研究。
     稳定可用的等离体抛光系统是实验研究的基础,为了进行大气等离子体抛光的相关工艺实验研究,本文自主研制了一套大气等离子体抛光系统,本文所设计的基于介质阻挡放电原理工作的等离子体炬可以在常压大气条件下产生均匀稳定的等离子体,配合本文所设计的冷却系统、供气系统、运动控制系统、尾气处理系统等其它辅助设施,可以实现常压大气条件下的工件表面加工,满足大气等离子体抛光相关实验研究的要求。
     等离体所激发的活性反应粒子是直接参与加工的反应成分,活性粒子的浓度对大气等离体抛光过程有着至关重要的作用,而在实际加工过程中可控制的主要加工参数为激发等离体的放电参数。本文通过光谱分析的方法,测量了不同放电参数下活性粒子的相对激发强度,建立了可控放电参数与活性粒子浓度之间的曲线对应关系,将加工参数与加工过程中的可控参数联系在了一起,增加了加工过程的可操作性。
     为了保证加工质量,针对在前期实验研究中发现的沉积问题,本文利用XPS和红外光谱分析方法分析了沉积物的可能成分,并根据现有的等离子体聚合相关理论,结合实验结果找到了一条避免沉积物生成的途径,并且通过原子发射光谱图分析了各控制参数之间的内在联系。通过改变放电参数及加工条件,基本解决了加工中的沉积问题,并得到了表面粗糙度值达到1nm以内的光滑表面。
With the development of optics and microelectronics, the demand for surface quality has become more and more rigorous, which makes the machining of ultra-smooth surface more and more important also. Optical components emphasize quite a low surface roughness or scattering characters in order to obtain maximum reflectivity. While for functional requirements, surface lattice integrity is always top-priority as most applicable materials are brittle. Nowadays, conventional mechanical polishing technologies are not applicable any more for the machining of ultra-smooth surface, due to the removing principle of them. As a new technology for surface machining, the atmospheric pressure plasma polishing can perform an atom/molecule scale removal process by chemical reactions, and what’s more, surface materials can keep their intrinsical properties. There are a few researchers have begun the researches on this realm in America and Japan for decade. However, at home there are few efforts having been made in the atmospheric pressure plasma polishing. It is urged to have a break in this realm. In this dissertation, the atmospheric pressure plasma polishing has been researched at the aspect of design of polishing equipment and its usage.
     As we all know, the reliable equipment is the base for researches on the APPP. In this thesis, we designed a polishing system for APPP. The special plasma torch designed in this thesis is based on the principle of dielectric barrier discharge, which could generate plasma reliably and steadily in the common atmospheric pressure environment. Cooperating with cooling system, air supply system, movement control system, waste gas treatment and such other assistant equipments, the APPP system can perform the polish of work piece. And it can meet the need of the process experiment related.
     It is the active atom in plasma that reacts with the surface atoms in APPP method. And the intensity of active atom plays an important role in the process of the atmospheric pressure plasma polishing. In this thesis, the intensity of active atoms at different discharge parameters was measured by atomic emission spectrogram. And based on the result, the relationship between the discharge parameters and the intensity of active atom was found, which connected the parameters of discharge and that of processing. And what’s more it could provide a basis for other researches after.
     In order to produce high quality ultra-smooth surface, and to solve the problem of deposition on surface found in the initial experiments, in this thesis X-ray photoelectron spectroscopy(XPS) and infrared spectra were employed to analyze the components of the deposition. And then based on the result of experiments at variety discharge parameters, the way to avoid the deposition was found. Eventually the work piece of less than 1nm surface roughness and without deposition was obtained.
引文
1高宏刚,曹健林,朱镛等.超光滑表面及其制造技术的发展.物理. 2000,29(10):610~614
    2范镝,张忠玉,牛海燕,丰玉琴,张学军.碳化硅光学镜面加工.硅酸盐学报. 2003,31(11):1096~1100
    3谢会东,王小青,沈光球.晶体的超精密抛光.人工晶体学报. 2004,33(6):1035~1040
    4李锡善,戈鹤忠.超光滑表面加工技术.激光与电子学进展. 1998,11:1~9
    5 A.J.Leistner,E.G.Thwaite,F.Leaha. Polishing Study Using Teflon and Pitch Laps to Produce Flat and Ultrasmooth Surface. Appl.Opt.. 1992 , 31 :1472~1482
    6高宏刚,曹健林,陈斌.浮法抛光超光滑表面抛光技术.光学技术. 1995,3:40
    7高宏刚,陈斌,曹健林.超光滑光学表面加工技术.光学精密工程. 1995,3(4):7~14
    8 D.Ouma , Okumu. Characterization and Modeling of Oxide Chemical Mechanical Polishing Using Planarization Length and Pattern Density Concepts. Transactions on Semiconductor Manufacturing. 2002,15(2):232~234
    9 K.Qin , B.Moudgil , C.W.Park. A Chemical Mechanical Polishing Model Incorporating both the Chemical and Mechanical Effects. Thin Solid Films. 2004,446(2):277~286
    10袁巨龙.功能陶瓷的超精密加工技术.哈尔滨工业大学出版社,2000:82~118
    11 Y.Mori,K.Yamamura,K.Endo. Creations of Perfect Surfaces. Journal of Crystal Growth. 2005,275:39~50.
    12李宝贵,熊昌友,李成贵等.超光滑表面加工方法.制造技术与机床.2006,6:60~66
    13 K.Fritz,W.Martin. Influence of Solution Chemistry on the Hydration of Polished Clinker Surfaces-A Study of Different Types of Polycarboxylic Acid-based Admixture. Cement and Concrete Research. 2002,32(2):187~198
    14谢伦,高宏刚,陈斌等. GaN用衬底材料LiGaO晶体超精密抛光的初步实验.光学精密工程. 1997,5(5):57
    15陈杨,陈建清,陈志刚.超光滑表面抛光技术.江苏大学学报(自然科学版) . 2003,24(5):55~59
    16张峰,余景池等.磁流变抛光技术.光学精密工程. 1999,7(5):1~8
    17程灏波,王英伟,冯之敬.永磁流变抛光纳米精度非球面技术研究.光学技术. 2005, 31(1):52~54
    18周林,戴一帆,解旭辉,焦长君,李圣怡.光学镜面离子束加工的可达性.光学精密工程. 2007,15(2):160~166
    19 J.W.Carr. Atmospheric Pressure Plasma Processing for Damage-Free Optics and Surfaces. Engineering Research Development and Technology. 1999,3:31~39
    20张华,王文,庞媛媛.光学表面超精密加工技术.光学仪器. 2003,25(3):47~51
    21 J.Y.Jeong,J.Park, I.Henins,S.E.Babayan,V.J.Tu,G.S.Selwyn,G.Ding,R.F.Hicks. Reaction Chemistry in the Afterglow of an Oxygen Helium Atmospheric-Pressure Plasma. Phys. Chem.. 2000,104:8027~8032
    22 J.Park , I.Henins , H.W.Herrmann , G.S.Selwyn. Gas Breakdown in an Atmospheric Pressure Radio-Frequency Capacitive Plasma Source. Appl. Phys. . 2001,89(1):15~19
    23王守国.常压射频冷等离子体清洗技术介绍.清洗世界. 2004,20(12):32~34
    24 Y.Mori , K.Yamauchi , K.Yamamura , Y.Sano. Development of Plasma Chemical Vaporization Machining. Review of Scientific Instruments. 2000,71(12):4627~4632
    25 K.Yamamura , H.Mimura , K.Yamauchi , Y.Sano , A.Saito , T.Kinoshita, K.Endo,Y.Moria,A.Souvorov, M.Yabashi,K.Tamasaku,T.Ishikawa. Aspheric Surface Fabrication in nm-level Accuracy by Numerically Controlled Plasma Chemical Vaporization Machining (CVM) and Elastic Emission Machining (EEM) . Proc. of SPIE. 2002,4782:265~270
    26 C.Fanara,P.Shore,J.R.Nicholl. A New Reactive Atom Plasma Tehcnology (PART) for Precision Machining:the Etching of ULE Optical Surfaces. Advanced Engineering Materials,2006,8(10):933~939
    27张巨帆,王波,董申.大气等离子体抛光技术在超光滑硅表面加工中的应用.光学精密工程. 2007,15(11):1749~1755
    28李胜华.等离子体RF电源的现状及其发展.微细加工技术. 1989,(1):42~46
    29刘华,王利斌.微波自动阻抗匹配系统的研究.电子测量技术. 2007,30(6):40~42
    30李朝辉.高速电路中的阻抗匹配与端接技术.微处理机. 2007,(3):99~101
    31 (美)迈克尔·A.力伯曼,阿伦·J.里登伯格.等离子体放电原理与材料处理.蒲以康.科学出版社,2006:344~347,223~239
    32许根慧,姜恩永,盛京.等离子体技术与应用.化学工业出版社,2006:30~41,44~50,106~124
    33徐学基,诸定昌.气体放电物理.上海:复旦大学出版社,1996:309~336
    34 B.Eliassion,U.Kolgelschatz. Modeling and Application of Silence Discharge Plasmas. IEEE Trans Plasma Science,1997,19(2):309~323
    35蔡忆昔,刘志楠,赵卫东,李小华.介质阻挡放电特性及其影响因素.江苏大学学报(自然科学版). 2005,26(6):476~479
    36秦学礼.集成电路生产中的废气的污染及治理.洁净与空调技术. 2006,(1):19~22
    37赵化侨.等离子体化学与工艺.中国科学技术大学出版社,1993:42~102
    38同济大学普通化学及无机化学教研室.普通化学.高等教育出版社,2004:37~49
    39顾惕人.表面化学.北京:科学出版社,1994:234~305
    40柯以侃,董慧茹.分析化学手册第三分册:光谱分析.化学工业出版社,2001:1~212,628~691,928~1116
    41吴正龙,刘洁.现代X光电子能谱(XPS)分析技术.现代仪器. 2006,(1):50~52
    42赵瑶兴,孙祥玉.有机分子结构光谱鉴定.科学出版社,2003:5~16
    43李润卿,范国梁,梁荣遴.有机结构波谱分析.天津大学出版社,2002:48~54
    44陈杰瑢.低温等离子体化及其应用.科学出版社,2004:51~81

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700