多普勒雷达资料的退速度模糊、风场反演和临近预报的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对多普勒天气雷达数据的质量控制和实际应用中需要解决的问题,进行了退速度模糊、风场反演和临近预报等方面的研究:
     1.针对目前业务应用中多普勒天气雷达资料退速度模糊容易退错的问题,提出了一种新的自动退模糊方法——零速线搜索法。从雷达原点开始到最远探测距离,搜索线性风场的两条零速线,同时确定零速线两侧区域的标准速度符号。然后,逐点比较径向速度场中数据点的速度符号与所属区域的速度符号,若两者相同,认为该数据点速度值正确;若两者相反,则认为该数据点为速度模糊,并修改为正确的速度值。实例的退模糊结果表明,零速线搜索方法合理有效,能够正确退除存在孤立回波、距离折叠等情况的速度模糊。从思路和方法上改进了传统线性外推方法退速度模糊容易退错的问题。
     2.针对多普勒雷达资料反演风场的VVP(Velocity Volume Processing)方法中出现的病态矩阵问题,提出了一种改进的VVP方法——SVVP(Step VVP)方法。SVVP方法采用分步反演的策略,计算线性方程组的各个变量,降低了方程组的条件数,克服了VVP方法中的病态矩阵问题,在分析体积很小的情况下仍可以得到较理想的反演结果,同时详细分析了反演过程中的误差来源和大小。对对流单体和台风资料的反演结果表明SVVP方法是可行的,能较有效地获得中小尺度对流系统的风场结构。
     3.针对利用多普勒天气雷达资料进行临近预报中需要改进对流单体的识别和跟踪的问题,提出了新的对流单体识别方法和预警方法,尝试将现代优化算法应用于对流单体追踪。新的对流单体识别方法利用搜索邻近点技术识别二维对流单体分量,并且改进了对流单体分量的垂直相关来构造三维对流单体,克服了传统方法中的识别缺陷。尝试利用现代优化算法(模拟退火算法,遗传算法,蚁群算法)进行对流单体的匹配和追踪,实验结果和理论分析显示,模拟退火算法和蚁群算法对于对流单体追踪简单有效,参数直观可调;遗传算法受限于遗传操作方式,效果不理想。基于风暴演化规律和特征量分布特征,将对流单体分为强对流单体和普通对流单体,并用支持向量机方法进行辨别,结果表明支持向量机能够指示对流单体的演化阶段和强弱变化,为强对流天气的预警提供了有力的工具和参考。
Aiming at the quality control and problems that need to be solved in practical application, using the Doppler weather radar data in current operational application, this article makes studies on the velocity dealiasing, wind retrieval and nowcasting of Doppler weather radar data.
     1. To solve the problems that velocity dealiasing of Doppler weather radar data usually has mistakes in current operational application, a new automated velocity dealiasing method based on zero isodop searching has been developed. Zero isodops are searched point by point from the radar origin to the maximum detection range, and the accepted sign of each region separated by the zero isodops is determined. After that, the velocity sign at each gate is compared with the accepted sign of the region wherein the gate is. If they are consistent, the velocity is considered as true; otherwise as aliased and then dealiased to the true value. Dealiasing results on real cases indicate that the new algorithm is practicable and effective, especially on aliasing lack of references affected by discontinuous echo or range folding. It improves the velocity dealiasing problems, mistakes by using traditional linear extrapolation methods, in thoughts and methods.
     2. To solve the ill-conditioned matrix appeared in VVP (Velocity Volume Processing) wind retrieval, an improved VVP method, SVVP (step VVP) method, is proposed. SVVP method retrieves components of the wind field through a step wise procedure, which reduces the conditional number of equations and overcome the ill-conditioned matrix problems which currently limit the application of the VVP method. Variables can be retrieved even if the analysis volume is very small. In addition, the source and order of errors are analyzed in the retrieval. The improved method is applied to real cases including convective storms and typhoons, which show that it is robust and relative capability to obtain the wind field structure of the meso-scale convective system.
     3. To solve the storm identification and tracking problems in nowcasting by Doppler weather radar data, a new storm identification and warning technique is proposed, and modern optimization algorithms are used in storm tracking. The new identification method assembles contiguous storm points to constitute 2D storm components and improves the vertical association of storm components to construct 3D storms, which overcomes the deficiencies existing in traditional identification methods. Modern optimization algorithms (simulated annealing algorithm, genetic algorithm and ant colony algorithm) are tested to match and track storms. Experiment results and theoretical analysis show that simulated annealing algorithm and ant colony algorithm are effective and have intuitionally adjustable parameters, whereas results from genetic algorithm is unsatisfactory for the constraint of genetic operations mode. Based on the evolution properties and characteristic distributions, storms are specified as strong storms and general storms which then can be discriminated by a support vector machine (SVM). The performance of the SVM shows that it can indicate the development and evolution of a storm, providing an important aid in severe weather warning.
引文
1.俞小鼎,姚秀萍,熊廷南,周小刚,吴洪.多普勒天气雷达原理与业务应用.气象出版社,2008.
    2.张培昌,杜秉玉,戴铁丕.雷达气象学.气象出版社,2001.
    3. Sauvageot H. Radar Meteorology. Artech House,1992.
    4. Doviak R, D Zrnic. Doppler radar and weather observations. Academic Press,1984.
    5. Lhermitte R. Centimeter & Millimeter Wavelength Radars in Meteorology.2002.
    6.俞小鼎.新一代天气雷达业务应用论文集.气象出版社,2008.
    7. Torres S, D Zrnic. Ground Clutter Canceling with a Regression Filter. J. Atmos. Oceanic Technol., 1999,16:1364-1372.
    8. Steiner M, J Smith. Use of Three-Dimensional Reflectivity Structure for Automated Detection and Removal of Nonprecipitating Echoes in Radar Data. J. Atmos. Oceanic Technol.,2002,19:673-686.
    9. Sachidananda M, D Zrnic. Ground Clutter Filtering Dual-Polarized, Staggered PRT Sequences. J. Atmos. Oceanic Technol.,2006,23:1114-1130.
    10. Berenguer M, D Sempere-Torres, C Corral, R Sanchez-Diezma. A Fuzzy Logic Technique for Identifying Nonprecipitating Echoes in Radar Scans. J. Atmos. Oceanic Technol.,2006,23: 1157-1180.
    11. Lakshmanan, V, A Fritz, T Smith, K Hondl, G Stumpf. An Automated Technique to Quality Control Radar Reflectivity Data. J. Appl. Meteor. Climatol.,2007,46:288-305.
    12. Hubbert J, M Dixon, S Ellis, G Meymaris. Weather Radar Ground Clutter. Part I:Identification, Modeling, and Simulation. J. Atmos. Oceanic Technol.,2009,26:1165-1180.
    13. Hubbert J, M Dixon, S Ellis. Weather Radar Ground Clutter. Part Ⅱ:Real-Time Identification and Filtering. J. Atmos. Oceanic Technol.,2009,26:1181-1197.
    14.崔哲虎,程明虎.区域膨胀法在剔除Doppler雷达径向速度中地物杂波的应用.气象科技,2004,32(1):63-64.
    15. Frush C, R Doviak, M Sachidananda, D Zrnic. Application of the SZ Phase Code to Mitigate Range-Velocity Ambiguities in Weather Radars. J. Atmos. Oceanic Technol.,2002,19:413-430.
    16. Cho J. Multi-PRI Signal Processing for the Terminal Doppler Weather Radar. Part II:Range-Velocity Ambiguity Mitigation. J. Atmos. Oceanic Technol.,2005,22:1507-1519.
    17. Bharadwaj N, V Chandrasekar. Phase Coding for Range Ambiguity Mitigation in Dual-Polarized Doppler Weather Radars. J. Atmos:Oceanic Technol.,2007,24:1351-1363.
    18. Torres S, R Passarelli, A Siggia, P Karhunen. Alternating Dual-Pulse, Dual-Frequency Techniques for Range and Velocity Ambiguity Mitigation on Weather Radars. J. Atmos. Oceanic Technol.,2010,27: 1461-1475.
    19. Tang D, S Geotis, R Passarelli, Jr Hansen, C Frush. Evaluation of an alternating-PRF method for extending the range of unambiguous Doppler velocity. Preprints,22nd Conf. on Radar Meteorology, Zurich, Switzerland, Amer. Meteor. Soc.,1984,523-527.
    20. Hildebrand P and Coauthors. The ELDORA/ASTRAIA airborne Doppler weather radar: High-resolution observations from TOGA COARE. Bull. Amer. Meteor. Soc.,1996,77:213-232.
    21. Ray P, C Ziegler. Dealiasing first moment Doppler estimates. J. Appl. Meteor.,1977,16:563-564.
    22. Bargen D, R Brown. Interactive radar velocity unfolding. Preprints,19th Conf. on Radar Meteorology, Miami, FL, Amer. Meteor. Soc.,1980,278-283.
    23. Merritt M. Automatic velocity dealiasing for real-time applications. Preprints,22nd Conf. on Radar Meteorology, Zurich, Switzerland, Amer. Meteor. Soc.,1984,528-533.
    24. Eilts M, S Smith. Efficient dealiasing of Doppler velocities using local environment constraints. J. Atmos. Oceanic Technol.,1990,7:118-128.
    25. Zhang J, S Wang. An Automated 2D Multipass Doppler Radar Velocity Dealiasing Scheme. J. Atmos. Oceanic Technol.,2006,23:1239-1248.
    26. Bergen W, S Albers. Two-and three dimensional de-aliasing of Doppler radar velocities. J. Atmos. Oceanic Technol.,1988,5:305-319.
    27. James C, R Houze. A real-time four dimensional Doppler dealiasing scheme. J. Atmos. Oceanic Technol.,2001,18:1674-1683.
    28. Friedrich K, O Caumont. Dealiasing Doppler Velocities Measured by a Bistatic Radar Network during a Downburst-Producing Thunderstorm. J. Atmos. Oceanic Technol.,2004,21:717-729.
    29. Gao J, K Droegemeier. Avariational technique for dealiasing Doppler radial velocity data. J. Appl. Meteorol.,2004,43:934-940.
    30. Lim E, J Sun. A Velocity Dealiasing Technique Using Rapidly Updated Analysis from a Four-Dimensional Variational Doppler Radar Data Assimilation System. J. Atmos. Oceanic Technol., 2010,27:1140-1152.
    31.陶祖钰,石坚.多普勒速度的切向消除技术.应用气象学报,1993,4(2):145-153.
    32.刘淑媛,王洪庆,陶祖钰,刘海霞.一种简易的多普勒雷达速度模糊纠正技术.应用气象学报,2003,14(5):111-118.
    33.梁海河,张沛源,葛润生.多普勒天气雷达风场退模糊方法的研究.应用气象学报,2002,15(5):591-601.
    34.方德贤,刘国庆,董新宁,慕熙昱.区域生长法在多普勒天气雷达速度场分析中的应用.南京大学学报,2007,43(1):102-110.
    35. Armijo L. A theory for the determination of wind and precipitation velocities with Doppler radar. J. Atmos Sci.,1969,26:570-573.
    36. Lhermitte R, L Miller. Doppler radar methodology for the observation of convective storms. Preprints, 14th Conf. on Radar Meteorology. Tucson, AZ, Amer. Meteor. Soc.,1970,133-138.
    37. Miller L, R Strauch. A dual-Doppler radar method for the determination of wind velocities within precipitating weather systems. Remote Sens. Environ.,1974,3:219-235.
    38.魏鸣.单多普勒天气雷达资料的变分同化三维风场反演和VVP三维风场反演.南京大学博士论文,1998.
    39. Lhermitte R, D Atlas. Precipitation motion by pulse Doppler radar. Preprints,9th Conf. on Radar Meteorology, Kansas City, MO, Amer. Meteor. Soc.,1961,218-223.
    40. Browning K, R Wexler. The determination of kinematic properties of a wind field using Doppler radar, J. Appl. Meteor.,1968,7:105-113.
    41. Easterbrook C. Estimating horizontal wind fields by two-dimension curve fitting of single Doppler radar measurements. Preprints,16th Conf. on Radar Meteorology, Houston, TX, Amer. Meteor. Soc., 1975,214-219.
    42. Srivastava R, T Matejka, T Lorello. Doppler radar study of the trailing anvil region associated with a squall line. J. Atmos. Sci.,1986,43:356-377.
    43. Matejka T. Concurrent extended vertical velocity azimuth display (CEVAD) analysis of single-Doppler radar data. Preprints,26th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc.,1993, 463-465.
    44. Johnston B, J Marwitz. Single-Doppler radar analysis of banded precipitation structures. J. Atmos. Oceanic. Technol.,1990,7:866-875.
    45.陶祖钰.从单Doppler速度场反演风矢量场的VAP方法.气象学报,1992,50(1):82-93.
    46. Liang X. An Integrating Velocity-Azimuth Process Single-Doppler Radar Wind Retrieval Method. J. Atmos. Oceanic Technol.,2007,24:658-665.
    47. Waldteufel P, H Corbin. On the analysis of single-Doppler radar data. J. Appl. Meteor.,1979,18: 532-542.
    48. Koscielny A, R Doviak, R Rabin. Statistical considerations in the estimation of divergence from single-Doppler radar and application to prestorm boundary-layer observation, J. Appl. Meter.,1982,21: 197-210.
    49. Wei M, N Li. Three Dimension Wind Retrieval of Single-Doppler Radar Data with Improved VVP Method. Proceedings of the 1st IEEE International Conference on Information Science and Engineering, Nanjing, China,2009,10.1109/ICISE.2009.1311.
    50. Laroche S, I Zawadzki. A variational analysis method for the retrieval of three-dimensional wind field from single-Doppler radar data. J. Atmos. Sci.,1994,51:2664-2682.
    51. Nissen R, D Hudak, S Laroche, R Elia, I Zawadzki, Y Asuma.3D Wind Field Retrieval Applied to Snow Events Using Doppler Radar. J. Atmos. Oceanic Technol.,2001,18:348-362.
    52.姜海燕,葛润生.一种新的单多普勒雷达的反演技术.应用气象学报,1997,8(2):219-223.
    53. Liou Y, T Gal-Chen, D Lilly. Retrieval of wind temperature and pressure from single Doppler radar and a numerical model.25th Conf. on Radar Meteorology, Paris, France, Amer. Meteor. Soc.,1991, 151-154.
    54. Sun J, A Crook. Wind and thermodynamic retrieval from single-Doppler measurements of a gust front observed during Phoenix II. Mon. Wea. Rev.,1994,122:1075-1091.
    55. Sun J, N Crook. Real-time low level wind and temperature analysis using single WSR-88D data. Wea. Forecasting,2001,16:117-132.
    56. Qiu C, Q Xu. A simple adjoint method of wind analysis for single-Doppler data, J. Atmos. Oceanic Technol.,1992,9:588-598.
    57. Xu Q, C Qiu, H Gu, J Yu. Simple adjoint retrievals of microburst winds from single-Doppler radar data. Mon. Wea. Rev.,1995,123:1822-1833.
    58.邱崇践,余金香,Xu Qin.多普勒雷达资料对中尺度短期预报的改进.气象学报,2000,58(2):244-249.
    59. Xu Q, H Gu, C Qiu. Simple Adjoint Retrievals of Wet-Microburst Winds and Gust-Front Winds from Single-Doppler Radar Data. J. Appl. Meteor.,2001,40:1485-1499.
    60. Protat A, I Zawadzki. Optimization of Dynamic Retrievals from a Multiple-Doppler Radar Network. J. Atmos. Oceanic Technol.,2000,17:753-760.
    61. Shapiro A, K Corey, J Gao. Use of a Vertical Vorticity Equation in Variational Dual-Doppler Wind Analysis. J. Atmos. Oceanic Technol.,2009,26:2089-2106.
    62. Liou Y, Y Chang. A Variational Multiple-Doppler Radar Three-Dimensional Wind Synthesis Method and Its Impacts on Thermodynamic Retrieval. Mon. Wea. Rev.,2009,137:3992-4010.
    63.李南,魏鸣,姚叶青.安徽闪电与雷达资料的相关分析以及机理初探.热带气象学报,2006,22(3):265-272.
    64. Rinehart R, E Garvey. Three-dimensional storm motion detection by conventional weather radar, Nature,1978,273:287-289.
    65. Li L, W Schmid, J Joss. Nowcasting of motion and growth of precipitation with radar over a complex orography. J. Appl. Meteor.,1995,34:1286-1300.
    66. Zittel W. Computer applications techniques for storm tracking and warning. Reprints,17th Conf. on Radar Meteorology, Seattle, Washington, Amer. Meteor. Soc.,1976,514-521.
    67. Crane R. Automatic cell detection and tracking. IEEE Transactions on Geoscience Electronics,1979, 17:250-262.
    68. Austin G, A Bellon. Very short-range forecasting of precipitation by the objective extrapolation of radar and satellite data. In:Browning, K.A., Ed., Nowcasting. Academic Press,1982,177-190.
    69. Rosenfeld D. Object method for analysis and tracking of convective cell as seen by radar. J. Atmos. Oceanic Technol..1987,14:422-434.
    70. Johnson J, P Mackeen, A Witt, E Mitchell, G Stumpf, M Eilts, K Thomas. The Storm Cell Identification and Tracking Algorithm:An Enhanced WSR-88D Algorithm, Wea. Forecasting,1998, 13:263-276.
    71. Duda R, R Blackmer. Applications of pattern recognition techniques to digitized weather radar data. Final Rep. Contract I-36092, SRI Project 1287, Stanford Research Institute, Menlo Park, CA,1972.
    72. Dixon M, G Wiener. TITAN:Thunderstorm identification, tracking, analysis and nowcasting—a radar based methodology. J. Atmos. Oceanic Technol.,1993,10:785-797.
    73.汤达章,李力.一种新的跟踪雷达回波的特征量—矩不变量.南京气象学院学报,1989,12(3):1-8.
    74.胡雯.模糊聚类法用于建立预报强对流回波移动模式.南京气象学院硕士研究生毕业论文,1991.
    75.刘黎平,徐宝祥,王致君.利用矩心跟踪法跟踪、警戒强对流天气方法初探.高原气象.1991,10(3):317-324.
    76.汤达章,周咏梅,胡明宝.雷达回波跟踪的两种方法及精度比较.应用气象学报,1994,5(3):304-311.
    77.肖艳姣,汤达章,李中华,蒋义芳.风暴的自动识别、跟踪与预报.南京气象学院学报,1998,21(2):223-229.
    78.杨引明.风暴的多普勒雷达自动识别、跟踪、预报及冰雹探测.南京气象学院硕士学位论文,1998.
    79.李伟.单多普勒雷达自动探测台风及计算风切变.南京气象学院硕士研究生毕业论文,1999.
    80.胡胜.X波段双偏振全相参多普勒雷达产品软件的开发与设计.南京气象学院硕士学位论文,2000.
    81.张鹏,胡明宝,吴书君.多普勒天气雷达单PPI探测强风暴的方法.解放军理工大学学报(自然科学版),2003,4(3):82-85.
    82.姚叶青,魏鸣.强对流天气中多普勒天气雷达和闪电定位资料的应用分析.南京大学硕士论文,2005.
    83.徐春芳.多普勒天气雷达的风暴单体自动识别算法及工程设计.南京信息工程大学硕士学位论文,2006.
    84.陈明轩,王迎春,俞小鼎.交叉相关外推算法的改进及其在对流临近预报中的应用.应用气象学报,2007,18(5):690-701.
    85.韩雷,张焱,王洪庆.腐蚀方法在风暴自动识别中的应用.北京大学学报,2008,44(4):592-596.
    86.韩雷,王洪庆,林隐静.光流法在强对流天气临近预报中的应用.北京大学学报(自然科学版),2008,44(5):751-755.
    87.韩雷,俞小鼎,郑永光,陈明轩,王洪庆,林隐静.京津及邻近地区暖季强对流风暴的气候分布特征.科学通报,2009,54(11):1585-1590.
    88.王令,康玉霞,焦热光,卞素芬,丁青兰.北京地区强对流天气雷达回波特征.气象,2004,30(7):31-36.
    89.雷正翠,夏文梅,周霖华,吴焕勤,姚丽娜,张备.常州雷暴的气候特点及多普勒雷达回波特征.气象,2009,35(12):118-125.
    90.刁秀广,谢考现.山东省强对流天气雷达回波气候特征.气象,1999,25(8):39-42.
    91.江玉华,丁明星,陈群,刘婷婷.重庆地区强对流天气雷达回波统计特征.气象,2005,31(3):36-41.
    92.应冬梅,郭艳.江西省飑线的雷达回波特征分析.气象,2001,27(3):4245.
    93.左平昭,陈秋萍,郭正明,陈德汶,刘锐志.闽东北地区夏季对流云特征的初步分析.气象科技,2005,33(增刊):32-37.
    94.曾光平,隋平,蒋年冲,李玉林.利用建阳新一代天气雷达观测夏季对流云特征.应用气象学报,2002,13(6):767-768.
    95.陈秋萍,冯晋勤,陈冰,曾光平,隋平,郑淑贞,冯宏芳.新一代天气雷达观测的福建夏季对流云特征.应用气象学报,2003,14(增刊):180-186.
    96.蒋年冲,刘娟,胡雯,卢海,宋子忠.安徽夏季中γ尺度对流云的雷达回波特征.气象,2007,33(10):9-14.
    97.廖玉芳,俞小鼎,唐小新,朱金菊.基于多普勒天气雷达观测的湖南超级单体风暴特征.南京气象学院学报,2007,30(4):433-443.
    98. Gentry R, P Moore. Relation of local and general wind interaction near the sea coast to time and location of airmass showers. J. Meteor.,1954,11:507-511.
    99. Burpee R. Peninsula-scale convergence in the south Florida sea breeze. Mon. Wea. Rev.,1979,107: 852-860.
    100. Cooper H, M Garstang, J Simpson. The diurnal interaction between convection and peninsula-scale forcing over south Florida. Mon. Wea. Rev.,1982,110:486-503.
    101. Watson A, D Blanchard. The relation between total area divergence and convective precipitation in south Florida. Mon. Wea. Rev.,1984,112:673-685.
    102. Purdon J. Satellite imagery and the mesoscale convective forecast problem. Preprints,8th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc,1973,244-251.
    103. Purdon J. Subjective interpretations of geostationary satellite data for nowcasting. In:Browning, K.A., Ed., Nowcasting, Academic Press,1982,149-166.
    104. Wilson J, R Carbone. Nowcasting with Doppler radar:The forecaster-computer relationship. In: Browning, K.A., Ed., Nowcasting Ⅱ, European Space Agency,1984,177-186.
    105. Szoke E, C Mueller, J Wilson, E Zipser. Development of convective and severe weather along outflow boundaries in northeast Colorado:Diagnosing the above-surface environment with a mobile sounding system. Preprints,14th Conf. on Severe Local Storm, Indianapolis, IN, Amer. Meteor. Soc.,1985, 386-389.
    106. Schreiber W. Case studies of thunderstorms initiated by radar-observed convergence lines. Mon. Wea. Rev.,1986,114:2256-2266.
    107. Wilson J, W Schreiber. Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev.,1986,114:2516-2536.
    108. Wilson J, C Mueller. Nowcasting of thunderstorm initiation and environment. Wea. Forecasting,1993, 8:113-131.
    109. Kessler E雷暴形态学与动力学.气象出版社,1991.
    110.孔燕燕,沈建国.强雷暴预报.气象出版社,2001.
    111.来小芳,杨群娜.“配料法”用于上海地区暴雨预报初探.中国气象学会2007年年会天气预报预警和影响评估技术分会场论文集,2007.
    112. Hennington L. Reducing the effects of Doppler radar ambiguities. J. Appl. Meteor.,1981,20: 1543-1546.
    113. Tabary P, G Scialom, U Germann. Real-time retrieval of the wind from aliased velocities measured by Doppler radars. J. Atmos. Oceanic Technol.,2001,18:875-882.
    114. Han L, X Yu, Y Zheng, M Chen, H Wang, Y Lin. Statistic characteristics of severe convective storm during Warm-Season in the Beijing-Tianjin region and its vicinity. Chin. Sci. Bull.,2009,54: 2493-2498.
    115. Wilson J, N Crook, C Mueller, J Sun, M Dixon. Nowcasting tunderstorm:A status report. Bull. Amer. Meteor. Soc.,1998,79:2079-2099.
    116. Henry S. Analysis of thunderstorm lifetime as a function of size and intensity. Reprints,26th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc.,138-140.
    117. Wilson J, D Megenhardt. Thunderstorm initiation, organization, and lifetime associated with Florida boundary layer convergence lines. Mon. Wea. Rev.,1997,125:1507-1525.
    118. MacKeen P, H Brooks, K Elmore. Radar reflectivity-derived thunderstorm parameters applied to storm longevity forecasting. Wea. Forecasting,1999,14:289-295.
    119. Desrochers P. A reliable method for real-time velocity unfolding. Reprints,24th Conf. on Radar Meteorology, Tallahassee, FL, Amer. Meteor. Soc.,1989,415-418.
    120. Jing Z, G Wiener. Two-dimensional dealiasing of Doppler velocities. J. Atmos. Oceanic Technol. 1993,10:798-808.
    121. Wei M, Y Liu, J Pan, N Li. New Velocity Dealiasing of Doppler Radar with the Interactive Method. Proceedings of the 2009 WRI World Congress on Computer Science and Information Engineering, Los Angeles, CA,2009,10.1109/CSIE.2009.840.
    122. Boccippio D. A diagnostic analysis of the VVP single-Doppler retrieval technique. J. Atmos. Oceanic Technol.,1995,12:230-248.
    123. Xin L, G Reuter. VVP technique applied to an Alberta storm. J. Atmos. Oceanic Technol.,1998,15: 587-592.
    124. Browning K. Air flow and precipitation trajectories with in severe local storms which travel to the right of the winds. J. Atmos. Sci.,1964,21:634-639.
    125. Frank W. The Structure and Energetics of the Tropical Cyclone I. Storm Structure. Mon. Wea. Rev., 1977,105:1119-1135.
    126.Elsberry R热带气旋全球观.气象出版社,1994.
    127.李文慧.匈牙利方法在铁路列车乘务组分派问题中的应用.兰州交通大学学报(自然科学版),2007,26(3):55-57.
    128. Lawler E. Combinatorial Optimization:Networks and Matroids. Oxford University Press,1995.
    129. Roberts F. Applied Combinatorics. Prentice Hall,1984.
    130.褚言正.指派问题匈牙利方法的改进.重庆工业管理学院学报,1998,12(4):76-77.
    131.顾大权,左莉,侯太平,等.“匈牙利法”存在的问题及改进方法,微机发展,2003,13(4):76-78.
    132.邢文训,谢金星.现代优化算法.清华大学出版社,2005.
    133.段姹莉,陈波.VB环境下的模拟退火算法求指派问题.电脑知识与技术,2008,4(8):2153-2155.
    134.吴艳群,董鹏.求解大规模不对称指派问题的通用模拟退火算法.兰州交通大学学报,2008,27(4):149-155.
    135.李言,陈祖安,徐跃飞,张晓坤,彭炎午.指派问题的遗传算法研究与实现.西安理工大学学报,1996,12(4):271-276.
    136.张权,修宏伟.遗传算法在指派问题中的应用.沈阳建筑工程学院学报,1997,13(1):25-28.
    137.吴海军.基于遗传算法的指派问题求解.电脑学习,2005,6:23-24.
    138. Rudolph G. Convergence Properties of Canonical Genetic Algorithms. IEEE Trans. on Neural Network,1994,5:96-101.
    139. De Jong K. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. Theses for Doctoral Degree, University of Michigan,1975.
    140. Eiben A, E Aarts, H Van. Global convergence of genetic algorithms:a markov chain analysis. Springer,1991.
    141.王蕾,沈庭芝,招扬.一种改进的自适应遗传算法.系统工程与电子技术,2002,24(5):75-78.
    142.殷人昆,吴阳,张晶炜.蚁群算法解决指派问题的研究和应用.计算机工程与科学,2008,30(4):43-112.
    143.韩建枫,李敏强,寇纪凇.遗传算法中排列问题的编码研究.计算机工程与应用,2002,12:29-32.
    144. Liljas E. COST-78 co-operations on SAFs. In SAF Training Workshop-Nowcasting and Very Short Range Forecasting, EUMETSAT,1998.
    145. Li P, E Lai. Applications of radar-based nowcasting techniques for mesoscale weather forecasting in HongKong. Meteorol. appl.,2004,11:253-264.
    146. Hand W, B Conway. An object-oriented approach to nowcasting shower. Wea. Forecasting,1995,10: 327-341.
    147.胡胜,顾松山,庄旭东,罗慧.风暴的多普勒雷达自动识别.气象学报,2006,64(6):796-808.
    148. Roberts R, S Rutledge. Nowcasting storm initiation and growth using GOES-8 and WSR-88D data. Wea. Forecasting,2003,18:562-584.
    149. Mecikalski J, K Bedka. Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery. Mon. Wea. Rev.,2006,1:49-78.
    150. Greene D, R Clark. Vertically integrated liquid water—a new analysis tool. Mon. Wea. Rev.,1972, 100:548-552.
    151. Steven A, P Wolf. VIL density as a hail indicator. Wea. Forecasting,1997,12:473-478.
    152. Baeck M, J Smith. Rainfall estimation by the WSR-88D for heavy rainfall events. Wea. Forecasting, 1998,13:416-436.
    153.汤兴芝,黄兴友.冰雹云的多普勒天气雷达识别参量及其预警作用.暴雨灾害,2009,28(3):261-265.
    154.李秀琳,贾金海.VIL产品在人工防雹中的应用.陕西气象,2008(3):13-16.
    155.陈金敏,刁秀广.冰雹与对流性强降水天气的物理量和雷达参数对比分析.安徽农业科学,2010,38(5):2451-2453.
    156. Shawe-Taylor J, Cristianini N. Support Vector Machines and other kernel-based learning methods. Cambridge University,2000.
    157.邓乃扬,田英杰.数据挖掘中的新方法——支持向量机.科学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700