亚洲沙尘沉降对中国近海浮游植物生长影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气沉降能够为海洋提供生物可利用营养盐如氮(N)、磷(P)、硅(Si),以及痕量金属如铁(Fe)、锰(Mn)等,因此成为影响海洋浮游植物生长和初级生产的重要因素。大气沉降不仅可以促进浮游植物生物量的增加,也可以改变浮游植物的种群结构,甚至触发水华的发生,从而调节海洋的固碳能力,最终对海洋生物生产和气候产生影响。沙尘沉降作为大气沉降的重要方面,具有影响范围广,短时间内沉降量大等特点,得到了学界的特别关注。源于世界四大沙尘排放区之一的亚洲沙尘可通过长距离传输,对中国近海甚至北太平洋产生影响。本研究基于2011年3月、2011年5月、2013年3月及2013年6月在中国近海,包括南黄海、东海东部、南海东北部进行的亚洲沙尘及不同营养盐加富的船基围隔培养实验,探讨了大气沉降对中国近海生态系统的影响。
     2011年3月份,南黄海的培养实验表明:(1)海水表层温度(SST)是影响黄海3月份浮游植物生长最主要的物理因子,而光合有效辐射(PAR)在实验期间影响不大。(2)较高浓度沙尘(Dust-b)与对照组相比,可明显促进浮游植物生物量的增加,且该促进作用主要归因于N的施肥作用和可溶性Fe及其他痕量元素的协同作用。而低浓度沙尘添加提供的营养盐不足以引起浮游植物的明显响应。(3)N对浮游植物的促进作用最为明显,表明N为南黄海中部3月份首要的限制性营养盐。(4)雨水的添加可以明显促进浮游植物的生长,表明雨水的促进作用,然而其N转化为叶绿素的效率(CEI)低于对照组,因此雨水的促进与抑制作用并存。(5)在整个培养实验过程中,浮游植物的粒级分布没有发生明显变化,主要由微型浮游植物(nano级)组成。
     2013年6月份,南黄海的培养实验表明:(1)从3月份到6月份,黄海藻类生长的限制因子发生了变化,P成为南黄海夏季藻类的首要限制因子,而N的添加不能明显促进藻类的生长。(2)浮游植物的生长对沙尘和雨水的添加均没有足够的响应,仅在实验的前4天有微弱的促进作用,可能沙尘提供的营养盐主要为DIN,而P浓度很低,所以促进作用不明显。(3)夏季黄海以微微型(pico级)浮游植物为主体,在黄海中部G6站位的实验中pico级浮游植物始终为生物量主要贡献者,而在H7站位群落结构发生了变化,nano级浮游植物在实验后期成为优势种。(4)夏季南黄海中部主要由具刺原甲藻(Prorocentrum dentatum)和微型甲藻(Dinoflagellate)为优势藻。G6站位,沙尘的添加主要促进了菱形藻(Nitzschia.sp)的生长。加N+P、N+P+Fe组,微型甲藻和微小原甲藻(Prorocentrum minimum)为优势藻种。H7站位,加P、N+P、N+P+Fe组,浮游植物优势种各不相同。加P组,微小原甲藻和菱形藻的生长是生物量的主要贡献者。加N+P及N+P+Fe组,由于N、P的共同添加促进了硅藻的生长,只是优势种各不相同。
     2011年5月份,东海的培养实验表明:(1)较高浓度的沙尘有微弱的促进作用,而低浓度沙尘由于释放营养盐浓度太低而没有促进作用;(2)N的添加可以明显促进浮游植物生长,而P、Fe组没有明显变化,表明5月份该海域不受P、Fe限制;(3)培养实验中,浮游植物的粒径结构发生了变化,初始小型浮游植物(micro级)略占优势(38.5%),实验结束时,微型浮游植物(nano)逐渐演变成为优势种,而且对P+Fe与N添加的响应更敏感。
     2013年春季,南海的培养实验表明:(1)在南海东北部的A3和A6站位,沙尘气溶胶的添加以及N、N+P、N+P+Fe都在很大程度上促进了浮游植物的生长,而雨水和P的添加没有明显的促进作用。而在营养盐浓度更低的WG2站位,对所有处理组都有正面响应;(2)在A3站位所有添加实验中,角毛藻属(Chaetoceros spp)和丹麦细柱藻(Leptocylindrus danicus)为优势种,但在实验结束时均发生角色互换。在A6站位沙尘和营养盐的添加实验中,硅藻中的角毛藻属始终为优势藻。WG2站位甲藻中的双鞭毛藻(Dinoflagellate)为优势种。沙尘及营养盐的添加主要促进了菱形硅藻属(Nitzschia.sp)的增长,而N的添加则主要刺激了角毛藻属的生长。
     通过多次沙尘及营养盐加富的围隔培养实验,表明在不同营养水平的海域,浮游植物响应各异:(1)南黄海中部,大气沉降的施肥效应在春季较明显,并且春季与夏季浮游植物生长由N限制转换为P限制。夏季营养盐的添加则主要促进了硅藻门的生长;(2)东海东部春季浮游植物生长受N限制影响,由于沙尘提供的N营养盐量不足,因此浮游植物对沙尘添加响应不明显;(3)大气沉降对南海东北部具有明显的促进作用,并且主要促进了硅藻门的生长。
Atmospheric deposition has been considered an important source of bio-availablenutrients such as N, P, Si and trace metals like Fe and Cu to phytoplankton living inshelf seas and open oceans. It has been proposed that this external nutrient/trace metalinput enhances primary production (PP) and changes the structure and metabolism ofmicrobial planktonic communities, and may even trigger biogenic blooms in oceans.So could regulate atmospheric CO2through their mediation in the sea-air CO2exchange process, and influence the marine production and chimate. As an importantaspect of atmospheric deposition, the character of dust deposition were the largerinfluence area and the higher deposition amounts in short time, so has received morespecial attention in recent years. Asian dust is one of the four major dust emissionzones in the world, and can impact the China marginal seas, even North Pacific Oceanthrouth long-distance transport. On-board incubation experiments were performed inMarch and May of2011, March and June of2013to explore the responses ofchlorophyll a concentration to Asian dust and various combinations of addedsubstances in China marginal seas, including Southern Yellow sea (SYS), East ChinaSea (ECS) and Southern China Sea (SCS), to explort the influence of Asian dustdeposition on the ecosystem of China marginal seas.
     The incubation experiments conducted in March of2011suggested:1) Thesurface seawater temperature (SST) maybe the most important physical factor forbiogenic bloom at our study ocean area, and photosynthetically available radiation(PAR) had little change;2) The relatively large amount of Asian dust (Dust-b) addedcould promote a greater increase in phytoplankton biomass, in contrast to the control,and the promotion effect was partially associated with the added N and also partiallyrelated to the increase of the CEI and the synergistic effect of macronutrients and tracemetals leached from the Asian dust. However, treatment with a lower amount of Asiandust (Dust-a) had no significant influence on either concentrations of Chl a or the CEI in contrast to the control;3) The addition of N exhibited a promotion effect on Chl aconcentration indicated the N limitation in the SYS;4) The addition of rainwater hada promotion effect on the growth of phytoplankton, however, calculated CEI waslower than that in the control, suggesting that the inhibition effect coexisted with thepromotion effect;5) The size structure of phytoplankton had shifted to some extent,while nano-phytoplankton was always the predominant species.
     Incubation experiments conducted in June of2013in SYS suggested:1) FromMarch to June, P has become the first limiting factor at the same region, but theaddition of N could’t promote the growth of phytoplankton;2) For the lower Chl aand nutrients concentration in central of SYS, there was no obvios response to theaddition of Asian dust aerosol and rainwater, maybe for the most of nutrients suppliedthrough dust was DIN, and the amount of P was lower;3) At G6station,picophytoplankton was always the predominant throuthout the experiment, but at H7,the size structure of phytoplankton shifted, nanophytoplankton became predominantspecies at the end of experiment;4) Prorocentrum dentatum and Dinoflagellate werethe dominant species in summer of SYS. At station of G6, for the addition of dustpromote the growth of Nitzschia.sp. In the N+P, N+P+Fe groups, Dinoflagellate andProrocentrum were the dominant species. For station of H7, the dominant specieswere Prorocentrum minimum and Nitzschia.sp in P treatmens, addition of N and Ppromote the growth of Diatom, but the dominant species were different.
     Experiments conducted in May of2011in ECS suggested:1) The higherconcentration of dust had promotion effect, but the lower amount had no effect on thephytoplankton biomass;2) Additon of N had the obvious promotion effect, however, P,Fe and P+Fe had no obvious fertilization effect, so they were not the limiting factorsin May;3) Microphytoplankton was the predominant in the original seawater (38.5%),but nanophytoplankton became predominant species from9thday to the end, andespecially in the P+Fe and N treatmens.
     Experiments conducted in SCS at spring of2013suggested:1) At station of A3and A6, the addition of Asian dust aerosol and N, N+P, N+P+Fe could increase thebiomass obviously. At WG2station, maybe for the oligotrophic nutrients condition, all treatments including P and rainwater had positive effect;2) At station of A3,Chaetoceros spp and Leptocylindrus danicus were the predominant species in all thetreatmens. But Dinoflagellate was the predominant at station of WG2, and thenbecame Nitzschia.sp for the addition of Asian dust aerosol and nutrients, andChaetoceros spp in the N-added group.
     From the four mesocosm experiments conducted in China marginal seas showedthat in marine environment with different nutrients conditions, the response ofphytoplankton to the addition of Asiand dust were various.1) In central of SYS, thefertilization effect of atmospheric deposition was obvios in spring, and the limitingfactor was N in March, changed to P in June, and the ddition of nutrients mainlypromoted the gowth of Diatom;2) For the eastern of ECS, N was the first limitingfactor in sping, and for the lower amount of DIN released from the Asin dust, so theinput had little impact on the algae growth;3) Atmospheric deposition had obviouspromotion effect in the northeast of SCS, and mainly promoted the growth of Diatom.
引文
[1]焦念志.海洋固碳与储碳—并论微型生物在其中的重要作用[J].中国科学:地球科学.2012,42(10):1473-1486.
    [2] Takahashi T, Sutherland S C, Sweeney C, et al. Global sea-air CO2flux based on climatologicalsurface ocean pCO2, and seasonal biological and temperature effects[J]. Deep Sea Research Part II:Topical Studies in Oceanography.2002,49(9-10):1601-1622.
    [3] Husar R B, Tratt D M, Schichtel B A, et al. Asian dust events of April1998[J]. Journal ofGeophysical Research: Atmospheres (1984–2012).2001,106(D16):18317-18330.
    [4] Duce R A, Tindale N W. Atmospheric transport of iron and it’s deposition in the ocean[J].Limnology and Oceanography.1991,36(8).
    [5] Jickells T. Atmospheric inputs of metals and nutrients to the oceans: their magnitude andeffects[J]. Marine Chemistry.1995,48(3):199-214.
    [6] Gao Y, Duce R A. Air sea chemical exchange in coastal oceans [J]. Advance in EarthScience.1997.
    [7]高会旺,张英娟,张凯.大气污染物向海洋的输入及其生态环境效应[J].地球科学进展.2002,17(3):326-330.
    [8] Carslaw K S, Boucher O, Spracklen D V, et al. A review of natural aerosol interactions andfeedbacks within the Earth system[J]. Atmospheric Chemistry and Physics.2010,10(4):1701-1737.
    [9] Bopp L, Kohfeld K E, QuéréC L, et al. Dust impact on marine biota and atmospheric CO2duringglacial periods[J]. Paleoceanography.2003,18(2).
    [10] Schulz M, Prospero J M, Baker A R, et al. Atmospheric transport and deposition of mineral dustto the ocean: implications for research needs[J]. Environmental Science&Technology.2012,46(19):10390-10404.
    [11] Duce R A, Liss P S, Merrill J T, et al. The atmospheric input of trace species to the worldocean[J]. Global Biogeochemical Cycles.1991,5(3):193-259.
    [12] Tegen I, Fung I. Contribution to the atmospheric mineral aerosol load from land surfacemodification[J]. Journal of Geophysical Research: Atmospheres (1984-2012).1995,100(D9):18707-18726.
    [13] Zhang J, Zhang G S, Bi Y F, et al. Nitrogen species in rainwater and aerosols of the Yellow andEast China seas: Effects of the East Asian monsoon and anthropogenic emissions and relevance for theNW Pacific Ocean[J]. Global Biogeochemical Cycles.2011,25(GB3020).
    [14] Wang J, Xu X, Henze D K, et al. Top-down estimate of dust emissions through integration ofMODIS and MISR aerosol retrievals with the GEOS-Chem adjoint model[J]. Geophysical ResearchLetters.2012,39(8).
    [15] Cakmur R V, Miller R L, Perlwitz J, et al. Constraining the magnitude of the global dust cycle byminimizing the difference between a model and observations[J]. Journal of Geophysical Research:Atmospheres (1984–2012).2006,111(D6).
    [16] Ackerley D, Highwood E J, Harrison M A J, et al. The development of a new dust uplift schemein the Met Office Unified Model [J]. Meteorological Applications.2009,16(4):445-460.
    [17] Shao Y, Wyrwoll K, Chappell A, et al. Dust cycle: An emerging core theme in Earth systemscience[J]. Aeolian Research.2011,2(4):181-204.
    [18] Jickells T D, An Z S, Andersen K K, et al. Global iron connections between desert dust, oceanbiogeochemistry, and climate[J]. Science.2005,308(5718):67-71.
    [19] Zhuang G, Yi Z, Duce R A, et al. Link between iron and sulphur cycles suggested by detection ofFe (Ⅱ) in remote marine aerosols[J]. Nature.1992,355(6360):537-539.
    [20]高会旺,祁建华,石金辉,等.亚洲沙尘的远距离输送及对海洋生态系统的影响[J].地球科学进展.2009,24(1):10.
    [21] Schepanski K, Tegen I, Laurent B, et al. A new Saharan dust source activation frequency mapderived from MSG-SEVIRI IR-channels[J]. Geophysical Research Letters.2007,34(18): L18803.
    [22] Evan A T, Mukhopadhyay S. African dust over the northern tropical Atlantic:1955-2008[J].Journal of Applied Meteorology and Climatology.2010,49(11):2213-2229.
    [23] Kaufman Y J, TanréD, Dubovik O, et al. Absorption of sunlight by dust as inferred from satelliteand ground-based remote sensing[J]. Geophysical Research Letters.2001,28(8):1479-1482.
    [24] Dubovik O, Holben B, Eck T F, et al. Variability of absorption and optical properties of keyaerosol types observed in worldwide locations[J]. Journal of the Atmospheric Sciences.2002,59(3):590-608.
    [25] Chiapello I, Moulin C. TOMS and METEOSAT satellite records of the variability of Saharandust transport over the Atlantic during the last two decades (1979–1997)[J]. Geophysical ResearchLetters.2002,29(8):11-17.
    [26] Mahowald N M, Kloster S, Engelstaedter S, et al. Observed20thcentury desert dust variability:impact on climate and biogeochemistry[J]. Atmospheric Chemistry and Physics.2010,10(22):10875-10893.
    [27] Ginoux P, Prospero J M, Gill T E, et al. Global scale attribution of anthropogenic and naturaldust sources and their emission rates based on MODIS Deep Blue aerosol products[J]. Reviews ofGeophysics.2012.
    [28] Shao Y, Fink A H, Klose M. Numerical simulation of a continental‐scale Saharan dust event[J].Journal of Geophysical Research: Atmospheres (1984–2012).2010,115(D13).
    [29]闫涵,高会旺,姚小红,等.沙尘传输路径上气溶胶浓度与干沉降通量的粒径分布特征[J].气候与环境研究.2012,17(2):205-214.
    [30] Mahowald N M, Baker A R, Bergametti G, et al. Atmospheric global dust cycle and iron inputsto the ocean[J]. Global Biogeochem. Cycles.2005,19(4).
    [31] Zhang K, Chai F, Zhang R, et al. Source, route and effect of Asian sand dust on environment andthe oceans[J]. Particuology.2010,8(4):319-324.
    [32]张小曳.有关中国黄土高原黄土物质的源区及其输送方式的再评述[J].第四纪研究.2007,27(2):181-186.
    [33] Tanaka T Y, Chiba M. A numerical study of the contributions of dust source regions to the globaldust budget[J]. Global and Planetary Change.2006,52(1):88-104.
    [34] Natsagdorj L, Jugder D, Chung Y S. Analysis of dust storms observed in Mongolia during1937–1999[J]. Atmospheric Environment.2003,37(9):1401-1411.
    [35] Wang S, Wang J, Zhou Z, et al. Regional characteristics of three kinds of dust storm events inChina[J]. Atmospheric Environment.2005,39(3):509-520.
    [36] Duce R A. Sources, distributions, and fluxes of mineral aerosols and their relationship toclimate[M]. New York: John Wiley,1995:43-72.
    [37]闫涵.沙尘天气对中国近海大气气溶胶干沉降通量的影响[D].2011.
    [38] Zhang G, Zhang J, Liu S. Characterization of nutrients in the atmospheric wet and dry depositionobserved at the two monitoring sites over Yellow Sea and East China Sea[J]. Journal of AtmosphericChemistry.2007,57(1):41-57.
    [39] Shao Y. Simplification of a dust emission scheme and comparison with data[J]. Journal ofGeophysical Research: Atmospheres.2004,109(D10).
    [40] Kok J F. A scaling theory for the size distribution of emitted dust aerosols suggests climatemodels underestimate the size of the global dust cycle[J]. Proceedings of the National Academy ofSciences.2011,108(3):1016-1021.
    [41] Xuan J, Liu G, Du K. Dust emission inventory in Northern China[J]. Atmospheric Environment.2000,34(26):4565-4570.
    [42] Zhang X Y, Gong S L, Shen Z X, et al. Characterization of soil dust aerosol in China and itstransport and distribution during2001ACE-Asia[J]. Journal of Geophysical Research: Atmospheres.2003,108(D9).
    [43] Zhang D. Effect of sea salt on dust settling to the ocean[J]. Tellus B.2008,60(4):641-646.
    [44] Zhao T L, Gong S L, Zhang X Y, et al. Modeled size-segregated wet and dry deposition budgetsof soil dust aerosol during ACE-Asia2001: Implications for trans-Pacific transport[J]. Journal ofGeophysical Research: Atmospheres (1984–2012).2003,108(D23).
    [45] Duce R A, Arimoto R, Ray B J, et al. Atmospheric trace elements at Enewetak Atoll:Concentrations, sources, and temporal variability[J]. Journal of Geophysical Research.1983,88(C9):5321-5342.
    [46] Liu L Y, Shi P J, Gao S Y, et al. Dustfall in China’s western loess plateau as influenced by duststorm and haze events[J]. Atmospheric Environment.2004,38(12):1699-1703.
    [47] Tsai Y I, Chen C. Characterization of Asian dust storm and non-Asian dust storm PM2.5aerosolin southern Taiwan[J]. Atmospheric Environment.2006,40(25):4734-4750.
    [48] Gangoiti G, Alonso L, Navazo M, et al. North African soil dust and European pollution transportto America during the warm season: Hidden links shown by a passive tracer simulation[J]. Journal ofGeophysical Research: Atmospheres (1984–2012).2006,111(D10109).
    [49] Liu C L, Zhang J, Shen Z B. Spatial and temporal variability of trace metals in aerosol from thedesert region of China and the Yellow Sea[J]. Journal of Geophysical Research: Atmospheres (1984–2012).2002,107(D14):17.
    [50] Zhang K, Gao H. The characteristics of Asian-dust storms during2000–2002: From the sourceto the sea[J]. Atmospheric Environment.2007,41(39):9136-9145.
    [51]张仁健,浦一芬,徐永福,等.青岛大气气溶胶的浓度分布和干沉降的观测研究[J].气候与环境研究.2004,9(2):390-395.
    [52]李瑞芃,石金辉,张代洲.天气条件及气团来源对青岛春季大气颗粒物数浓度谱分布的影响[J].中国环境科学.2012,32(8):1392-1399.
    [53] Hsu S C, Liu S C, Arimoto R, et al. Dust deposition to the East China Sea and its biogeochemicalimplications[J]. Journal of Geophysical Research: Atmospheres (1984–2012).2009,114(D15304).
    [54] Wang S H, Hsu N C, Tsay S C, et al. Can Asian dust trigger phytoplankton blooms in theoligotrophic northern South China Sea?[J]. Geophysical Research Letters.2012,39(L05811):1-6.
    [55]陈莹,庄国顺,郭志刚.近海营养盐和微量元素的大气沉降[J].地球科学进展.2010,25(7):682-690.
    [56] Seitzinger S P,Harrison J A,Dumont Egon,et al. Sources and delivery of carbon, nitrogen, andphosphorus to the coastal zone: An overview of Global Nutrient Export from Watersheds (NEWS)models and their application[J]. Global Biogeochemical Cycles.2005,19(4).
    [57] Gruber N, Sarmiento J. The Sea Biological-Physica Interactions[M]. Robinson A R, Mccarthy JF, Rothschild B, New York:Wiley,2002:12.
    [58] Duce R A, Laroche J, Altieri K, et al. Impacts of Atmospheric Anthropogenic Nitrogen on theOpen Ocean[J]. Science&Justice.2008,320:893-897.
    [59] Cornell S E, Jickells T D, Cape J N, et al. Organic nitrogen deposition on land and coastalenvironments: a review of methods and data[J]. Atmospheric Environment.2003,37(16):2173-2191.
    [60]石金辉,高会旺,张经.大气有机氮沉降及其对海洋生态系统的影响[J].地球科学进展.2006,21(7):721-729.
    [61] Chester R, Baxter G G, Behairy A K A, et al. Soil-sized eolian dusts from the lower troposphereof the eastern Mediterranean Sea[J]. Marine Geology.1977,24(3):201-217.
    [62] Guerzoni S, Chester R, Dulac F, et al. The role of atmospheric deposition in the biogeochemistryof the Mediterranean Sea[J]. Progress in Oceanography.1999,44(1):147-190.
    [63] Ganor E, Foner H A. The mineralogical and chemical properties and the behaviour of aeolianSaharan dust over Israel[M]. The Impact of Desert Dust from Northern Africa Across theMediterranean, Guerzoni S, Chester R, Netherlands:Kluwer Academic Publishers,1996,163-172.
    [64] Krom M D, Herut B, Mantoura R F C. Nutrient budget for the Eastern Mediterranean:Implications for phosphorus limitation[J]. Limnology and Oceanography.2004,49(5):1582-1592.
    [65] Violaki K, Zarbas P, Mihalopoulos N. Long-term measurements of dissolved organic nitrogen(DON) in atmospheric deposition in the Eastern Mediterranean: Fluxes, origin and biogeochemicalimplications[J]. Marine Chemistry.2010,120(1):179-186.
    [66] Rendell A R, Ottley C J, Jickells T D, et al. The atmospheric input of nitrogen species to theNorth Sea[J]. Tellus45B.1993,45(1):53-63.
    [67] Spokes L J, Jickells T D. Is the atmosphere really an important source of reactive nitrogen tocoastal waters?[J]. Continental Shelf Research.2005,25(16):2022-2035.
    [68] Deboudt K, Flament P, Bertho M. Cd, Cu, Pb and Zn concentrations in atmospheric wetdeposition at a coastal station in Western Europe[J]. Water, air, and soil pollution.2004,151(1-4):335-359.
    [69] Zhang J, Zou L, Wu Y, et al. Atmospheric wet deposition and changes in phytoplankton biomassin the surface ocean[J]. Geophysical research letters.2004,31(11310).
    [70] Chung C S, Hong G H, Kim S H, et al. Shore based observation on wet deposition of inorganicnutrients in the Korean Yellow Sea coast[J]. The Yellow Sea.1998,4(1):30-39.
    [71] Zhang J, Liu M G. Observations on nutrient elements and sulphate in atmospheric wetdepositions over the northwest Pacific coastal oceans-Yellow Sea[J]. Marine Chemistry.1994,47(2):173-189.
    [72] Kim T, Lee K, Najjar R G, et al. Increasing N abundance in the northwestern Pacific Ocean dueto atmospheric nitrogen deposition[J]. Science.2011,334(6055):505-509.
    [73] Markaki Z, Loe-Pilot M D, Violaki K, et al. Variability of atmospheric deposition of dissolvednitrogen and phosphorus in the Mediterranean and possible link to the anomalous seawater N/P ratio[J].Marine Chemistry.2010,120(1–4):187-194.
    [74]石金辉.中国近海大气沉降中氮组分的分布特征及对春季水华事件的影响分析[D].2011.
    [75] Chen H, Hung C, Fang T, et al. Dry deposition and particle-size distribution of phosphorus in themarine atmosphere over the northeastern coast of Taiwan[J]. Continental Shelf Research.2008,28(6):756-766.
    [76] Bartoli G, Migon C, Losno R. Atmospheric input of dissolved inorganic phosphorus and siliconto the coastal northwestern Mediterranean Sea: Fluxes, variability and possible impact onphytoplankton dynamics[J]. Deep Sea Research Part I: Oceanographic Research Papers.2005,52(11):2005-2016.
    [77] Duce R A. The impact of nitrogen, phosphorus and iron species on marine biologicalproducitivity[M]. The role of Air-Sea Gas Exchang in Geochemical Cycling, Boston:Reidel Publishing,1986,497-529.
    [78] Caccia V G, Boyer J N. A nutrient loading budget for Biscayne Bay, Florida[J]. Marine PollutionBulletin.2007,54(7):994-1008.
    [79] Liu S M, Zhang J, Chen S Z, et al. Inventory of nutrient compounds in the Yellow Sea[J].Continental Shelf Research.2003,23(11–13):1161-1174.
    [80] Shi J, Gao H, Zhang J, et al. Examination of causative link between a spring bloom and drywetdeposition of Asian dust in the Yellow Sea, China[J]. Journal of Geophysical Research: Atmospheres.2012,117(D17).
    [81] Landing W M, Paytan A. Marine chemistry special issue Aerosol chemistry and impacts on theocean[J]. Marine Chemistry.2010,120:1-3.
    [82] Falkowski P G, Barber R T, Smetacek V. Biogeochemical Controls and Feedbacks on OceanPrimary Production[J]. Science.1998,281(5374):200-206.
    [83] Morel F M M, Price N M. The Biogeochemical Cycles of Trace Metals in the Oceans [J].Science.2003,300(5621):944-947.
    [84] Hutchins D A, Witter A E, Butler A, et al. Competition among marine phytoplankton fordifferent chelated iron species[J].1999,400(6747):858-861.
    [85] Johnson M S, Meskhidze N, Solmon F, et al. Modeling dust and soluble iron deposition to theSouth Atlantic Ocean[J]. Journal of Geophysical Research: Atmospheres.2010,115(D15).
    [86] Martin J H, Fitzwater S E. Iron deficiency limits phytoplankton growth in the north-east Pacificsubarctic[J]. Nature.1988,331(6154):341-343.
    [87] Martin J H, Coale K H, Johnosn K S, et al. Testing the iron hypothesis in ecosystems of theequatorial Pacific Ocean[J]. Nature.1994,371:123-129.
    [88] Gervais F, Riebesell U, Gorbunov M Y. Changes in primary productivity and chlorophyll a inresponse to iron fertilization in the Southern Polar Frontal Zone.[J]. Limnology and Oceanography.2002,47(5):1324-1335.
    [89] Han Y, Zhao T, Song L, et al. A linkage between Asian dust, dissolved iron and marine exportproduction in the deep ocean[J]. Atmospheric Environment.2011,45(25):4291-4298.
    [90] Gassó S, Grassian V H, Miller R L. Interactions between mineral dust, climate, and oceanecosystems[J]. Elements.2010,6(4):247-252.
    [91] Zhu X R, Prospero J M, Millero F J. Diel variability of soluble Fe (II) and soluble total Fe inNorth African dust in the trade winds at Barbados[J]. Journal of Geophysical Research: Atmospheres.1997,102(D17):21297-21305.
    [92] Sillanp M. Micronutrients and the nutrient status of soils: A global study[M]. Rome: Food andAgriculture Organization of the United Nations,1982.
    [93]庄国顺,郭敬华,袁蕙,等.2000年我国沙尘暴的组成、来源、粒径分布及其对全球环境的影响[J].科学通报.2001,46(3).
    [94] Chen H, Navea J G, Young M A, et al. Heterogeneous photochemistry of trace atmospheric gaseswith components of mineral dust aerosol[J]. The Journal of Physical Chemistry A.2011,115(4):490-499.
    [95] Baker A R, Croot P L. Atmospheric and marine controls on aerosol iron solubility in seawater[J].Marine Chemistry.2010,120(1–4):4-13.
    [96] Aguilar-Islas A M, Wu J, Rember R, et al. Dissolution of aerosol-derived iron in seawater: Leachsolution chemistry, aerosol type, and colloidal iron fraction[J]. Marine Chemistry.2010,120(1–4):25-33.
    [97] Theodosi C, Markaki Z, Mihalopoulos N. Iron speciation, solubility and temporal variability inwet and dry deposition in the Eastern Mediterranean[J]. Marine Chemistry.2010,120(1–4):100-107.
    [98] Uematsu M, Hattori H, Nakamura T, et al. Atmospheric transport and deposition ofanthropogenic substances from the Asia to the East China Sea[J]. Marine Chemistry.2010,120(1–4):108-115.
    [99] Takahashi Y, Higashi M, Furukawa T, et al. Change of iron species and iron solubility in Asiandust during the long-range transport from western China to Japan[J]. Atmospheric Chemistry andPhysics.2011,11(21):11237-11252.
    [100] Mendez J, Guieu C, Adkins J. Atmospheric input of manganese and iron to the ocean: Seawaterdissolution experiments with Saharan and North American dusts[J]. Marine Chemistry.2010,120(1–4):34-43.
    [101] Theodosi C, Markaki Z, Tselepides A, et al. The significance of atmospheric inputs of solubleand particulate major and trace metals to the eastern Mediterranean seawater[J]. Marine Chemistry.2010,120(1–4):154-163.
    [102] de Jong J T M, BoyéM, Gelado-Caballero M D, et al. Inputs of iron, manganese and aluminiumto surface waters of the Northeast Atlantic Ocean and the European continental shelf[J]. MarineChemistry.2007,107(2):120-142.
    [103] Measures C I, Sato T, Vink S, et al. The fractional solubility of aluminium from mineral aerosolscollected in Hawaii and implications for atmospheric deposition of biogeochemically important traceelements[J]. Marine Chemistry.2010,120(1–4):144-153.
    [104] Ren J, Zhang G, Zhang J, et al. Distribution of dissolved aluminum in the Southern Yellow Sea:Influences of a dust storm and the spring bloom[J]. Marine Chemistry.2011,125(1–4):69-81.
    [105] Jo C O, Lee J Y, Park K, et al. Asian dust initiated early spring bloom in the northern East/JapanSea[J]. Geophysical Research Letters.2007,34(5):1-5.
    [106] Bishop J K, Davis R E, Sherman J T. Robotic observations of dust storm enhancement of carbonbiomass in the North Pacific[J]. Science.2002,298(5594):817-821.
    [107] Nezlin N P, Polikarpov I G, Al-Yamani F Y, et al. Satellite monitoring of climatic factorsregulating phytoplankton variability in the Arabian (Persian) Gulf[J]. Journal of Marine Systems.2010,82(1):47-60.
    [108] Bonilla-Findji O, Gattuso J, Pizay M, et al. Autotrophic and heterotrophic metabolism ofmicrobial planktonic communities in an oligotrophic coastal marine ecosystem: seasonal dynamics andepisodic events[J]. Biogeosciences Discussions.2010,7(2):2033-2064.
    [109] Guieu C, Dulac F, Desboeufs K, et al. Large clean mesocosms and simulated dust deposition: anew methodology to investigate responses of marine oligotrophic ecosystems to atmospheric inputs.[J].Biogeosciences Discussions.2010,7(2):2681-2783.
    [110] Blain S, Guieu C, Claustre H, et al. Availability of iron and major nutrients for phytoplankton inthe northeast Atlantic Ocean[J]. Limnology and Oceanography.2004,49(6):2095-2104.
    [111] Lenes J M, Darrow B P, Cattrall C, et al. Iron fertilization and the Trichodesmium response onthe West Florida shelf[J]. Limnology and Oceanography.2001,46(6):1261-1277.
    [112] Erickson D J, Hernandez J L, Ginoux P, et al. Atmospheric iron delivery and surface oceanbiological activity in the Southern Ocean and Patagonian region[J]. Geophysical Research Letters.2003,30(12):1609-1613.
    [113] Boyd P W, Jickells T, Law C S, et al. Mesoscale Iron Enrichment Experiments1993-2005:Synthesis and Future Directions [J]. Science.2007,315(5812):612-617.
    [114] Buesseler K O, Andrews J E, Pike S M, et al. The effects of iron fertilization on carbonsequestration in the Southern Ocean[J]. Science.2004,304(5669):414-417.
    [115] Mills M M, Ridame C, Davey M, et al. Iron and phosphorus co-limit nitrogen fixation in theeastern tropical North Atlantic[J]. Nature.2004,429(6989):292-294.
    [116] Gruber N, Sarmiento J L. Global patterns of marine nitrogen fixation and denitrification[J].Global Biogeochemical Cycles.1997,11(2):235-266.
    [117] Pulido Villena E, Wagener T, Guieu C. Bacterial response to dust pulses in the westernMediterranean: Implications for carbon cycling in the oligotrophic ocean[J]. Global BiogeochemicalCycles.2008,22(GB1020).
    [118] Cornell S, Randell A, Jickells T. Atmospheric inputs of dissolved organic nitrogen to theoceans[J]. Nature.1995,376(6537):243-246.
    [119] Seitzinger S P, Sanders R W. Atmospheric inputs of dissolved organic nitrogen stimulateestuarine bacteria and phytoplankton[J]. Limnology and Oceanography.1999,44(3):721-730.
    [120] Martínez-García S, Fernández E, Calvo-Díaz A, et al. Response of heterotrophic and autotrophicmicrobial plankton to inorganic and organic inputs along a latitudinal transect in the Atlantic Ocean.[J].Biogeosciences Discussions.2010,7(1).
    [121] Paytan A, Mackey K R, Chen Y, et al. Toxicity of atmospheric aerosols on marinephytoplankton[J]. Proceedings of the National Academy of Sciences.2009,106(12):4601-4605.
    [122] Carbo P, Krom M D, Homoky W B, et al. Impact of atmospheric deposition on N and Pgeochemistry in the southeastern Levantine basin[J]. Deep Sea Research Part II: Topical Studies inOceanography.2005,52(22):3041-3053.
    [123] Herut B, Zohary T, Krom M D, et al. Response of East Mediterranean surface water to Saharandust: On-board microcosm experiment and field observations[J]. Deep Sea Research PartⅡ: TopicalStudies in Oceanography.2005,52(22–23):3024-3040.
    [124] Nayar S, Goh B, Chou L M. Environmental impact of heavy metals from dredged andresuspended sediments on phytoplankton and bacteria assessed in in situ mesocosms[J]. Ecotoxicologyand environmental safety.2004,59(3):349-369.
    [125]戚丹青,谭季青,孙长.一次强沙尘暴长距离输送的数值模拟研究[J].浙江大学学报:理学版.2006,33(2):216-222.
    [126] Lin I I, Chen J, Wong G T F, et al. Aerosol input to the South China Sea: Results from theMODerate Resolution Imaging Spectro-radiometer, the Quick Scatterometer, and the Measurements ofPollution in the Troposphere Sensor[J]. Deep Sea Research Part II: Topical Studies in Oceanography.2007,54(14–15):1589-1601.
    [127] Wong G T F, Ku T, Mulholland M, et al. The SouthEast Asian time-series study (SEATS) andthe biogeochemistry of the South China Sea-an overview[J]. Deep Sea Research Part II: TopicalStudies in Oceanography.2007,54(14):1434-1447.
    [128] Yuan W, Zhang J. High correlations between Asian dust events and biological productivity in thewestern North Pacific[J]. Geophysical Research Letters.2006,33(L7603).
    [129] Iwamoto Y, Yumimoto K, Toratani M, et al. Biogeochemical implications of increased mineralparticle concentrations in surface waters of the northwestern North Pacific during an Asian dustevent[J]. Geophysical Research Letters.2011,38(L01604).
    [130] Chung C, Chang J, Gong G, et al. Effects of Asian dust storms on Synechococcus populations inthe subtropical Kuroshio Current[J]. Marine Biotechnology.2011,13(4):751-763.
    [131] Guo C, Yu J, Ho T, et al. Dynamics of phytoplankton community structure in the South ChinaSea in response to the East Asian aerosol input[J]. Biogeosciences.2012,9:1519-1536.
    [132]孙佩敬,李瑞香,徐宗军,等.亚洲沙尘对三种海洋微藻生长的影响[J].海洋科学进展.2009,27(1):59-65.
    [133] Guo C, Jing H, Kong L, et al. Effect of East Asian aerosol enrichment on microbial communitycomposition in the South China Sea[J]. Journal of plankton research.2013,0(0):485-503.
    [134]马庆伟,陈莹,罗丽娜,等.大气沉降对太湖浮游植物生长的影响[J].2012:1-8.
    [135] Tan S C, Shi G Y. Spatiotemporal variability of satellite-derived primary production in the SouthChina Sea,1998–2006[J]. Journal of Geophysical Research: Biogeosciences (2005–2012).2009,114(G03015).
    [136] Tan S C, Shi G Y, Shi J H, et al. Correlation of Asian dust with chlorophyll and primaryproductivity in the coastal seas of China during the period from1998to2008[J]. Journal ofGeophysical Research: Biogeosciences (2005–2012).2011,116(G02029):1-10.
    [137]张云.亚洲沙尘的输入对黄海和西北太平洋浮游植物生长的影响研究[D].2011.
    [138] Parsons T R, Maita Y, Lalli C M. A manual of chemical and biological methods for seawateranalysis[M]. Oxford (New York/Sydney): Pergamon press,1984:107-109.
    [139]王玉珏,洪华生,王大志,等.台湾海峡上升流区浮游植物对营养盐添加的响应[J].生态学报.2008,28(3):1321-1327.
    [140] Strickland J D H, Parsons T R. Practical handbook of seawater analysis[M]. Canada: Fish. Res.Board of Canada,1972:310.
    [141] Jordi A, Basterretxea G, Tovar-Sánchez A, et al. Copper aerosols inhibit phytoplankton growth inthe Mediterranean Sea[J]. Proceedings of the National Academy of Sciences.2012,109(52):21246-21249.
    [142]冯士筰,李凤岐,李少菁.海洋科学导论[M].北京:高等教育出版社,1999.
    [143] Wang B, Wang X, Zhan R. Nutrient conditions in the Yellow Sea and the East China Sea[J].Estuarine, Coastal and Shelf Science.2003,58(1):127-136.
    [144] Zou L, Zhang J, Pan W, et al. In situ nutrient enrichment experiment in the Bohai and YellowSea[J]. Journal of Plankton Research.2001,23(10):1111-1119.
    [145] Tan S, Shi G. Transport of a severe dust storm in March2007and impacts on chlorophyll aconcentration in the Yellow Sea[J]. SOLA.2012,8:85-89.
    [146] Lee C S, Li X, Zhang G, et al. Heavy metals and Pb isotopic composition of aerosols in urbanand suburban areas of Hong Kong and Guangzhou, South China-evidence of the long-range transportof air contaminants[J]. Atmospheric Environment.2007,41(2):432-447.
    [147] Hung C, Gong G, Chung W, et al. Enhancement of particulate organic carbon export fluxinduced by atmospheric forcing in the subtropical oligotrophic northwest Pacific Ocean[J]. MarineChemistry.2009,113:19-24.
    [148] Fu M, Wang Z, Li Y, et al. Phytoplankton biomass size structure and its regulation in theSouthern Yellow Sea (China): Seasonal variability[J]. Continental Shelf Research.2009,29(18):2178-2194.
    [149] Fujiki T, Matsumoto K, Honda M C, et al. Phytoplankton composition in the subarctic NorthPacific during autumn2005[J]. Journal of plankton research.2009,31(2):179-191.
    [150] Yamaguchi H, Kim H, Son Y B, et al. Seasonal and summer interannual variations of SeaWiFSchlorophyll a in the Yellow Sea and East China Sea[J]. Progress in Oceanography.2012,105:22-29.
    [151] Romero E, Peters F, MarraséC, et al. Coastal Mediterranean plankton stimulation dynamicsthrough a dust storm event: An experimental simulation[J]. Estuarine, Coastal and Shelf Science.2011,93(1):27-39.
    [152] Iriarte A, Purdie D A. Factors controlling the timing of major spring bloom events in an UKsouth coast estuary[J]. Estuarine, Coastal and Shelf Science.2004,61(4):679-690.
    [153] Han J, Wei H, Zhao L, et al. The effects of horizontal advection on the spring bloom ofphytoplankton in the central Southern Huanghai Sea[J]. Acta Oceanologica Sinica.2011,30(1):24-31.
    [154] Xuan J, Zhou F, Huang D, et al. Modelling the timing of major spring bloom events in the centralYellow Sea[J]. Estuarine, Coastal and Shelf Science.2012,113:283-292.
    [155] Geider R, La Roche J. Redfield revisited: variability of C: N: P in marine microalgae and itsbiochemical basis[J]. European Journal of Phycology.2002,37(1):1-17.
    [156] Klausmeier C A, Litchman E, Daufresne T, et al. Optimal nitrogen-to-phosphorus stoichiometryof phytoplankton[J]. Nature.2004,429(6988):171-174.
    [157] Dyhrman S T, Ammerman J W, Van Mooy B A S. Microbes and the marine phosphorus cycle[J].2007,20(2):110-116.
    [158] White A E. New insights into bacterial acquisition of phosphorus in the surface ocean[J].Proceedings of the National Academy of Sciences.2009,106(50):21013-21014.
    [159] Lin X, Zhang H, Huang B, et al. Alkaline phosphatase gene sequence characteristics andtranscriptional regulation by phosphate limitation in Karenia brevis (Dinophyceae)[J]. Harmful Algae.2012,17:14-24.
    [160] Mara ón E, Fernández A, Mouri o-Carballido B, et al. Degree of oligotrophy controls theresponse of microbial plankton to Saharan dust[J]. Limnology and Oceanography.2010,55(6):2339-2352.
    [161] Lekunberri I, Lefort T, Romero E, et al. Effects of a dust deposition event on coastal marinemicrobial abundance and activity, bacterial community structure and ecosystem function[J]. Journal ofplankton research.2010,32(4):381-396.
    [162] Baker A R, Kelly S D, Biswas K F, et al. Atmospheric deposition of nutrients to the AtlanticOcean[J]. Geophysical Research Letters.2003,30(24).
    [163] Kyoung Lee B, Hee Hong S, Soo Lee D. Chemical composition of precipitation and wetdeposition of major ions on the Korean peninsula[J]. Atmospheric Environment.2000,34(4):563-575.
    [164] Chisholm S W. Phytoplankton size, in Primary Productivity and Biogeochemical Cycles in theSea[M]. Falkowski P G, Woodhead A D, New York:Plenum,1992,213-237.
    [165] Tamigneaux E, Legendre L, Klein B, et al. Seasonal dynamics and potential fate ofsize-fractionated phytoplankton in a temperate nearshore environment (Western Gulf of St Lawrence,Canada)[J]. Estuarine, Coastal and Shelf Science.1999,48(2):253-269.
    [166] Maranón E, Cermeno P, Rodríguez J, et al. Scaling of phytoplankton photosynthesis and cell sizein the ocean[J]. Limnology and oceanography.2007,52(5):2190-2198.
    [167] Agawin N S, Duarte C M, Agusti S. Nutrient and temperature control of the contribution ofpicoplankton to phytoplankton biomass and production[J]. Limnology and Oceanography.2000,45(3):591-600.
    [168] Cerme o P, Mara ón E, Rodríguez J, et al. Large-sized phytoplankton sustain highercarbon-specific photosynthesis than smaller cells in a coastal eutrophic ecosystem[J]. Marine EcologyProgress Series.2005,297:51-60.
    [169] Moore C M, Mills M M, Langlois R, et al. Relative influence of nitrogen and phosphorousavailability on phytoplankton physiology and productivity in the oligotrophic sub-tropical NorthAtlantic Ocean[J]. Limnology and Oceanography.2008,53(1):291-305.
    [170]米铁柱,姚庆祯,孟佳,等.2011年春、夏季黄海、东海营养盐分布特征研究[J].海洋与湖沼.2012,43(3):678-688.
    [171]田恬,魏皓,苏健,等.黄海氮磷营养盐的循环和收支研究[J].海洋科学进展.2003,21(1):1-11.
    [172]傅明珠,王宗灵,孙萍,等.2006年夏季南黄海浮游植物叶绿素a分布特征及其环境调控机制[J].生态学报.2009,29(10):5366-5375.
    [173] Lin C, Ning X, Su J, et al. Environmental changes and the responses of the ecosystems of theYellow Sea during1976–2000[J]. Journal of Marine Systems.2005,55(3–4):223-234.
    [174] Ning X, Liu Z, Cai Y, et al. Size-fractionated phytoplankton standing stock and primaryproduction in Bohai Sea during late spring[J]. Acta Oceanologica Sinica.2002,21(3):423-435.
    [175] Kim D, Choi S H, Kim K H, et al. Spatial and temporal variations in nutrient and chlorophyll-aconcentrations in the northern East China Sea surrounding Cheju Island[J]. Continental Shelf Research.2009,29(11–12):1426-1436.
    [176] Harrison P J, Hu M H, Yang Y P, et al. Phosphate limitation in estuarine and coastal waters ofChina[J]. Journal of Experimental Marine Biology and Ecology.1990,140(1):79-87.
    [177] Wong G T F, Gong G, Liu K, et al."Excess Nitrate"in the East China Sea[J]. Estuarine, Coastaland Shelf Science.1998,46(3):411-418.
    [178] Falkowski P G. Evolution of the nitrogen cycle and its influence on the biological sequestrationof CO2in the ocean[J]. Nature.1997,387(6630):272-275.
    [179] Ridame C, Guieu C. Saharan input of phosphate to the oligotrophic water of the open westernMediterranean Sea[J]. Limnology and Oceanography.2002,47(3):856-869.
    [180] Neuer S, Torres Padrón M E, Gelado Caballero M D, et al. Dust deposition pulses to the easternsubtropical North Atlantic gyre: Does ocean's biogeochemistry respond?[J]. Global biogeochemicalcycles.2004,18(GB4020).
    [181] Cohen D D, Garton D, Stelcer E, et al. Multielemental analysis and characterization of fineaerosols at several key ACE‐Asia sites[J]. Journal of Geophysical Research: Atmospheres (1984–2012).2004,109(D19S12).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700