燃油品质对重型柴油机排放特性影响的试验与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于车用燃油标准滞后于车辆排放标准,以及车用替代能源的迅猛发展,故建立一套针对燃油品质对柴油机排放性能的影响的评价体系尤为重要。本文研究基于不同技术方案满足不同排放标准的发动机,采用了23种油品,共进行了39组发动机台架试验,研究了不同燃油品质对柴油机燃烧特性、动力性、经济性、特性曲线下的排放、法规循环下的排放(THC、CO、NOX、PM)、颗粒物中SOF、SOF中的PAHs、ETC循环下的VOCs以及指定工况点下的半挥发有机物中的气态和固态有机污染物等性能及排放的影响。主要研究成果如下:
     1、在对进样模式、进样量、柱温程序、以及离子源温度等色谱质谱相关参数进行大量试验验证的基础上,建立了SOF中PAHs的痕量分析方法。方法检出限为0.1ng/mL,回收率介于81.9~101.3%之间。
     2、设计了外观及接口与颗粒物采样滤纸托架完全相同的半挥发性有机物采样装置。该装置利用全流系统的控制部分进行采样流量及采样时间控制,使用发动机台架主控系统PUMA对数据进行集成计算。可实现任意工况的半挥发性有机物中的气态和固态成分的精确采样。
     3、特性曲线下的排放不能完全反应法规循环排放的趋势,法规循环工况是目前评价发动机排放的唯一有效方式。发动机要达到相应标准的排放水平,必须使用相应排放标准的燃料。在研究中发现,使用更高标准的燃油能有效降低柴油机的NOX和颗粒物排放。
     4、评价发动机颗粒物中的PAHs排放量要考虑PAHs毒性当量。在评价国3柴油机排气污染物中的VOCs时,从中共检测出96种有机成份,其中烷烃46种,烯烃有6种,芳香烃17种。
     5、通过对国3柴油机燃用国Ⅲ柴油及FT混合油的半挥性发有机物试验研究,发现随着FT比例的增加,半挥发有机物中正构烷烃的比例增加,FT的正构烷烃排放约为国Ⅲ柴油的1.5~4倍;燃用FT柴油的姥鲛烷(Pr)和植烷(Ph)的排放水平较国Ⅲ柴油低;随着FT柴油比例的增加,Pr和Ph排放呈下降趋势,典型芳香烃排放降低。半挥性发性有机物中的PAHs定量分析结果证明,发动机排气中的半挥发有机物中的气体半挥发物较固态半挥发物的排放量高几十倍。
In view of vehicle fuel standards lagging behind the vehicle emissions standardsand the rapid development of alternative energy for vehicles, it is very important toestablish an effective evaluation system, which can evaluate the the quality of fuel onthe influence of the emission performance of diesel engine.This paper based on thedifferent emission standards of diesel engines which meet different technical solutions,and39groups of the engine bench-tests were carried out using the23kinds of oil.This paper researched on the influence of different fuel quality on diesel enginecombustion characteristics, power, fuel consumption, the emission of thecharacteristic curve, the emission of regulation cycle (THC, CO, NOX and PM), theSOF in the particles, PAHs in the SOF, VOCs of ETC cycle and the gaseous and solidorganic pollutants of SVOCs at designated point. Here are the main results:
     1. On the basis of a large number of valid tests including the sample injectionmode, sample volume, oven temperature program,ion source temperature, and otherchromatographic and mass spectrometric parameters, trace analysis method of PAHsin the SOF was established in this paper. The minimum method detection limit is0.1ng/mL, and recoveries are in the range of81.9-101.3%.
     2. The SVOCs sampling device which appearance and interface are identical withparticulate sampling filter paper bracket is designed. This device controls thesampling flow rate and time through the control of CVS, and does data integrationcalculation through the PUMA system. At the same time, accurate sampling of thegaseous and solid components in SVOCs at any condition is realized on it.
     3. Nowadays regulation cycle condition is the only effective way to evaluateengine emission, as the emission of characteristic curve can't completely reflectregulations cycle emission trends. To meet the corresponding standard of emissionlevels, engine must use the fuel of corresponding emission standards. In the actualresearch, using a higher standard fuel can effectively reduce NOxand particlesemissions of diesel engine.
     4. The PAHs toxic equivalent quantity (TEQ)should be considered whileevaluating the PAHs emissions of engine particulate. In the evaluation of the VOCs ofGuo3diesel engine exhaust pollutants,96kinds of organic ingredients are detected,including46kinds of alkane,6kinds of olefin, and17kinds of aromatic hydrocarbon.
     5. Through the semi volatile organic compounds (SVOCs)research of burning Guo3diesel and FT oil on Guo3diesel engine, the results found that with theincrease of the proportion of FT, the proportion of n-alkanes in SVOCs increase, andthe n-alkanes emission of FT is about1.5-4times of Guo3diesel. Pristane(Pr)andphytane(Ph) emissions levels while burning FT diesel are obviously lower thanGuo3diesel. With the increase of the proportion of FT diesel in mixed fuel, Pr and Phemission decrease, and the typical PAHs emission also decrease. PAHs quantitativeanalysis results in the SVOCs show that the the amount of gaseous PAHs is dozens oftimes higher than the solid particle PAHs
引文
[1]周龙保,刘巽俊,高宗英.内燃机学.北京:机械工业出版社,2006,5~26
    [2] GB119578-2004,乘用车燃油消耗量限值,中华人民共和国国家标准,2005年7月1日实施
    [3] GB27999-2011,乘用车燃料消耗量评价方法及指标,中华人民共和国国家标准,2012年1月1日实施
    [4] GB20997-2007,轻型商用车燃油消耗量限值,中华人民共和国国家标准,2008年1月1日实施
    [5] GB/T27840-2011,重型商用车辆燃料消耗量测量方法,中华人民共和国国家标准,2012年1月1日实施
    [6]美国CAFé标准.2010年4月发布
    [7]李方成,醇类/柴油混合燃料羰基化合物排放特性及生产机理的研究[博士学位论文],天津:天津大学,2009
    [8]中国人民共和国环境保护部,中国机动车污染防治年报,2011,1~16
    [9] GB18352.3-2005,轻型汽车污染物排放限值及测量方法(中国Ⅲ、Ⅳ阶段),中华人民共和国国家标准,2007年7月1日实施
    [10] GB17691-2005,车用压燃式、气体点燃式发动机与汽车排气污染物限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段),中华人民共和国国家标准,2007年7月1日实施
    [11] Tippee B, Oil supply, demand adjusting to high prices,2005, Oil&Gas Journal103(28):68~68
    [12]张勉,保证国家安全建设战略石油储备体系,环球时报,2002.10.09
    [13] Leonard Kuo-Liang Shih.Comparison of the Effects of Various Fuel Additives on theDiesel Engine Emissions.SAE982573
    [14] Mason R L, MatheausA C, Ryan IIITW, et al.EPAHDEWG Program-StatisticalAnalysis[C]. SAE Paper2000-01-1859
    [15] RobertMacKinven, MartialHublin. European Program on Emissions, Fuels and EngineTechnologies-Objectives and Design[C].SAE Paper961065
    [16] Sobotowski R A, Wall J C, Hobbs C H, et al.EPA HDEWG Program-Test FuelDevelopment[C]. SAE Paper2000-01-1857
    [17] Ullman T L, Mason R L, Montalvo D A. Effects of Fuel Aromatics, Cetane Number, andCetane Improver on Emissions from a1991Prototype Heavy-Duty Diesel Engine [C].SAE Paper902171
    [18] Ullman T L, Spreen K B, Mason R L. Effects of Cetane Number, Cetane Improver,Aromatics, and Oxygenates on1994Heavy-Duty Diesel Engine Emissions[C]. SAEPaper941020
    [19] McCarthy C I, Slodow ske W J, Sienicki E J, et al. Diesel Fuel Property Effects onExhaust Emissions from a Heavy Duty Diesel Engine That Meets1994EmissionsRequirements[C]. SAE Paper922267.
    [20] Ullman TL, Spreen K B, Mason R L. Effects of Cetane Number on Emissions from aPrototype1998Heavy-Duty Diesel Engine[C]. SAE Paper950251
    [21] ACEA, Alliance, EMA, JAMA. Worldwide Fuel Charter[S].4th edition.2006
    [22] Hublin M., Gadd P, Hall D and Schindler K. European Programmes on Emissions, Fuelsand Engine Technologies (EPEFE)-Light Duty Diesel Study.SAE Paper961073
    [23] Signer M, Heinze P, Mercogliano R, et al. European Programme on Emissions, Fuels andEngine Technologies(EPEFE)-Heavy Duty Diesel Study[C]. SAE Paper961074
    [24][Robert Lee, Hobbs C H, Pedley J F. Fuel Quality Impact on Heavy-Duty DieselEmissions: a LiteratureReview[C]. SAE Paper982649
    [25] Rickeard D, Bonetto R and Signer M.European Programme on Emissions, Fuels andEngine Technologies (EPEFE)-Comparison of Light and Heavy Duty DieselStudies.SAE Paper961075
    [26] Yakup ngür,Duran Altiparmak. Effect of fuel cetane number and injection pressure ona DI Diesel engine performance and emissions. Energy Conversion andManagement,Volume44, Issue3, Pages389–397
    [27] Ko Takahashi et al. Effects of Cetane Number and Chemical Components on DieselEmissions and Vehicle Performance, SAE Paper2009-01-2692
    [28] Spreen K, Ullman T and MasonR. Effects of Cetane Number, Aromatics, and Oxygenateson Emissions From a1994Heavy-Duty Diesel Engine With Exhaust Catalyst. SAE Paper950250
    [29] Ryan T and Erwin J.Diesel Fuel Composition Effects on Ignition and Emissions.SAEPaper932735
    [30] YOSHIKAWA YASUO. JCAP1. Roadside air quality predictive simulation model.Petrotech, VOL.28;NO.12;PAGE.908-913(2005)
    [31] R.E. Canaan, J.E. Dec, R.M. Green, D.T. Daly. The influence of fuel volatility on theliquid-phase fuel penetration in a heavy-duty DI diesel engine. SAE980510
    [32] Robert Jay Wittenbrink et al. Synthetic diesel fuel with reduced particulate matteremissions. Patent number:5807413
    [33] Wall J C, Hoekman SK. Fuel Composition Effects on Heavy Duty Diesel ParticulateEmissions[C]. SAE Paper841364
    [34] Cowley L T, Shadling R J, Doyon J. The Influence of Composition and Properties ofDiesel Fuel on Particulate Emissions from Heavy-Duty Engines[C]. SAE Paper932732
    [35] J.C. Wall, S.A. Shimpi, M.L. Yu. Fuel sulfur reduction for control of diesel particulateemissions. SAE872139
    [36] Liang C, Baumgard K, Gorse R, Orban J. et al. Effects of Diesel Fuel Sulfur Level onPerformance of a Continuously Regenerating Diesel Particulate Filter and a CatalyzedParticulate Filter. SAE Paper2000-01-1876
    [37] Clark W, Sverdrup G, Goguen S, Keller G et al.Overview of Diesel EmissionControl-Sulfur Effects Program. SAE Technical Paper2000-01-1879,2000
    [38]张韦,苏歌群等,EGR与进气富氧对直喷柴油机NO和碳烟排放的影响,内燃机学报,2012年01期
    [39]李兴虎,汽车环境保护技术,北京:北京航空航天大学出版社,2004.229~230
    [40] T.Beutel,J.Dettling et al. The Demands on DOC Technology in Advanced Euro-IV/VApplications. SAE2005-26-021
    [41] K.Lehtoranta, P.Matilainen and T-J.J.Kinnunen, Diesel Particle Emission Reduction by aParticle Oxidation Catalyst.SAE2009-01-2750
    [42]赵海光,韩永强等,催化器涂覆量对POC降低柴油机排放的影响,车用发动机,2012No.2(vol199):80-83
    [43] Vakkilainen, A. and Lylykangas,R., Partical Oxidation Catalyst(POC) for Diesel Vehicles,SAE2004-28-0047
    [44] Vaaraslahti,K. et al., Effect of Oxidation Catalysts on Diesel Soot Particles,Environmental Science&Technology2006,40:4776-4781
    [45] Lehtoranta,K., Matilainen,P., et al., Particle oxidation catalyst in light duty and heavyduty diesel applications, SAE2007-24-0093
    [46] Bielaczyc, P., Keskinen, J., Dzida, J., Sala, R. et al., Performance of Particle OxidationCatalyst and Particle Formation Studies with Sulphur Containing Fuels,SAE2012-01-0366
    [47] Cordtz, R., Ivarsson, A., and Schramm, J., Steady State Investigations of DPF Soot BurnRates and DPF Modeling, SAE2011-24-0181
    [48]宁智,路勇,资新运,微粒捕集器对柴油机性能影响的研究.机械工程学报.2002,38(1):154-158
    [49] Zelenka P, Telford C, Pye D, et al., Development of a Full-Flow Burner DPF System forHeavy-Duty Diesel Engines. SAE2002-01-2787
    [50] Ohno K, Taoka N, NinomiyaT, et al., Sic Diesel Particulate Filter Application to ElectricHeater System. SAE1999-01-0464
    [51]张春润,姜大海,资新运等,柴油机排气微粒捕捉器燃气再生技术的研究.内燃机学报,2002,20(5):391-394
    [52]杨德胜,高希彦,王宪成等,柴油机微粒陶瓷过滤器红外再生的试验研究,内燃机学报,2003,21(3):243-246
    [53]资新运,宁智,欧阳明高等,柴油机微粒捕捉器逆向喷气再生的关键技术,内燃机工程,2002,23(6):70-73
    [54] Nixdorf R D,Green J J,Story J M,et al., Microwave Regenerated Diesel ExhaustParticulate Filter. SAE2001-01-0903
    [55]余明果,柴油机旋转式过滤体DPF设计及再生研究[硕士学位论文],长沙:湖南大学,2010:17-18
    [56] Seguelong T,Fournier B P, Use of Diesel Particulate Filters and Cerium-Based Fuel-BorneCatalyst for Low Temperature-Low Load Applications.SAE2001-01-0906
    [57] Ogyu, K., Oya, T., Ohno, K.et al., Improving of the Filtration and RegenerationPerformance by the Sic-DPF with the Layer Coating of PM Oxidation Catalyst, SAE2008-01-0621
    [58] Gieshoff J,Pfeifer M, Schafer S A,et al.,Regeneration of Catalytic Diesel ParticulateFelters.SAE2001-01-0907
    [59] Kodama, K., Hiranuma, S., et al., Development of DPF System for Commercial Vehicles(Second Report)-Active Regenerating Function in Various Driving Condition,SAE2005-01-3694
    [60] Kumar,P., Anirudh Jaipuria,et al., NOXSelective Catalytic Reduction (SCR)-EmissionTechnology for India, SAE2009-26-0015
    [61] Robert Cloudt, Frank Willems,et al., Cost and Fuel Efficient SCR-only Solution forPost-2010HD Emission Standards, SAE2009-01-0915
    [62] James McCarthy,Jr., Timothy Korhume,Jr., et al., Performance fo a fuel Reformer, LNTand SCR Aftertreatment System Following500LNT Desulfation Events, SAE2009-01-2835
    [63] Galen B.Fisher, Craig L.DiMaggio, et al., Effects of Fuel Type on Dual SCRAftertreatment for Lean NOXReduction. SAE2009-01-2818
    [64] Yisun Cheng, Clifford Montreuil, et al., Sulfur Eolerance and DeSOx Studies on DieselSCR Catalysts, SAE2008-01-1023
    [65] Yisun Cheng, Clifford Montreuil, et al., The Effects of SO2and SO3Poisoning onCu/Zeolite SCR Catalysts, SAE-2009-01-0898
    [66] Heck R M,Farrauto R J, Catalytic air pollution contro1, Van Nostrand Reinhold,NewYork,1995
    [67] Luders H, Backes R,Huthwoh1G, et a1., An urea lean NOx catalyst system for light dutydiesel vehicles, SAE Paper952493
    [68] Held W,Konig A,Richter T, et a1., Catalytic NOx reduction in net oxidizing exhaust gas,SAE Paper900496
    [69] Miller W R, Klein J T, Mueller R, et a1., The development of urea-SCR technology forUS heavy duty trucks, SAE Paper2000-01-0190
    [70] Mueller W, Olschlegel H, Seh/ifer A et a1., Selective catalytic reduction—Europe sNOx reduction technology, SAE Paper2003-01-2304
    [71]袁一,王文善等,尿素,化学工业出版社,1997年4月,P2-4
    [72] Cristian Ciardel1. Reactivity of NO/NO2-NH3SCR system for diesel exhaust aftertreatment: Identification of the reaction networks a function of temperature and NO2feedcontent[J]. Applied Catalysis B:Environment,2007(70):80-90.
    [73] Christine Lambert, Robert Hammerle, Technical Advantages of Urea SCR forLight-Dutyand Haevy-Duty Diesel Vehicle Applications, SAE Paper2004-01-1292
    [74] Kawanami M, Horiuchi M. Advanced Catalyst Studies of Diesel NOXReduction forOn-Highway Trucks[C]. SAE Paper950154
    [75] Gieshof J, Scafer-Sindlinger A.Improved SCR Systenrs for Heavy Duty Applications,SAE Paper2000-01-0189
    [76] Krijnsen H C. Bench-Scale Demonstration of an Integrated Desoot-DeNOXSystem, SAEPaper2001-01-0515
    [77] Xiaoyu Guo. Poisoning and Sulfation on Vanadia SCR Catalyst[D], Brigham YoungUniversity,2006,P24-25.
    [78]高俊华,邝坚等,国Ⅳ柴油机SCR后处理系统结晶体成分分析,燃烧科学与技术,2010,26(6):506-510
    [79] Sagai M., Furuyama A., Ichinose T. Biological Effects of Diesel Exhaust Particles (DEP),III. Pathogenesis of Asthma Like Symptoms in Mice. Free Radical Biology and Medicine,1996,21:199~209.
    [80] Valavanidis A., Salika A., Theodoropoulou A. Generation of hydroxyl radicals by urbansuspended particulate air matter, The role of iron ions. Atmospheric Environment,2000,34:2379~2386.
    [81]王桂华,王均效,张锡朝等.柴油机排气微粒中SOF成分的试验研究.内燃机学报,2004,22(2):110~115.
    [82] Dennis S, Frank S Lee, Thomas J Prater. The Identification of Polynuclear AromaticHydrocarbon,(PAH) Derivatives in Mutagenic Fractions of Diesel Paticulate Extractst.Intern.J. Environ. Anal. Chem,1981,9:93~144.
    [83] Ye Shun-Hua, Zhou Wei, Song Jian et al. Toxicity and Health Effects of VehicleEmissions in Shanghai. Atmospheric Environment1999,34:419~429.
    [84] Song CL, Huang RJ, Wang YQ, Liu KM, Dong SR, Dai SD, Determination of In VitroBiotoxicity in Exhaust Particulate Matter from Heavy-duty Diesel Engine [J]. Bulletin ofEnvironmental Contamination and Toxicology,2006,76:24~32.
    [85]季雨,彭美春,张华等.柴油机排气微粒中可溶有机成份及苯并(a)芘的实验测定.内燃机学报,1990,8(3):203-208.
    [86]宋崇林,段家修,刘文胜等.柴油机排气微粒中有机可溶成分的分离与定性分析.内燃机学报,1997,15(2):225-230.
    [87]王桂华,王钧效,张锡朝等.柴油机排气微粒中SOF成分的试验研究.内燃机学报,2004,2(22):110-115.
    [88]张兆合,刘巽俊,刘忠长.柴油机排气微粒样品分离方法的研究.内燃机学报,1999,17(2):144-147.
    [89]高俊华,方茂东等,柴油机排气微粒中多环芳香烃的色谱质谱分析,内燃机学报,2009,17(2):144-147.
    [90]宋崇林,范国梁,张延峰等.汽油机多环芳烃的分析方法及排放特性研究.内燃机学报,2002,20(3):238-242.
    [91]骆路胜,高俊华,张仲荣.汽油车排放颗粒物中多环芳香烃的试验研究.汽车工程,2009,10.
    [92]张铁臣,宋崇林等.汽油车挥发性有机物排放特性的研究[J].工程热物理学报,2008,29(4):703-706.
    [93]王伯光,邵敏,张远航.机动车排放中挥发性有机污染物的组成及其特征研究[J].环境科学研究,2006,19(6):75-80
    [94]付琳琳,邵敏,刘源.机动车VOCS排放特征和排放因子的隧道测试研究[J].环境科学学报,2005,25(7):879-885.
    [95]傅晓钦,翁燕波,钱飞中等.行驶机动车尾气排放VOCS成分谱及苯系物排放特征[J].环境科学学报,2008,28(6):1057-1062.
    [96]刘瑞莲.大同市大气颗粒物及有机污染物的分析研究[J].环境科学,1995,16(1):65-68.
    [97] BartkowM E, Booij K, Kennedy K E, et al. Chemosphere,2005,60:170-176.
    [98]张婷婷,青岛市空气中多环芳烃的污染状况与源解析研究[D],中国海洋大学,硕士论文,2007.
    [99]谭培功,于彦彬,蒋海威,张胜军等,大气中半挥发性有机物的测定与来源分析[J],中国环境监测.,2004,20(1):17-21.
    [100]马万里,李一凡,孙德智,齐虹等,哈尔滨市大气中多环芳烃的初步研究[J],中国环境科学,2010,30(2):145-149.
    [101]唐小玲,广州市典型地区气溶胶中烃类化合物的粒径分布特征及极性组分的分子标志物研究[D],中国科学院研究生院,2006.
    [102]马玲玲,劳文剑,王学彤,刘慧等,北京近郊土壤中痕量半挥发性有机污染物的分析方法研究[J],分析化学,2003,31(9):1025-1029.
    [103]梁英,吴德生,毛炯,张遵真等,汽油车尾气采样装置的设计及其收集物的成份分析[J],四川大学学报(工程科学版),2008,40(1):69-74.
    [104]印红玲,洪华生,王新红,叶翠杏.厦门市大气中机动车尾气的烃类污染特征[J].福建师范大学学报(自然科学版),201026(3):112-118.
    [105]王凤滨,基于全流和部分流稀释采样系统测试柴油发动机排放的相关性分析[D],武汉理工大学,2010.
    [106] Bursh R., Millington P.J., Selective reduction of nitrogen oxides by hydrocarbons underlean-burn conditions using supported platinum group metal catalysts. Catalysis Today,1995,26:185-206
    [107]刘立东,柴油机燃用F-T柴油的基础研究[D],天津大学,2010.
    [108] Wang, M.Frenklach, A Detailed Kinetic Modeling Study of Aromatics Formation inLaminar Premixed Acetylene and Ethylene Flames, Combust and Flame,1997(110):173-221.
    [109]朱广研, PTV用于柴油机燃烧过程中气/颗粒相多环芳香烃分布研究[D],天津大学,2010.
    [110] Nisbet C, LaGoy P. Toxic Equivalency Factors(TEFs) for Polycyclic AromaticHydrocarbons(PAHs). Regulatory Toxicology and Phamacology,1992,16(3):290-300

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700