竹质OSB削片技术及工艺学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在科技部国际科技合作重点项目“竹质OSB削片技术与设备研究”和国家林业局“948”项目“竹材OSB刨片关键技术引进”的支持下,针对竹质OSB削片技术及相应的工艺学问题开展了系列的研究工作。
     1.阐述了我国竹材资源的优势及竹质定向刨花板(BOSB)的发展前景,分析并提出了制造BOSB的技术难点,指出竹材削片技术是亟待解决的关键技术问题。对应用竹材制造BOSB进行了调查性研究,在此基础上,进一步分析了用楠竹制造BOSB的可行性和优越性。分析结果表明应用优势资源的楠竹制造BOSB发展前景广阔。
     2.对竹材切削方式的研究结果表明:(1)按竹材3剖面方向,竹材切削方式可分为横向切削、纵向切削及端向切削3类,可细分为横Ⅰ型切屑、横Ⅱ型切屑、纵Ⅰ型切屑、纵Ⅱ型切屑、端Ⅰ型切屑、端Ⅱ型切屑6种类型。(2)竹材的切削质量主要受竹材密度、竹材含水率、切削厚度、不同切削面等因素的影响。(3)切削力主要受受竹材物理性质及主要切削参数的影响。
     3.以湖南楠竹为基材制造BOSB,研究了不同竹刨花形态参数对BOSB性能指标的影响,通过分析得出:(1)在设计的试验范围内,竹刨花的BOSB的性能指标均能达到中国林业行业标准的要求,但仍体现出不同厚度、长度尺寸的竹刨花形态参数对BOSB性能的影响;(2)当竹刨花尺寸为长度110~120mm、厚度0.6~0.8mm时,所制作的BOSB的性能指标最优。
     4.研究了热压温度、热压压力及热压时间等热压工艺参数对BOSB性能指标的影响,通过分析得出:(1)当热压温度为160℃时试板的性能指标最好,温度过高或过低均会使BOSB板材性能指标呈一定程度的下降;(2)当热压压力较低(2.1、2.3MPa)时,BOSB力学性能指标均较差;随热压压力的增加,BOSB板材力学性能指标明显提高,但板材密度也随之提高,致使板材原料消耗增加,成本上升。(3)当热压时间为70s/mm时,BOSB的各项性能指标均为最优。
     5.探讨了胶黏剂施胶量及相应工艺条件对BOSB性能的影响,同时,采用扫描电子显微镜(SESM)、傅里叶变换红外光谱仪(FTIR)对竹质刨花与酚醛树脂胶黏剂的界面以及胶黏剂的分布状态进行了分析。采用酚醛树脂胶黏剂试制BOSB的优化工艺条件为:
     施胶量:竹刨花质量的6%-8%(固体)
     施胶方式:喷胶
     刨花规格:长×宽×厚=110~120mm×9~15mm×0.6~0.8mm
     热压温度:160℃
     热压压力:2.5MPa
     热压时间:70s/mm
     采用水性异氰酸酯胶黏剂试制BOSB的优化工艺条件:
     刨花含水率:10%
     施胶量:4.5%
     交联剂主剂比:15∶85
     施胶方式:喷胶
     刨花规格:长×宽×厚=110~120mm×9~15mm×0.6~0.8mm
     热压温度:160℃
     热压压力:2.5MPa
     热压时间:40s/mm
     6.BOSB削片机方案设计。主要探讨制作竹材OSB加工工序相关问题,分析了影响竹材削片质量和产量的相关因素。对主要设备和设施进行了设计和分析,主要结果如下:
     (1)为了提高竹材的综合利用价值,优化生产工艺,将毛竹进行定段分级,利用次、小、梢竹材制造BOSB;
     (2)预处理设备是保证竹材定向削片的关键环节之一,包括竹材截段分级、纵向破竹(开片)、去内节(内隔)、定向排列组坯设备;
     (3)为实现竹材毛坯自动化定位排列,设计了定向排列自动识别与纠正系统,用于生产线中实时检测,及时调整毛坯正反位置,实现相同方向依次自动排列;
     (4)竹材定向削片技术的主要难点为:①当竹材定向排列送入竹材削片机后,如何将竹条夹紧定位,防止其在切削过程中出现较严重的松动、散乱,保持较理想的方向排列;②如何减少切削过程中竹刨花的破碎是重要技术难点,因竹材具有纤维间结合强度低的特性,在切削形成竹刨花过程中,一旦竹刨花受到横向力的作用或撞击,易出现碎裂现象。
     (5)设计了适合竹材制作BOSB的削片机方案。采用外环式横Ⅰ型削片原理,在切削过程中,通过刀环内浮动上压板、刀环内固定下压板和固定的弧形靠板的定位作用,实现定厚定长切削。
     (6)设计削片机刀片为2种:切削刀片(A型)和定长划线刀片(B型)。切削刀片的作用是将竹刨花从竹毛坯上切下,但在竹刨花被切下之前已被定长划线刀片在竹材表面划出一定深度的槽沟,切断竹材纤维,使被切削下的竹刨花自然形成分段状态。
     (7)削片机进料系统结构由进料槽板、压料辊、弹簧支座、可浮动砧铁、进料输送链毯、进料驱动辊、压辊弹簧等组成,以确保竹毛坯在加工中准确定位和牢固不动。
Under the fanacial support of project "Flaking Technique and Equipment Development for Bamboo Oriented Strandsboard Manufacture" from Ministry of Science and Technology, and "948" project of "Oversea-introduced Key Flaking Technique of Bamboo Oriented Strandsboard" from the State Forestry Administration, this thesis has discussed series of critical problems on the flaking technique and manufacture of bamboo oriented strandsboard (BOSB).
     1. The advantage of bamboo resources in China and the future development of BOSB were addressed. The key technique problems in BOSB manufacture were also analyzed. It was pointed out that bamboo flaking technique is an urgent problem to be solved. Based on the investigation on BOSB manufacture, the thesis also explored the feasibility and advantage of BOSB manufacture using Moso bamboo (Phyllostachys heterocyclacv. Pubescen). The result indicated the bright development future in BOSB manufacture using Moso bamboo resources.
     2. The results of bamboo flaking method indicated that according to the three sawing directions, flaking modes were latitudinal-cut flaking, longitudinal-cut flaking and cross-cut flaking. It also could be divided into six detail modes: latitudinal-cutⅠ, latitudinal -cutⅡ, longitudinal -cutⅠ, longitudinal -cutⅡ, cross -cutⅠ, and cross -cutⅡ. The quality of bamboo flaking was mainly influenced by bamboo density, bamboo moisture content, flaking thickness, and flaking direction etc. The cutting force was mainly affected by bamboo mechanical properties and cutting parameters.
     3. This thesis discussed the manufacture of BOSB using Moso bamboo which planted in Hunan province. The effects of various dimensional parameters of bamboo strands on BOSB panel properties were investigated. The results showed that all the BOSB properties could meet the demand of Chinese Standard. The effects of strand thickness and length variation on BOSB properties were found. The optimum size of strands was 110~120mm in length and 0.6~0.8mm in thickness.
     4. The effects of hot pressing temperature, hot pressing pressure and hot pressing time on the properties of BOSB were discussed in the study. When the temperature reached to 160℃, the panel had the most superior properties. Otherwise, it would decline. BOSB showed inferior properties as the pressure was lower (e.g. 2.1 or 2.3 MPa). In the case of higher pressing pressure, the panel properties were improved with increasing panel density. However, this would cause an increasing of product cost and material consumption. When the hot pressing reached to 70s/mm, the BOSB property was the best.
     5. The influence of adhesive and respective technique condition were examined. The interface between bamboo strands and adhesive, and the resin distribution on bamboo strands were analyzed by using SESM, FTIR.
     The optimum technique of using water-solubility PF to manufacture BOSB:
     Resin content: 6%~8% based on oven-dried weight of bamboo strands (solid content)
     Blending method: Spraying
     Strand size: length×width×thickness=110~120mm×9~15mm×0.6~0.8mm
     Hot pressing temperature: 160℃
     Hot pressing pressure: 2.5 MPa
     Hot pressing time: 70s/mm
     The optimum technique of using water-solubility PMDI to manufacture BOSB:
     Strand moisture content: 10%
     Resin content: 4.5%
     Ratio of main adhesive: coupling agent=15:85
     Blending method: Spraying
     Strand size: length×width×thickness=110~120mm×9~15mm×0.6~0.8mm
     Hot pressing temperature: 160℃
     Hot pressing pressure: 2.5MPa
     Hot pressing time: 40s/mm
     6. The schematic design of BOSB chipper was proposed. Several processing problems which affect the quality of flaking and capacity of BOSB were analyzed. It was the base for design the main production equipment and facilities. Results are as follows:
     (1) In order to increase the utilizition value of bamboo and to optimum the manufacture process, bamboo material should be cut into a certain length and be classified before using. Poor bamboo, small bamboo and the tip-parts of bamboo were also used to produce BOSB.
     (2) In the system of oriented flaking, the devices for pretreatment are the key, including block cutting and classification, longitudinal breaking, inner nodes eliminating, and oriented arrangement of bamboo pieces.
     (3) For the realization of auto-alignment, the auto-identifying and auto-correcting systems were designed to apply in real-time testing of production line. It could be used to adjust the right position of the surface and back of bamboo pieces, and to make sure their automatic arrangement in the same direction.
     (4) The key problem in oriented flaking was how to fix the position of bamboo pieces when it was forced to feed orderly into chipper to avoid their moving while flaking. Another problem was how to avoid strands smash. If strands were stricken in lateral, they were easily crushed due to the lower bonding strength between bamboo fibers.
     (5) The schematic design of strand chipper suitable for BOSB manufacture was proposed. According to the latitudinal-cutⅠ, flaking mechanism, of outer shell was choosen, and the flaking with fixed length and thickness could be possible by floating upper press plate, fixed low press plate and fixed curved position board in the blade ring.
     (6) Two types of chipper knives were designed, i.e., cutting knife (type A) and scoringknife (type B) for fixed length flaking. The function of cutting knife was to cut bamboo strands from a bamboo piece. Before they were cut off, a scoring-knife was used to precut a deep groove in the bamboo peice to section the strands.
     (7) The feeding system of chipper consist of feed plate, press roller, spring support, and float hammering iron, feed chain blanket, feed forced roll and press spring etc to keep bamboo pieces positioning and fixing.
引文
[1] 宋驰.北美洲和世界的定向刨花板工业[J].中国木业,2005,(7):6
    [2] 张双保,杨小军.木质复合材料的研究现状与前景[J].建筑人造板,2001,(2):3-6
    [3] 于文吉,王天佑.我国非木质人造板的发展现状和存在问题[J].人造板通讯,2004,(6):5-10
    [4] 管宁.OSB原料消耗继续增长[J].中国木业,2005,(5):42
    [5] 蒋忠道.世界的竹子资源状况[J].西南造纸,2004,33(2):58
    [6] 邱尔发 洪伟 郑郁善.中国竹子多样性及其利用评述.竹子研究汇刊[J],2001,20(2):11-14
    [7] 许斌,蒋身学,张齐生.毛竹生长过程中纤维壁厚的变化[J].南京林业大学学报(自然科学版),2002,26(2):7-10
    [8] 张齐生,关明杰,纪文兰.毛竹材质生成过程中化学成分的变化[J].南京林业大学学报(自然科学版),2003,27(4):75-77
    [9] 周天录.砍伐楠竹的学问[J].湖南林业,2004,(4)
    [10] 汪奎宏,黄伯惠主编.中国毛竹[M].浙江科学技术出版社,1995
    [11] 唐永裕.竹材资源的工业性开发利用[J].竹子研究汇刊,1997,16(2):26-33
    [12] 温太辉等.浙江产竹类纤维长度之测定.林业科学,1955,(1)
    [13] 李正理,靳紫炭,腰希申.几种国产竹材的比较解剖观察.植物学报,1960,(3)
    [14] Grosser D and W Liese. On the anatomy of Asian bamboos, with special reference to their vascular bundles. Wood Science and Technology 1971, 5: 290-312
    [15] 腰希申,梁景森,马乃训等.中国主要竹材微观构造.大连:大连出版社,1993
    [16] 周芳纯.竹材的构造.南京林业大学竹类研究编委会,1998:83-101
    [17] Suzuki K, Itoh T. The changes in cell wall architecture during lignification of bamboo, Phyllostachys aurea Carr. Trees, 2001,15: 137-147
    [18] 叶忠华.毛竹材特性及工业利用分析[J].林业科技,2002,27(3):39-42
    [19] Lee A. W.C., Bai X. S., Bangi A.P.. Flexural properties of bamboo-reinforced southern pine OSB beam, Forest Products Journal, 1997,47(6): 74-78
    [20] Suhyakto, Bambang Subiyanto, Sandra A Azis. Cultivation and utilization of bamboo in Indonesia: Journal of Bamboo Research, 1997,16(2): 1-7
    [21] Bambang Suhiyanto, Atsushi Miyatake, Hayashi Tomoyuki. Production technology of superior strength timber (SST) from bamboo. The 3th Pacific Rim Bio-Based Copmosite Symposium.Kyoto- Japan, 1996
    [22] Wang, S., and P. M. Winistorfer. Fundamentals of vertical density profile formation in wood composites. Part 2. Methodology of vertical density formation under dynamic conditions. Wood Fiber and Science, 2000, 32(2): 220-238
    [23] Xu, W. Influence of vertical density distribution on bending modulus of elasticity of wood composite panels: A theoretical consideration. Wood Fiber and Science, 1999,31(3): 277-282
    [24] Wong, E. D., M. Zhang, Q. Wang, G. Han, and S. Kawai. Formation of the density profile and its effects on the properties of fiberboard. Journal of Wood Science, 2000,46(3): 202-209
    [25] Lee, A.N., Bai, X., Paralta, P.N. Physical and mechanical properties of strandboard made from moso bamboo. Forest Products Journal, 1996,46(11/12):84-88
    [26] Kajita, H. Oriented particle board with sugi thinning (Criyptomeria japonica) I. Effect of degree of particle alignment and board density on physical and mechanical properties. Mokuzai Gakkaishi, 1987,33(11):865-871
    [27] Suzuki, S., Takeda. Production and properties of Japanese oriented strand board I. Effect of strand length and orientation on strength properties of sugi oriented strand board. Journal Wood Science, 2000,46:289-295
    [28] Steiner R.P., and W. Xu. Influence of flake characteristics on horizontal density distribution of flakeboard. Forest Products Journal, 1995,45(4):61-66
    [29] Kruse, K., C. Dai, and A. Pielasch. 2000. An analysis of strand and horizontal density distributions in oriented strand board. Holz Roh-Werkstoff, 58(4):270-277
    [30] Nishimura, T., Amin, J., and M.P. Ansell. Image analysis and bending properties of model OSB panels as a function of strand distribution, shape and size. Wood Science and Technology, 2004, 38: 297-309
    [31] Barnes, D. A model of the effect of fines content on the strength properties of oriented strand wood composites. Forest Products Journal, 2002, 52(5):55-60
    [32] Maloney, T. M. Modern particleboard and dry process fiberboard manufacture. Miller Freeman Pub., San Francisco, CA. 1977
    [33] Forest Products Laboratory (FPL). Wood handbook--Wood as an engineering material. Gen. Tech. Rep. FPL-GTR-113. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 1999, 463
    [34] Geimer, R. L. Flake alignment in particleboard as affected by machine variables and particle geometry. Res. Paper Madison, WI: U. S. Dept. of Agric., Forest Prod. Lab. 1976: 275
    [35] 夏元洲.竹材刨花板制造工艺的研究.建筑人造板,1996,(3):3-11
    [36] 夏元洲.竹材刨花板制造工艺的研究(二).建筑人造板,1996,(4):7-10
    [37] 殷苏州.竹材定向刨花板的工艺和性能的研究.南京林业大学学报,1987,(3):65-72
    [38] 殷苏州,李北冈,胡德彪.竹材覆面定向刨花板性能的研究.木材工业,1997,11(4):8- 12
    [39] 王思群,华毓坤,董士琴.竹木复合定向刨花板强度性能研究.木材工业,1991,5(3):6-10
    [40] 江泽慧,王戈,费本华,于文吉.竹木复合材料的研究及发展.林业科学研究,2002,15(6):712-718
    [41] Zhang Hongjian. Development for bamboo-based composites in the world. Proceeding of the Invited papers for the 20th IUFRO World Congress (Finland), 1995: 397
    [42] 张宏健,叶喜,李君.竹大片创花板的生产开发前景.林业建设,1995,(3):15-17
    [43] 张宏健,叶喜,李君.竹大片刨花板主要工艺参数的研究.西南林学院学报,1995,15(4):56-60
    [44] 张宏健,张福兴,员永生.竹大片刨花板对竹材生物学特性的适应性.林产工业,1998,25(6):1-4
    [45] 张宏健,吴章康,黄素涌,陈东阳.酚醛树脂竹大片刨花板工艺成本与性能质量的关系.林产工业,2000,27(4):13-17
    [46] 张福兴,郑志锋,员永生,张宏健.竹大片刨花切削条件的研究.木材工业,1999,13(2):10-12
    [47] 宣江.不同条件加工竹刨花板的试验.云南林业科技,1996,(2):77-79
    [48] 邓学龙.在定型刨花板生产线上生产竹材刨花板的若干技术问题.林业科技开发,1989,(2):24-26
    [49] 吴娟,于志明,陈天全.大片刨花板热压的传热过程.北京林业大学学报,2005,27(2):92-95
    [50] 杨兆金.利用竹制品加工剩余物生产竹质刨花板的探讨.林业机械与木工设备,2001,29(10):14-15
    [51] Roger M. ROWELL, Misato NORIMOTO. Dimensional Stability of Bamboo Particleboards Made from Acetylated Particles. Mokuzai Gakkaishi, 1988,34(7):627-629
    [52] 朱一辛.竹材刨花板用作混凝土模板的试验.林业科技开发,2006,20(5):77-78
    [53] 杨英.竹类资源的开发及利用[J].林业勘察设计(福建),2005,(1):149-152
    [54] 林金国.麻竹化学成分的研究.植物资源与环境学报,2002,9(1):55-56
    [55] 吴炳生.料慈竹化学成分的研究.浙江林学院学报,1995,12(3):281-285
    [56] 王文久.云南14种主要材用化学成分研究.竹了研究汇刊,1999,18(2):74-78
    [57] 徐有明,意杨纸浆材材性的研究.木材工业,1994,8(1):38-44
    [58] 张静文,王华忠,马乃训,等.刚竹属部分从生竹纤维形态与主要理化性质.林业科学研究,1995,8(1):54-61
    [59] 马灵飞,马乃训.毛竹材性变异的研究.林业科学,1997,33(4):356-363
    [60] 虞华强.竹材材性研究概述.世界竹藤通讯,2003,4(1):5-9
    [61] 马灵飞.竹材的pH值和缓冲容量.竹子研究汇刊,1991,10(2):1-7
    [62] 王思群.竹材酸含量及其对脲醛胶固化时间的影响,竹子研究汇刊,1990,9(3):1-8
    [63] 江泽慧,于文吉,余养伦.竹材表面润湿性研究.竹子研究汇刊,2005,24(4):31-38
    [64] Mansur Ahmad. Analysis of Calcutta Bamboo for Structural Composite Materials. Dissertation for the Degree of Doctor of Philosophy in Wood Science and Forest Products. August 11, 2000. Blacksburg, Virginia
    [65] 于文吉,余养伦,江泽慧.竹材表面胶合性能.竹子研究汇刊,2006,25(1):30-36
    [66] 于文吉,江泽慧,叶克林.竹材特性研究及其进展.世界林业研究,2002,15(2):50-55
    [67] 徐有明,郝培应,刘清平.竹材性质及其资源开发利用的研究进展.东北林业大学学报,2003,31(5):71-77
    [68] 今川一志.千岛赤竹杆的物理性质.北海道人学农学部演习林研究报告,1987,41(2):493-534
    [69] 杜复元.竹材密度的研究.竹子研究汇刊,1992,11(1):50-58
    [70] 杨源哲,张寿槐,白同仁等.中国七种竹材的物理力学性质.中国林业科学研究院木材工业研究所研究报告,1986.4号(总18号)
    [71] 王朝晖.竹材材性变异规律与加工利用研究.北京:中国林业科学研究院[D],2001
    [72] 赵仁杰等.竹材人造板工艺学.中国林业出版社,2002.6
    [73] 张齐生.中国竹材工业化利用.北京:中国林业出版社,1995
    [74] 姜志宏,孟志康.张永良.毛竹的含水率.竹子研究汇刊,1995,14(2):58-67
    [75] 张春霞.竹材湿胀性能的研究.林业科技开发,1998(2):40-41
    [76] 杨云芳,陈建寅.红壳竹竹材物理力学性质的研究.浙江林学院学报,1998,15(2)
    [77] 江泽慧主编.世界竹藤.沈阳:辽宁科学技术出版社,2002
    [78] 周芳纯.竹材的物理性质.竹类研究(南京),1991,10(1):27-44
    [79] 周芳纯.竹材培育和利用.南京林业大学竹类研究编委会,1998:195-211
    [80] Peralta P N. Lee A W C. Unsteadv-state diffusion of moisture in giant timber bamboo. Wood and Fiber Science, 1995, 27(4): 421-427
    [81] 黄岩如.竹木装饰材料的防护与美化.北京:中国建材工业出版社,1997
    [82] 周芳纯等.竹材的力学性质.竹类研究(南京),1991,10(1):45-57
    [83] 周芳纯等.竹材力学性质测定报告.竹类研究,1991,10(1):7-12
    [84] 叶民权.孟宗竹机械性质之探讨.中华林学季刊,1994,27(1):107-118
    [85] 杨云芳,刘志坤.毛竹材抗拉弹性模量及抗拉强度.浙江林学院学报,1996,13(1),21-27
    [86] 张宏健,杜凡,张福兴.云南4种典型材用丛生竹宏观解剖结构与主要物理力学性质的关系.林业科学,1999,35(4):66-70
    [87] 于文吉,江泽慧.早园竹的力学性能特点及测试方法研究.世界竹藤通讯,2003,1(2):20-23
    [88] 黄盛霞,马丽娜,邵卓平,周学辉.毛竹微观构造特征与力学性质关系的研究.安徽农业人学学报,2005,32(2):203-206
    [89] Ibrahim N.H.埃及主要竹子的物理和机械性质及利用竹子作为建筑材料的研究.Caring for the forest:Research in a Chanqinq World,1995:398
    [90] 陈士英,龙玲,张宜生.竹材刨花板蠕变性能的研究.木材工业,1999,13(5):3-7
    [91] 周建钟,冯炎龙,刘力.竹青竹黄的化学成分及综合利用.林产化工通讯,2003,37(2):8-10
    [92] 姚武.竹材在建筑结构中的应用[J].上海建材,2000,(1):26-27
    [93] Post P. W.. Mechanical and Dimensional Properties of Flake Board. Forest Products Journal, 1961,(1):34-37
    [94] 王培元.如何提高刨花板质量(之四).森工科技信息,1986,(1):16-36
    [95] 钱大威.木质刨花扳的刨花形态研究发展概念.木材工业,1997,11(1):30-32
    [96] 西南林学院.竹大片刨花板.中国专利,ZL 93 2 43501 7,1996
    [97] McKenzie W.M., Fundamental Analysis of the Wood Cutting Process. Dept. of Wood Tech., School of Natural Resources, University of Michigan, Ann Arbor, 1961
    [98] Franz N.C., An Analysis of the Wood-Cutting Process. Ph.D.thesis, University of Michigan Press, Ann Arbor. 1958
    [99] Stewart H.A., Analysis of Orthogonal Wood-cutting Across the Grain, Wood Science, 1971, 12(1): 38-45
    [100] McKenzie W.M., Fundamental Aspects of the Wood Cutting Process. Forest Products Journal, 1961,10(9):447-456
    [101] 王毅,曹平祥.竹材切削变形的初步研究.木材加工机械,2005,(3):7-12
    [102] 夏元洲.用竹材制造刨花的研究.林业科技开发,1998,(1):44-45
    [103] 戴丽.竹集成材切削表面质量研究.南京林业大学[D],2003
    [104] 杨永福.竹材切削加工性能研究.北京林业大学[D],2005
    [105] 武丽清.竹材切削参数的优化研究.北京林业大学[D],2006
    [106] 王宝金.竹材弦面纵向切削的研究.竹子研究汇刊,1994,13(4):30-36
    [107] 杨永福,习宝田,李黎.毛竹切削力的研究.北京林业大学学报,2006,28(4):16-21
    [108] 杨永福,习宝阳,李黎.竹材物理性质对切削力影响的研究.木材加工机械,2005,(2):1-5
    [109] 杨永福,习宝田,李黎.切削参数对竹材切削力影响的研究木材加工机械,2005,(3):13-15
    [110] 田中千秋·喜多山繁[日].木材科学讲座6.切削加工.海青社,1992,12
    [111] 梅长彤,周又平,薛联凤.刨花形态自动识别系统的设计与开发[J].林业科技开发,2006,20(3):49-51
    [112] 徐建华.图形处理与分析[M].北京:科学出版社,1992
    [113] R.C.冈萨雷斯,P.温茨著;李叔梁等译.数字图象处理[M].北京:科学出版社,1983

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700