苏云金芽胞杆菌新型cry1基因克隆、表达及活性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苏云金芽胞杆菌(Bacillus thuringiensis,Bt)是一种世界上应用广泛的生防微生物,它具有高度的杀虫特异性和对人畜无害的优点。主要的杀虫成份是杀虫晶体蛋白,由cry和cyt基因编码。其中cry1类基因的表达产物对多种鳞翅目害虫具有较高的杀虫活性,但是由于检测方法的局限性,快速、准确地鉴定已知和未知基因有一定的难度。为了充分发掘Bt菌株中cry1类基因资源,本研究建立了一个高分辨率的筛选cry1类基因的PCR - RFLP方法。通过生物信息学软件对cry1类模式基因进行聚类分析,根据全长基因的5’及3’端差异将cry1类基因分成4个大类,分别设计通用引物,酶切分析只需要区分一个大类中的几个基因,提高了分辨率。该方法可以快速、准确、有效地对Bt菌株中的cry1类基因进行分型,特别是可以检测出已知及新型的cry1类基因。
     通过原有的cry1类基因PCR - RFLP鉴定方法和新建立的体系对3株含有多种cry1类基因的Bt菌株进行了鉴定,发现原有体系在cry1类基因较多时无法准确检测,而且不能确定是否含有cry1I类基因,而新的体系对3株Bt菌株都达到了准确鉴定的目的,并且发现了一些国内还没有报道过的基因型,如cry1Hb、cry1Ja、cry1Ka、cry1La等。新体系不仅适用于单基因样品的分型,也适用于一株菌株中含有多个基因的样品的分型。
     应用新建立的平台对72株苏云金芽胞杆菌标准菌株和86株Bt野生菌株进行cry1类基因型的鉴定,发现标准菌株中有11株含有cry1类基因,而野生菌株中绝大部分都含有cry1类基因,从中选取了19个cry1新基因。另外根据Bt标准菌株T03B001的全基因组测序结果,发现了两个cry1新基因。
     根据这些基因的全长序列设计扩增cry1类基因的全长引物,成功克隆上述基因,除cry1Na外,20个cry1基因被国际Bt命名委员会正式命名为cry1Aa16、cry1Ab23、cry1Ab24、cry1Ah3、cry1Ai2、cry1Ba7、cry1Bb2、cry1Be4、cry1Ca12、cry1Da3、cry1Ea9、cry1Fa3、cry1Fa4、cry1Hb2、cry1Ia19、cry1Ib5、cry1Ie2、cry1Ja2、cry1Ka2、cry1La2。利用表达载体pEB在大肠杆菌Rosetta(DE3)中对这些基因进行表达,表达产物为60 - 130 kDa左右的蛋白。除Cry1Ka2和Cry1La2两种蛋白外,其它的Cry1蛋白都对敏感小菜蛾有毒力。没有活性报道的Cry1Hb蛋白对小菜蛾和棉铃虫都有毒力,LC50分别为305.82(241.66 - 391.76)μg/mL和315.12(225.68 - 456.86)μg/mL。Cry1Ba7和Cry1Ea9两种蛋白对大猿叶甲有较高的毒力,LC50分别为5.21(3.84 - 8.65)μg/mL和55.78(43.40 - 88.42)μg/mL,其中Cry1Ea对鞘翅目害虫的活性未见报道。Cry1Ca12对甜菜夜蛾有较高的毒力,LC50为89.11(60.54 - 121.26)×10-3μg/mL。Cry1Ie2和Cry1Na两种蛋白对亚洲玉米螟有较高的毒力,LC50分别为0.12(0.09 - 0.15)μg/mL和0.15(0.12 - 0.18)μg/mL。
Bacillus thuringiensis is the most widely applied type of microbial pesticides because its high specificity and environmental safety. The primarily insecticidal protein was Insecticidal Crystal proteins (ICPs)which were encoded by cry or cyt genes. The cry1-type genes were promising tools for effectively controling many species of important lepidopteran pests, but it is difficult to identify known and unknown cry1-type genes rapidly and accurately because of the limitations of identify methods. In order to identify more cry1-type genes, we established a PCR - RFLP identification method of cry1-type genes with high resolution. According to the difference of cry1-type genes’5’and 3’ends, they were divided into four categories and four pairs of universal primers were designed respectively, so the cry1-type genes in the same category could be determined by analysis of RFLP and the resolution is higher. This method could identify cry1-type genes of Bt strains fast rapidly, accurately and effectively, especially identify both known and novel cry1-type genes.
     By using the original method and new method, three Bt strains which contain many kinds of cry1-type genes were identified respectively. The results showed that the original method could not determine cry1-type genes of Bt strains which contain many genes, and could not determine whether Bt strains contain cry1I genes. The new method could identify three Bt strains which contain many kinds of cry1-type genes accurately, and found some genes that did not find in China, for example, cry1Hb, cry1Ja, cry1Ka, cry1La, and so on. The new method suited for Bt strains which contains one cry1-type gene or many kinds of cry1-type genes.
     In the identification of the 72 standard strains and 86 Bt isolates, we found 11 standard strains contained cry1-type genes and almost all Bt isolates contained cry1-type genes, and 19 of them were novel. We found other two novel cry1-type genes from Bt standard strains by whole genome sequencing.
     According to known cry1-type genes’sequences, we designed full-length primers and successfully cloned them except cry1Na, they were designated as cry1Aa16, cry1Ab23, cry1Ab24, cry1Ah3, cry1Ai2, cry1Ba7, cry1Bb2, cry1Be4, cry1Ca12, cry1Da3, cry1Ea9, cry1Fa3, cry1Fa4, cry1Hb2, cry1Ia19, cry1Ib5, cry1Ie2, cry1Ja2, cry1Ka2, cry1La2 by International Nomenclature Committee of Bt. They were successfully expressed in E.coli (Rosetta) by pEB expression vector, expressed products were 60 - 130 kDa. Cry1 protains had insecticidal activity against Plutella xylostella except Cry1Ka2 and Cry1La2. The insecticidal activity of Cry1Hb had not report, but we found it had activity against Plutella xylostella and Heliothis armigera, and the LC50 were 305.82 (241.66 - 391.76)μg/ml and 315.12 (225.68 - 456.86)μg/ml. Cry1Ba7 and Cry1Ea9 had insecticidal activity against Colaphellus bowringi, the LC50 were 5.21 (3.84 - 8.65)μg/ml and 55.78 (43.40 - 88.42)μg/ml, and the activity of Cry1Ea9 against Copeoptera pests was reported firstly. Cry1Ca12 had insecticidal activity against Spodoptera exigua, the LC50 were 89.11 (60.54 - 121.26)×10-3μg/ml. Cry1Ie2 and Cry1Na had insecticidal activity against Ostrinia furnacalis, the LC50 were 0.12 (0.09 - 0.15)μg/ml and 0.15 (0.12 - 0.18)μg/ml.
引文
陈凤春,胡英华,乔晓琳. 2008.浅谈生物防治与农产品质量安全.安徽农学通报, 14(7): 189~190.
    陈学新. 2010. 21世纪我国害虫生物防治研究的进展、问题与展望.昆虫知识, 47(4): 615~625.
    丁之铨. 1997.杀虫遗传工程荧光假单胞菌的构建及生物学特性研究.中国农业大学.
    段永兰,侯金丽,邢文会. 2010.我国微生物农药的研究与展望.安徽农业科学, 38(8): 4135~4138.
    郭三堆,崔洪志,夏兰芹等. 1999.双价抗虫转基因棉花研究.中国农业科学, 32(3): 1~7. 黄大昉. 2001.农业微生物基因工程.科学出版社.
    李荣森,陈涛,邓海凡等. 1983.几种苏云金芽胞杆菌的超微结构.微生物学报, 21(30): 311~317.
    李怡萍,梁革梅,仵均祥等. 2010.苏云金芽孢杆菌杀虫机理及害虫对其抗性机制的研究进展.西北农林科技大学学报(自然科学版) , 38(9): 118~128.
    刘旭光,宋福平. 2004.苏云金芽胞杆菌cry基因芯片检测方法的研究.中国农业科学, 37(7): 987~992.
    饶志明,张荣珍. 2003.基因芯片技术在微生物学研究中的应用.中国生物工程杂志, 23(8): 61~65.
    王继磊,刘迪秋,丁元明等. 2010. Bt转基因抗虫植物研究进展.生物学杂志, 27(4): 75~78.
    魏海燕,蔡磊明,赵玉艳等. 2008.我国微生物农药的应用现状.干旱环境监测, 22(4): 236~242.
    吴丽云,何金清,周勇等. 2010.污水、污泥中苏云金杆菌的分离及其基因型鉴定.福建农林大学学报, 39(1): 19~24.
    张杰,宋福平. 1998. PCR技术与ICP基因的鉴定.植物保护21世纪展望.中国科学技术出版社, 118~120.
    赵银娟,魏炜,李荣鹏等. 2008.一株海洋来源的高活性Bt菌的生物学特性研究.微生物学杂志, 28(4): 43~46.
    苏慧琴. 2010.苏云金芽胞杆菌新型cry9基因克隆、表达及活性分析.东北农业大学.
    Adang M J, Brody M S, Cardineau G, et al. 1993. The reconstruction and expression of a Bacillus thuringiensis cryIIIA gene in protoplasts and potato plants. J Plant Molecular Biology, 21: 1131~1145.
    Alejandro P G, Diego R, Antonio D V. 2011. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. J Current Opinion in Biotechnology, 22: 1~7.
    Anwar H M, Ahmed S, Hoque S. 1997. Abundance and distribution of Bacillus thuringiensis in the agricultural soil of Bangladesh. J. Invertebr. Pathol., 70: 221–225.
    Babu R M, Sajeena A, Seetharaman K, et al. 2003. Advances in genetically engineered (transgenic) plants in pest management—an over view. J Crop Protection, 22: 1071~1086.
    Barloy F, Lecadet M M, Delecluse A. 1998. Cloning and sequencing of three new putative toxin genes from Clostridium bifermentans CH18. Gene. 211: 293-299.
    Barton K A, Whiteley H R, Yang N S. 1987. Bacillus thuringiensisδ-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. J Plant Physiology, 85: 1103~1109.
    Ben D E, Manasherob R, Zaritsky A, et al. 2001. PCR analysis of cry7 genes in Bacillus thuringiensis by the five conserved blocks of toxins. J Current Microbiology, 42: 96~99.
    Beard C E, Ranasinghe C, Akhurst R J. 2001. Screening for novel cry genes by hybridization. J Letters in Applied Microbiology, 33: 241~245.
    Berón C M, Curatti L, Salerno G L. 2005. New strategy for identification of novel Cry-type genes from Bacillus thuringiensis strains. J Applied and Environmental Microbiology, 71: 761~765.
    Boonserm P, Davis P, Ellar D J. 2005. Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. J Journal of Molecular Biology, 348: 363~382.
    Boonserm P, Lescar J. 2006. Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-angstrom resolution. J Bacteriol, 188: 3391~3401.
    Bravo A, Likitvivatanavong S, Gill S S, et al. 2011. Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochemistry and Molecular Biology, doi: 10.1016/j.ibmb. 2011.02.006
    Bulla L A, Bechtel D B, Kramer Y I, et al. 1980. Ultra structure, physiology and biochemistry of Bacillus thuringiensis. CRC Crit Rev Microbiol. 8: 174-204.
    Carozzi N B, Kramer V C, Warren G W. 1991. Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. J Applied and Environmental Microbiology, 57: 3057~3061.
    Ceron J, Covarrubias L, Quintero R, et al. PCR analysis of the cryI insecticidal crystal family genes from Bacillus thuringiensis. J Applied and Environmental Microbiology, 1994, 60: 353~356.
    Ceron J, Ortiz A, Quintero R, et al. 1995. Specific PCR primers directed to identify cryI and cryIII genes within a Bacillus thuringiensis strain collection. J Applied and Environmental Microbiology, 61: 3826~3831.
    Cheryl E B, Leon C, Annemie B, et al. 2008. Unusually high frequency of genes encoding vegetative insecticidal proteins in an Australian Bacillus thuringiensis collection. J Curr Microbiol, 57: 195~199.
    Chestukhina G G, Zalunin I A, Kostina L I, et al. 1980. Crystal-forming proteins of Bacillus thuringiensis. Biochem. J. 187: 457-46
    Chitkowski R L, Turnipseed S G, Sullivan M J. 2003. Field and laboratory evaluations of transgenic cottons expressing one or two Bacillus thuringiensis var kurstaki Berliner proteins for management of noctuid (Lepidoptera) pests. J Journal of Economic Entomology, 96: 755~62.
    Corina M B, Leonardo C, Graciela L S. 2005. New strategy for identification of novel cry-Type genes from Bacillus thuringiensis Strains, J Applied and Environmental Microbiology, 71: 761~765.
    Crickmore N, Zeigler D, Feitelson J. 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. J Microbiology and molecular biology reviews, 62: 807~813.
    Derbyshire D J, Ellar D, and Li J. 2001. Crystal lization of the Bacillus thuringiensis toxin Cry1Ac and its complex with there ceptorligand N-acetyl-D-galactosamine. J Acta Crystallogr Sect, 57: 1938~1944.
    Donovan W P, Gonzalez J M, Gilbert M P. 1988. Isolation and Characterization of EG2158, a new Strain of Bacillus thuringiensis toxic to coleopteran larvae, and nucleotide sequence of the toxin gene. J Mol Gen Genet Nov, 214(3): 365~72.
    Edwards D L, Payne J, Soares G. 1988. Novel isolates of Bacillus thuringiensis having Activity against Nematodes. European Patent Application. 303-426.
    Estruch J J, Warren G W, Mullins M A, Nye G J, Craig J A and Koziel M G. 1996. Vip3A, anovel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci. 93: 5389-5394.
    Fang J, Xu X L, Wang P, et al. 2007. Characterization of chimeric Bacillus thuringiensis Vip3 toxins. J Applied and Environmental Microbiology, 73(3): 956~961.
    Faust R M, Abe K, Held G A. 1983. Evidence for plasmid associated crystal toxin production in Bacillus thuringiensis subsp. Israelensis. J Israelensis Plasmid, 9: 98 ~ 103.
    Ferre J, Van R J. 2002. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. J Annual Review of Entomology, 47: 501~533.
    Fischhoff D A, Bowdisch K S, Perlak F J. 1987. Insect tolerant transgenic tomato plants. J Nature Biotechnology, 5: 807~813.
    Frankenhuyzen K V. 2009. Insecticidal activity of Bacillus thuringiensis crystal proteins. J. Invertebr. Pathol., 101: 1~16.
    Fujimoto H, Yamamoto I, Kyozuka K M, et al. 1993. Insect resistant rice generated by introduction of a modifiedδ-endotoxin gene of Bacillus thuringiensis. J Bio Technology, 11: 1151~1155.
    Galitsky N, Cody V, Wojtczak A, D. 2001. Structure of the insecticidalbacterial δ endotoxin Cry3Bb1 of Bacillus thuringiensis. D Acta Crystallogr Sect, 57: 1101~1109.
    Garcia-Robles I, Sanchez J, Gruppe A. 2001. Mode of action of Bacillus thuringiensis pS86Q3 strain in hymenopteran forest pests. J Insect Biochem Mol Biol, 31: 849~856.
    Gould F. 1998. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. J Annual Review of Entomology, 43: 701~26.
    Griffitts J S, Haslam S M, Yang T. 2005. Glycolipds as receptors for Bacillus thuringiensis crystal toxin. Science, 307: 922~925.
    Grochulski P, Masson L, Borisova S. 1995. Bacillus thuringiensis CryIA (a) insecticidal toxin: crystal structure and channel formation. J Journal of Molecular Biology, 254: 447~64. Heckel D G. 1994. The complex genetic basis of resistance to Bacillus thuringiensis toxin in insects. J Biocontrol Science and Technology, 4(4): 405~417.
    Heimpel A M. 1967. A critical review of Bacillus thuringiensis var. thuringiensis Berliner and other crystalliferous bacteria. Annu Rev Entomol. 12: 287-322.
    Hofte H, Whiteley H R. 1989. Insecticidal crystal proteins of Bacillus thuringiensis. J Microbiological Reviews 53: 242~255.
    Ichimatsu T, Mizuki E, Nishimura K, et al. 2000. Occurrence of Bacillus thuringiensis infresh waters of Japan. J Curr. Microbiol., 40(4): 217-20.
    Izabela S, Dennis K B, Brian A F. 2008. Novel isolate of Bacillus thuringiensis subsp. thuringiensis that produces a ounsicuboidal crystal of Cry1Ab21 toxic to larvae of Trichoplusia ni. J Applied and Environmental Microbiology, 74(4): 923~930.
    Janmaat A F, Myers J. 2003. Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusiani. J Proc Roy Soc Lond 270: 2263~2270.
    Juan J E, Gregory W W, Martha A M, et al. 1996. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. J Agricultural Sciences. 93: 5389~5394.
    Knowles B H, Farndale R W. 1988. Activation of insect cell adenylate cyclase by Bacillus thuringiensis delta-endotoxins and melittin. Toxicity is independent of cyclic AMP [J]. Biochem J, 253(1): 235-241.
    Kotze A C, O'Grady J, Gough J M, et al. 2005. Toxicity of Bacillus thuringiensis to parasitic and free-living life-stages of nematode parasites of livestock. Int J Parasitol. 35: 1013-1022
    Koziel M G, Beland G L, Bowman C. 1993. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. J Bio/Technology, 11: 194~200.
    Kuo W S, Chak K F. 1996. Identification of novel cry-type genes from Bacillus thuringiensis strains on the basis of restriction fragment length polymorphism of the PCR-amplified DNA. J Applied and Environmental Microbiology, 62: 1369~1377.
    Lecadet M M. 1967. Action comparee de Puree et du thioglycolate Sur la toxine figuree de Bacillus thuringiensis. C. R. Acad. Sci. Ser. D, 264: 2847~2850.
    Lee D H, Cha I H, Woo D S, et al. 2003. Microbial ecology of Bacillus thuringiensis: fecal populations recovered from wildlife in Korea. Can. J. Microbiol, 49(7): 465~471.
    Lee D H, Shisa N, Wasano N, et al. 2003. Characterization of flagellar antigens and insecticidal activities of Bacillus thuringiensis populations in animal feces. J CurrMicrobiol, 46(4): 287~290.
    Li J, Derbyshire D J, Promdonkoy B, et al. 2001. Structure amplications for the transformation of the Bacillus thuringiensisδ-endotoxins from water-soluble to membrane-inserted forms. J Biochem Soc Trans, 29: 571~577.
    Li J D, Carroll J, Ellar D J. 1991. Crystal structure of insecticidalδ-endotoxin from Bacillusthuringiensis at 2.5 ?resolution. J Nature , 353: 815~821.
    Manasherob R, Zaritsky A, Ben-Dov E, et al. 2001. Effect of accessory proteins P19 and P20 on cytolytic activity of Cyt1Aa from Bacillus thuringiensis subsp. israelensis in Escherichia coli. Curr Microbiol. 43: 355-364.
    Marroquin L D, Elyassnia D, Griffitt J S. 2000. Bacillus thuringiensis (Bt) Toxin Susceptibility an Disolation of Resistance Mutants in the Nematode Caenorhabditis Elegans. J Genetics, 155: 1693 ~ 1699.
    Masson L, Erlandson M, Puzstai C M. 1998. A holistic approach for determining the entomopathogenic potential of Bacillus thuringiensis strains. J Applied and Environmental Microbiology, 64: 4782~4788.
    Morse R J, Yamamoto T, Stroud R M. 2001. Structure of Cry2Aa suggests an unexpected receptor binding epitope. J Structure, 9: 409~417.
    Nambiar P T, Ma S W, Lyer. V N. 1990. Limiting an insect infestation of nitrogen-fixing root nodules of the pigeon pea (Cajanuscajan) by engineering the expression of an entomocidal gene in its root nodules. J Applied and Environmental Microbiology, 56: 2866~2869.
    Ngamwongsatit P, Buasri W, Pianariyanon P, et al. 2008. Broad distribution of enterotoxin genes (hblCDA, nheABC, cytK, and entFM) among Bacillus thuringiensis and Bacillus cereus as shown by novel primers. Int J Food Microbiol., 121(3): 352-6.
    Noguera P A, Ibarra J E. 2010. Detection of New cry Genes of Bacillus thuringiensis by Use of a Novel PCR Primer System. J Applied and Environmental Microbiology, 76: 6150~6155.
    Ohba M, Lee DH. 2003. Bacillus thuringiensis associated with faeces of the Kerama-jika, Cervus nippon keramae, a wild deer indigenous to the Ryukyus, Japan. J Journal of Basic Microbiology, 43(2): 158-162.
    Ohba M, Shisa N, Thaithanun S, et al. 2002. A unique feature of Bacillus thuringiensis H-serotype flora in soils of a volcanic island of Japan. J. Gen. Appl. Microbiol., 48(4): 233-5.
    Peferoen M. 1997. Progress and prospects for field use of Bt genes in crops. J Trends in Biotechnology, 15: 173~177.
    Pedro A N, Jorge E I. 2010. Detection of new cry genes of Bacillus thuringiensis by use of a novel PCR primer system. J Applied and Environmental Microbiology, 76: 6150~6155.
    Perlak F J, Stone T B, Muskopf Y M. 1993. Genetically improved potatoes: protection from damage by Colorado potato beetles. J Plant Molecular Biology, 22: 313~321.Pornwiroon W, Katzenmeier G, Panyim S. 2004. Aromaticity of Tyr-202 in the alpha4-alpha5 loop is essential for toxicity of the Bacillus thuringiensis Cry4A toxin. J Journal of Biochemistry and Molecular Biology, 37: 292~297.
    Rajamohan F, Alcantara E, Lee M K, et al. 1995. Single amino acid changes in domain II of Bacillus thuringiensis CryIAb delta-endotoxin affect irreversible binding to Manduca sexta midgut membrane vesicles. J Bacteriol. 177: 2276-2282
    Rajamohan F, Lee M K, Dean D H. 1998. Bacillus thuringiensis insecticidal proteins: molecular mode of action. J Prog Nucleic Acid Res Mol Biol, 60: 1~27.
    Rasko D A, Alther M R, Han C S. 2005. Genomics of the Bacillus cereus group of organisms. J FEMS Microbiol Rev, 29: 303 ~ 329.
    Rodriguez P C, Galan W L, Barjac H. 1990. Bacillus thuringiensis subspecies neoleonensis serotype H-24, a new subspecies which produces a triangular crystal. J Invertebr Pathol1 Sep, 56(2): 280~284.
    Schnepf E, Crickmore N, VanRie J, et al. 1998. Bacillus thuringiensis and its pesticidal crystal Proteins. J Microbiol Mol Biol Rev, 62: 775~806.
    Schnepf H E, Whiteley H R. 1981. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. J Proceedings of the National Academy of Sciences of the United States of America, 78: 2893~2897.
    Schuler T H, Poppy M G, Kerry, B R. 1998. Insect-resistant transgenic plants. J Trends in Biotechnology, 16: 168~175.
    Shu C L, Yan G X, Wang R Y, et al. 2009. Characterization of a novel cry8 gene specific to Melolonthidaepests: Holotrichia oblita and Holotrichia parallela. J Applied and Environmental Microbiology, 97: 123~129.
    Song F P, Zhang J, Gu A, et al. 2003. Identification of cry1I-type genes from Bacillus thuringiensis strains and characterization of a novel cry1I-type gene. J Applied and Environmental Microbiology, 69: 5207~5211.
    Swiecicka I, Fiedoruk K, Bednarz G. 2002. The occurrence and properties of Bacillus thuringiensis isolated from free-living animals. J Lett Appl Microbiol, 34(3): 194~198.
    Tabashnik B E. 1997. One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins. J Agriculture Sciences, 94: 1640~1644.
    Tabashnik B E, Carriere Y, Dennehy T J. 2003. Insect resistance to transgenic Bt crops: lessons from the laboratory and field. J Journal of Economic Entomology, 96: 1031~1038.Tabashnik B E, Cushing N L, Finson N. 1990. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J Journal of Economic Entomology, 83: 1671~1676.
    Tabashnik B E, Dennehy T J, Sims M A. 2002. Control of resistant pink bollworm (Pectinophora gossypiella) by transgenic cotton that produces Bacillus thuringiensis toxin Cry2Ab. J Applied and Environmental Microbiology, 68: 3790~3794.
    Tabashnik B E, Gassmann A J, Crowder D W. 2008. Insect resistance to Bt crops: evidence versus theory. J Nature Biotechnology, 26: 199~202.
    Tabashnik B E, VanRensburg J B, Carrère Y. 2009. Field-evolved insect resistance to Bt crops: definition, theory, and data. J Econ Entomol 102: 2011~2025.
    Tojo A, Aizawa K. 1983. Dissolution and degradation of Bacillus thuringiensisδ-endotoxin by gut juice protease of the silkworm Bombyx mori. J Applied and Environmental Microbiology, 45: 576~580.
    Vaeck M, Reynaerts A, Hofte H. 1987. Transgenic plants protected from insect attack. J Nature, 328: 33~37.
    Valaitis A P, Augustin S, Clancy K M. 1999. Purification and characterization of western spruce bud worm larval midgut proteinases and comparison of gut activation of laboratory reared and field collected insects. J Insect Biochem. Mol. Biol. 29: 405-415.
    Wei J Z, HaleK L, Carta E. 2003. Bacillus thuringiensis crystal proteins that target nematodes. J Proc Natl Acad Sci USA, 100: 2760~2765.
    Xu Y, Nagai M, Bagdasarian M, et al. 2001. Expression of the p20 gene from Bacillus thuringiensis H-14 increases Cry11A toxin production and enhances mosquito-larvicidal activity in recombinant gram-negative bacteria. J Applied and Environmental Microbiology, 67: 3010-3015.
    Zhang L, Lin J, Luo L, et al. 2007. A novel Bacillus thuringiensis strain LLB6 isolated from bryophytes, and its new cry2Ac-type gene. J Letters in Applied Microbiology, 44(3): 301~307.
    Zhao J Z, Cao J, Collins H L, et al. 2005. Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. J Proc Natl Sci USA, 102(24): 8426~8430.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700