基于多元大环的分子机器及其功能化超分子聚合物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超分子聚合物是聚合物排列的单体单元通过可逆和高取向二级作用连接到一起,形成在稀溶液、浓溶液及大体积状态下具有聚合物性质的物质。聚合度、聚合物链寿命、聚合物组成等结构和动态参数决定了聚合物的性质,而这些性质是非共价键作用强弱的功能化表现,可以可逆调节。这就导致了超分子聚合物材料具有对外界刺激的响应能力,这是传统超分子所不具备的。超分子聚合物的这方面特性,引起了新型化合物的不断涌现,同时促进研究者将材料科学与超分子化学联合研究。在另一方面,要想达到聚合物具有众多重要性质的目标,我们需要引入可逆非共价键将重复单元连接成链。所有这些性质都具有重要的应用价值,因此,超分子聚合物成为我们研究的不二选择。
     第一章综述了基于多种大环的分子机器的超分子聚合物的最新研究进展。评述了超分子聚合物的定义,外界响应超分子聚合物的种类及其潜在的应用前景。重点指出基于分子机器的超分子聚合物是最具有应用前景超分子聚合物类型之一,同时介绍了基于环糊精、杯芳烃、葫芦脲和其他大环体系的超分子聚合物。最后提出了课题。
     第二章相对于已经广泛系统研究的常用主体单体的冠醚和环糊精而言,超分子聚合物中基于杯芳烃衍生物的主体客体相互作用的研究至今较少。我们研究了经由两个单体形成的新型荧光超分子聚合物,它包含基于对磺酸基杯[4]芳烃的同类双头连接体和荧光团修饰具联吡啶和二氨基连接体。这个荧光超分子聚合物具有电化学氧化还原和酸碱变化双响应的特性,同时伴随着由不同刺激引发形成的两种不同的拟轮烷单聚体。
     第三章π体系间的电荷转移(CT)作用和给体受体间作用已经发展成为非共价键作用的一个重要研究分支,被广泛应用于自组装体系的设计和合成中。将超分子体系的众多特性与超分子聚合物联系到一起,对于可控改变聚合物性质的研究具有重要意义。我们构建了一个基于主体稳定的联吡啶双阳离子与荧光团修饰二甲氨基单元间电荷转移作用的新型荧光超分子聚合物体系。通过将单体的供电子单元与邻近得电子单元包结在CB[8]中,形成CB[8]稳定的分子间CT作用,我们可以得到目标聚合物。于此同时,由于聚合物的性质受到相应单体的影响,该荧光聚合物可以对电化学和酸碱改变做出响应,并在相应刺激下诱导产生两种不同的拟轮烷单体作为聚合物单体。
     第四章利用非共价作用控制具有特定性能的分子的自组装是分子器件纳米加工的主要驱动力。独立单体的功能基团不仅可以为超分子聚合物的构建提供连接体,而且可以将优良的性能引入到超分子聚合物中。例如,光响应单体分子为所得超分子聚合物结构变化和形成/解离提供了光控途径。手性单体可以将手性引入到超分子聚合物中,从而形成手性超分子结构,展现出有趣的手性光学性能。我们提出合成双-对-磺化杯[4]芳烃与基于α-环糊精的包含手性1,1’-联萘和光响应偶氮苯单元的拟[3]轮烷,在主客体识别作用下,组装形成光驱动线形手性超分子聚合物。该超分子聚合物在非共价主客体作用驱动下的识别作用通过一维核磁谱图确认,其光响应性能通过紫外可见吸收光谱、扫描电子显微镜(SEM)、透射电子显微镜(TEM)测试表征。超分子聚合物的手性通过圆二色光谱确认。手性聚合物在光驱动下产生的显著形态变化也通过TEM和SEM观察。更有趣的是,长度为数百纳米至微米的水中动力学自组装的光驱动的单一线形手性超分子聚合物,在Cryo-TEM测试中观察到其自然态。同时,测试中观察到的单一超分子聚合物的长度也表明,杯芳烃与拟轮烷间的主客体复合在水中保持稳定。更重要的是,分子模拟也充分验证了这一有趣的光响应超分子聚合物的结构。
     第五章环糊精(CD)、葫芦脲(CB)和杯芳烃,作为三种不同的主体大环化合物,分别提供了特殊结构及迥异的超分子包结性能,被广泛用于轮烷和拟轮烷的构建中。在最近几年中,大量包含两个或多个大环组分于一个互锁体系(如轮烷低聚物)的轮烷和拟轮烷被研究和报道。然而,只有少量轮烷和拟轮烷体系包含两个或多个不同的主体大环。众所周知,水溶液中,α-CD可以包结乙烯吡啶和偶氮吡啶单元,CB[7]和SC4倾向于以高包结系数(约105L/mo1)包结双阳离子联吡啶单元。哑铃分子与α-CD, CB[7], SC4以不同模式包结,我们利用这个性质构建了拟[2]轮烷R,拟[3]轮烷R1和R2,拟[4]轮烷R1’,R2’和R3。这三种拟[4]轮烷一定程度上也可以看做是基于α-CD的轮烷,其两端被CB[7]和SC4以高常数包结,从而可以防止α-CD滑离R0。特别要指出的是拟[4]轮烷R3,它包含一个α-CD与偶氮苯单元包结的部分,和另外两个CB[7],SC4与4,4’-联吡啶单元分别包结的部分。据我们所知,这是将三种不同大环(α-CD、CB[7]、SC4)同时引入一个超分子拟轮烷体系研究的首例。这些复杂超分子体系的构建为多功能分子器件的发展建立了新的基础。
     第六章设计与合成新型功能性化合物是制造未来先进功能材料的基础,而器件化则是将化合物投入实际应用的关键步骤。我们组在构建溶液体系功能性分子机器方面做了大量工作,但是能够固态化和器件化的则很少。因此,将分子机器引入在液晶和器件化领域的研究,将很大程度推动分子机器及功能液晶材料双向领域的发展,攻克新的科研难题,同时可能在超分子器件化及功能液晶材料应用方面创造出新的科研领域。我们设计合成了多种液晶掺杂体分子机器和环状手性体系,对其进行了掺杂液晶实验和响应旋光改变能力测试。
     第七章结论
Supramolecular polymers are defined as polymeric arrays of monomeric units that are brought together by reversible and highly directional secondary interactions, resulting in polymeric properties in dilute and concentrated solutions, as well as in the bulk. The monomeric units of the supramolecular polymers themselves do not possess a repetition of chemical fragments. The directionality and strength of the supramolecular bonding are important features of systems that can be regarded as polymers and that behave according to well-established theories of polymer physics.
     Supramolecular polymers, the combination of supramolecular chemistry and polymer science, can be defined as polymeric systems that extend beyond the molecule and utilize noncovalent interactions to direct their assembly, to control their conformations, and/or to define their behavior. Due to the reversibility of noncovalent interactions, these materials are capable of undergoing self-healing and adaptation processes, which afford supramolecular polymers a major advantage over conventional, covalently bonded polymers. The responsiveness to external stimuli may further provide a range of potential applications such as smart/adaptive materials and devices.
     In Chapter one, the progress of fuctional supramolecular pseudorotaxane polymer was reviewed. It demonstrated the definition of supramolecular polymer, types of stimuli responsive supramolecular polymer and their promising application. The emphasis of review was paid to molecular machines based supramolecular polymer, and systematically introduced various functional supramolecular polymer based on cyclodextrin, calixarene, cucurbit and other macrocyclic system.
     In Chapter two, the host-guest interaction based on calixarene derivatives are relatively less explored in supramolecular polymers, while crown ethers and cyclodextrins as relatively common host monomer units has been studied systematically. We report here the formation of a novel fluorescent supramolecular polymer formed from two complimentary monomers which contain p-sulfonatocalix[4]arene based homoditopic receptor and the viologen and dimethylamino connectors decorated with a fluorophore. The fluorescent polymer can response to both electrochemical redox and pH variance, engendering two kinds of pseudorotaxanes formed as unimers induced by respective stimuli. Despite some calixarene-based supramolecular polymers in previous and more recent works, no such reversibly controlled electrochemical and pH dual-responsive fluorescent system has been reported before. Moreover, it novelly involves two disparate pseudorotaxanes as unimers in the reversible assembly/disassembly process of supramolecular polymer. The assembly/disassembly process of polymer, reversibly controlled by electrochemical and protonation/deprotonation can be conveniently addressed by fluorescence emission variance and induced circular dichroism (ICD) signals.
     In Chapter three, the charge-transfer (CT) interactions and donor-acceptor interactions between π-systems have become important classes of non-covalent interactions, and been greatly exploited in the design and synthesis of self-organizing systems. The organization of alternating electron-rich and electron-deficient units has also been employed to create novel macromolecules with folded structures. The properties of a supramolecular polymer can be adjusted by modulating the properties of its relevant monomers. Combining the well-known properties of macromolecule with supramolecular polymer has an enormous potential to alter the properties of polymer in a controlled way. By involving different pseudorotaxanes in reversible stimulus-responsive supramolecular polymer, we can enormously open the way of exploring potentially applicable aspects of supramolecular polymers as data memories and logic functions in nanoscale. We report here the formation of a novel fluorescent and high polymerized supramolecular polymer based on host-stabilized CT interactions between a viologen dication connector and a cyano-stilbene fluorophore decorated with dimethylamino portion. The fluorescent polymer can be formed by bringing the monomer's donor and acceptor units of close proximity inside the CB[8] cavity, resulting in a stable intermolecular CT complex stabilized by CB[8]. At the same time, because that the properties of the polymer are affected by the relevant monomers, the polymer can response to both electrochemical redox and pH variance, with two kinds of pseudorotaxanes formed as monomers when induced by respective stimuli.
     In Chapter four, the ability to control molecular self-assembly with tailored properties by non-covalent interactions is a major driving force in the bottom-up nanofabrication of molecular devices. Photoresponsive monomer molecules can provide a path to remotely control the resulting supramolecular polymer morphology or formation by light. Chiral monomers can impart chirality into the supramolecular polymers to form chiral suprastructures which may exhibit some fascinating chirooptical properties. Light-driven linear chiral supramolecular polymer was constructed in water by host-guest molecular recognition between bis-p-sulfonatocalix[4]arenes and the α-cyclodextrin based pseudo[3]rotaxane containing axially chiral1,1'-binaphthyl and photoresponsive azobenzene moieties. The successful supramolecular polymerization by non-covalent host-guest molecular recognition was confirmed by1H NMR, and its photoresponsive behavior was investigated by UV-vis absorption spectra, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The chirality of this supramolecular polymer was confirmed by circular dichroism spectra. The dramatic morphology change of this chiral polymer driven by light was observed in TEM and SEM images. More interestingly, the dynamically self-assembled, light-driven single linear helical supramolecular polymer with a length of hundreds of nanometers to micrometers in water was directly observed in its native state using Cryo-TEM measurements.
     In Chapter five, cyclodextrin (CD), cucurbituril (CB) and calixarene, as three different host macrocycle compounds provided with special structures and disparate supramolecular inclusion performances respectively, have been extensively employed to construct rotaxanes and pseudorotaxanes. Many rotaxanes or pseudorotaxanes incorporating two or more components in one interlocked system (either rotaxane oligomer or not) have been constructed in recent years. However, there were only a few rotaxanes or pseudorotaxanes incorporating two or more different host macrocycles in one system. The very known phenomena have been reported that a-CD can encircle on such moieties as stilbenzene and azobenzene in aqueous solution, CB[7] and SC4prefers to bind4,4'-bipyridinium (viologen) dication units with very high association constants. Then combining the dumbbell with a-CD, CB[7] and SC4in various combination modes, we constructed the pseudo[2]rotaxane R, pseudo[3]rotaxanes R1and R2, pseudo[4]rotaxanes R1', R2'and R3. The three pseudo[4]rotaxanes could be also regarded as a-CD based rotaxanes to some extent because its two end parts, included by CB[7] or SC4with very high association constants, could be used to stop a-CD slipping away from RO. In particular, the pseudo [4]rotaxane R3consists of one inclusion part between a-CD and the azobenzene moiety and another two inclusion sites between CB[7], SC4and4,4-bipyridinium units respectively. As far as we know, it is the first example that the three hetero-macrocycle (a-CD, CB[7] and SC4) host are incorporated in one supramolecular pseudorotaxane system. The constructions of these complicated supramolecular systems may set up new basis for exploiting future molecular devices with multiple functions.
     In Chapter six, synthetic chemistry plays a key role in the advancement of material sciences and life sciences, and its key point is to utilize those materials into practice is the process of mechanization. Our group has done a lot of work on kinds of functional molecular machines in solutions, while rare in solid and mechanization. So it is necessary for us to connect our abundant synthesizing experiences in molecular machine and the research in liquid crystal material, to improve the development of both fields and capture some intractable scientific problems and create new fields in the mechanization of supramolecular system and application of functional liquid crystal materials. We designed and sythesised kinds of liquid crystal dopant material based on molecular machine and cyclic chiral system, and tested its HTP by dopanting them in liquid crystal.
     In Chapter seven is the conclusion.
引文
[1](a) R. Foster, Organic Charge-Transfer Complexes, Academic Press, New York,1969; (b) P. Monk, The Viologens:Physicochemical Properties, Synthesis and Applications of the Salts of 4,49-Bipyridine, Wiley, New York,1998; (c)朱道本.功能材料化学进展.北京:化学工业出版社,2005.355-356;(d)黄方.杯芳烃的合成及其分子识别的研究.山东:山东大学,2000.
    [2](a) D. Philp and J. F. Stoddart. Self-Assembly in Natural and Unnatural Systems. Angew. Chem., Int. Ed. Engl.,1996,35,1154-1196; (b) D. B. Amabilino and J. F. Stoddart. Interlocked and intertwined structures and superstructures. Chem. Rev.,1995,95, 2725-2828.
    [3](a) Molecular machines special issue, Ace. Chem. Res.,2001,34,409-522; (b) V. Balzani, A. Credi, F. M. Raymo and J. F. Stoddart. Artificial molecular machines. Angew. Chem., Int. Ed.,2000,39,3348-3391; (c) J.-P. Sauvage. Transition metal-containing rotaxanes and catenanes in motion:toward molecular machines and motors. Acc. Chem. Res.,1998,31, 611-619.
    [4](a) M. B. Nielsen, C. Lomholt and J. Becher. Tetrathiafulvalenes as building blocks in supramolecular chemistry. Chem. Soc. Rev.,2000,29,153-164; (b) M. R. Bryce. Tetrathiafulvalenes as π-Electron Donors for Intramolecular Charge-Transfer Materials. Adv. Mater.,1999,11,11-23.
    [5](a) R. S. Lokey and B. L. Iverson. Synthetic Molecules that Fold into a Pleated Secondary Structure in Solution. Nature,1995,375,303-305; (b) G. J. Gabriel and B. L. Iverson. Aromatic oligomers that form hetero duplexes in aqueous solution. J. Am. Chem. Soc.,2002, 124,15174-15175; (c) S. Ghosh and S. Ramakrishnan. Structural Fine-Tuning of (-Donor-spacer-acceptor-spacer-)n Type Foldamers. Effect of Spacer Segment Length, Temperature, and Metal-Ion Complexation on the Folding Process. Macromolecules,2005, 38,676-686; (d) L. Y. Park, D. G. Hamilton, E. A. McGehee and K. A. McMenimen. Complementary C3-symmetric donor-acceptor components:cocrystal structure and control of mesophase stability. J. Am. Chem. Soc.,2003,125,10586-10590.
    [6](a) K. B. Yoon. Electron- and Charge-Transfer Reactions within Zeolites. Chem. Rev.,1993, 93,321-339; (b) K. B. Yoon and J. K. Kochi. Stepwise Assembly of Charge-Transfer Complexes within Zeolite Supercages as Visual Probes for Shape Selectivity. J. Phys. Chem., 1991,95,3780-3790; (c) K. B. Yoon and J. K. Kochi. Shape-Selective Access to Zeolite Supercages. Arene Charge-Transfer Complexes with Viologens as Visible Probes. J. Am. Chem. Soc.,1989,111,1128-1130.
    [7]H.-J. Kim, J. Heo, W. S. Jeon, E. Lee, J. Kim, S. Sakamoto, K. Yamaguchi and K. Kim. Selective Inclusion of a Hetero-Guest Pair in a Molecular Host:Formation of Stable Charge-Transfer Complexes in Cucurbit[8]uril. Angew. Chem., Int. Ed.,2001,40, 1526-1529.
    [8]L. Brunsveld, B. J. B. Folmer, E. W. Meijer and R. P. Sijbesma. Supramolecular polymers. Chem. Rev.,2001,101,4071-4098.
    [9]T. F. A. De Greef, M. M. J. Smulders, M. Wolffs, A. P. H. J. Schenning, R. P. Sijbesma and E. W. Meijer. Supramolecular Polymerization. Chem. Rev.,2009,109,5687-5754.
    [10]J. D. Fox and S. J. Rowan. Supramolecular Polymerizations and Main-Chain Supramolecular Polymers. Macromolecules,2009,42,6823-6835.
    [11]A. Harada, Y. Takashima and H. Yamaguchi. Cyclodextrin-based supramolecular polymers. Chem. Soc. Rev.,2009,38,875-882.
    [12]S. I. Stupp, V. LeBonheur, K. Walker, L. S. Li, K. E. Huggins, M. Keser and A. Amstutz. Supramolecular materials:Self-organized nanostructures. Science,1997,276,384-389.
    [13]J. D. Hartgerink, E. Beniash and S. I. Stupp. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science,2001,294,1684-1688.
    [14]T. F. A. de Greef and E. W. Meijer. Supramolecular Polymers. Nature,2008,453,171-173.
    [15]W. Zhang, W. Jin, T. Fukushima, A. Saeki and T. Aida. Supramolecular linear heterojunction composed of graphite-like semiconducting nanotubular segments. Science, 2011,334,340-343.
    [16]E. Krieg, H.Weissman, E. Shirman, E. Shimoni and B. Rybtchinski. A Recyclable... Separation of Nanoparticles. Nat. Nanotechnol.,2011,6,141-146.
    [17]M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov and S. Minko. Emerging applications of stimuli-responsive polymer materials. Nat. Mater.,2010, 9,101-113.
    [18]R. J. Wojtecki, M. A. Meador and S. J. Rowan. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat. Mater.,2011,10,14-27.
    [19]L. Brunsveld, B. J. B. Folmer, E. W. Meijer and R. P. Sijbesma. Supramolecular polymers. Chem. Rev.,2001,101,4071-4079.
    [20]T. F. A. De Greef, M. M. J. Smulders, M. Wolffs, A. P. H. J. Schenning, R. P. Sijbesma and E. W. Meijer. Supramolecular polymerization. Chem. Rev.,2009,109,5687-5754.
    [21]J. D. Fox and S. J. Rowan. Supramolecular Polymerizations and Main-Chain Supramolecular Polymers. Macromolecules,2009,42,6823-6835.
    [22]A. Harada, Y. Takashima and H. Yamaguchi. Cyclodextrin-based supramolecular polymers. Chem. Soc. Rev.,2009,38,875-882.
    [23]S. K. Yang, A. V. Ambade and M. Weck. Main-Chain Supramolecular Block Copolymers. Chem. Soc. Rev.,2011,40,129-137.
    [24]B. Zheng, F. Wang, S. Dong and F. Huang. Supramolecular polymers constructed by crown ether-based molecular recognition. Chem. Soc. Rev.,2012,41,1621-1636.
    [25]T. Aida, E. W. Meijer and S. I. Stupp. Functional Supramolecular Polymers. Science,2012, 335,813-817.
    [26]M. Fathalla, C. M. Lawrence, N. Zhang, J. L. Sessler and J. Jayawickramarajah. Base-Pairing Mediated Non-Covalent Polymers. Chem. Soc. Rev.,2009,38,1608-1620.
    [27]O. Ikkala and G. ten Brinke. Functional materials based on self-assembly of polymeric supramolecules. Science,2002,295,2407-2409.
    [28]A. Harada, R. Kobayashi, Y. Takashima, A. Hashidzume and H. Yamaguchi. Self-assembly through molecular recognition. Nat. Chem.,2011,3,34-37.
    [29]H. H. Dam and F. Caruso. Construction and Degradation of Polyrotaxane Multilayers. Adv. Mater.,2011,23,3026-3029.
    [30]J. Luo, T. Lei, L. Wang, Y. Ma, Y. Cao, J. Wang and J. Pei. Highly Fluorescent Rigid... Nanowires Constructed Through Multiple Hydrogen Bonds. J. Am. Chem. Soc.,2009,131, 2076-2077.
    [31]D. Gonza lez-Rodrigue and A. P. H. J. Schenning. Hydrogen-bonded Supramolecular p-Functional Materials. Chem. Mater.,2011,23,310-325.
    [32]K. P. Nair, V. Breedveld and M. Weck. Complementary hydrogen bonded thermoreversible polymer networks with tunable properties. Macromolecules,2008,41,3429-3438.
    [33]E. Kolomiets and J.-M. Lehn. Double dynamers:molecular and supramolecular double dynamic polymers. Chem. Commun.,2005,1519-1521.
    [34]J.-M. Lehn. Dynamers:Dynamic molecular and supramolecular polymers. Prog. Polym. Sci.,2005,30,814-831.
    [35]A. Ciesielski, A. R. Stefanliewicz, F. Hanke, M. Persson, J.-M. Lehn and P. Samori. Rigid dimers formed through strong interdigitated H-bonds yield compact 1D supramolecular polymers. Small,2011,7,342-350.
    [36]T. Park and S. C. Zimmerman. Formation of a Miscible Supramolecular Polymer Blend through Self-Assembly Mediated by a Quadruple Hydrogen-Bonded Heterocomplex. J. Am. Chem. Soc.,2006,128,11582-11590.
    [37]E. M. Todd and S. C. Zimmerman. Supramolecular star polymers. Increased molecular weight with decreased polydispersity through self-assembly. J. Am. Chem. Soc.,2007,129, 14534-14535.
    [38]A. Ustinov, H. Weissman, E. Shirman, I. Pinkas, X. Zhao and B. Rybtchinski. Supramolecular polymers in aqueous medium:rational design based on directional hydrophobic interactions. J. Am. Chem. Soc.,2011,133,16201-16211.
    [39]E. Obert, M. Bellot, L. Bouteiller, F. Andrioletti, C. Lehen-Ferrenbach and F. Boue. Both water-and organo-soluble supramolecular polymer stabilized by hydrogen-bonding and hydrophobic interactions. J. Am. Chem. Soc.,2007,129,15601-15605.
    [40]G. R. Whittell, M. D. Hager, U. S. Schubert and I. Manners. Functional soft materials from metallopolymers and metallosupramolecular polymers. Nat. Mater.,2011,10,176-188.
    [41]C.-F. Chow, S. Fujii and J.-M. Lehn. Metal lodynamers:Neutral Dynamic Metallosupramolecular Polymers Displaying Transformation of Mechanical and Optical Properties on Constitutional Exchange. Angew. Chem., Int. Ed.,2007,46,5007-5010.
    [42]W. C. Yount, D. M. Loveless and S. L. Craig. Small Molecule Dynamics and Mechanisms Underlying the Macroscopic Mechanical Properties of Coordinatively Crosslinked Polymer Networks. J. Am. Chem. Soc.,2005,127,14488-14496.
    [43]D. Xu, J. L. Hawk, D. M. Loveless, S. L. Jeon and S. L. Craig. Mechanism of Shear Thickening in Reversibly Cross-linked Supramolecular Polymer Networks. Macromolecules,2010,43,3556-3565.
    [44]D. Xu and S. L. Craig. Scaling Laws in Supramolecular Polymer Networks. Macromolecules,2011,44,5465-5472.
    [45]R. R. Pal, M. Higuchi and D. G. Kurth. Optically active metallo-supramolecular polymers derived from chiral bis-terpyridines. Org. Lett.,2009,11,3562-3565.
    [46]G. Schwarz, Y. Bodenthin, Z. Tomkowicz, W. Haase, T. Geue, J. Kohlbrecher, U. Pietsch and D. G. Kurth. Tuning the structure and the magnetic properties of metallo-supramolecular polyelectrolyte-amphiphile complexes. J. Am. Chem. Soc.,2011, 133,547-558.
    [47]F. S. Han, M. Higuchi and D. G. Kurth. Metallo-supramolecular polymers based on... as novel electrochromic materials. Adv. Mater.,2007,19,3928-3931.
    [48]F. S. Han, M. Higuchi and D. G. Kurth. Metallosupramolecular polyelectrolytes self-assembled from various pyridine ring-substituted bisterpyridines and metal ions: photophysical, electrochemical, and electrochromic properties. J. Am. Chem. Soc.,2008, 130,2073-2081.
    [49]K. E. Feldman, M. J. Kade, E. W. Meijer, C. J. Hawker and E. J. Kramer. Phase Behavior of; Complementary Multiply Hydrogen Bonded End-functional Polymer Blends. Macromolecules,2010,43,5121-5127.
    [50]J. Shi, Y. Chen, Q. Wang and Y. Liu. Adv. Mater.,2010,22,2075-2249.
    [51]Y. Liu, C.-F. Ke, H.-Y. Zhang, J. Cui and F. Ding. Complexation-induced transition of... and cyclodextrinarrays. J. Am. Chem. Soc.,2008,130,600-605.
    [52]M. Miyauchi and A. Harada. Construction of Supramolecular Polymers with Alternating a-, b-Cyclodextrin Units Using Conformational Change Induced by Competitive Guests. J. Am. Chem. Soc.,2004,126,11418-11419.
    [53]A. Harada, Y. Takashima and H. Yamaguchi. Cyclodextrin-Based Supramolecular Polymers. Chem. Soc. Rev.,2009,38,875-882.
    [54]Q.Wang, J. L.Mynar,M. Yoshida, E. Lee, K. Okuro, K. Kinbara and T. Aida. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature,2010,463,339-343.
    [55]I. Hwang, W. S. Jeon, H. J. Kim, D. W. Kim, H. Kim, N. Selvapalam, N. Fujita, S. Shinkai and K. Kim. Cucurbit[7]uril:A simple macrocyclic, pH-triggered hydrogelator exhibiting guest-induced stimuli-responsive behavior. Angew. Chem., Int. Ed.,2007,46,210-213.
    [56]M.-O. M. Piepenbrock, G. O. Lloyd, N. Clarke and J. W. Steed. Metal- and anion-binding supramolecular gels. Chem. Rev.,2010,110,1960-2004.
    [57]J. A. Foster, M.-O. M. Piepenbrock, G. O. Lloyd, N. Clarke, J. A. K. Howard and J. W. Steed. Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth. Nat. Chem.,2010,2,1037-1043.
    [58]D. K. Smith. Lost in translation? Chirality effects in the self-assembly of nanostructured gel-phase materials. Chem. Soc. Rev.,2009,38,684-694.
    [59]Y. Tanaka, J. P. Gong and Y. Osada. Novel hydrogels with excellent mechanical performance. Prog. Polym. Sci.,2005,30,1-9.
    [60]T. Ono, T. Sugimoto, S. Shinkai and K. Sada. Lipophilic polyelectrolyte gels as super-absorbent polymers for nonpolar organic solvents. Nat. Mater.,2007,6,429-433.
    [61]B. Balakrishnan and R. Banerjee. Biopolymer-based hydrogels for cartilage tissue engineering. Chem. Rev.,2011,111,4453-4474.
    [62]X. Zhao, J. Kim, C. A. Cezar, N. Huebsch, K. Lee, K. Bouhadir and D. J. Mooney. Active scaffolds for on-demand drug and cell delivery. Proc. Natl. Acad. Sci. U. S. A.,2011,108, 67-72.
    [63]J. Liu, P. He, J. Yan, X. Fang, J. Peng, K. Liu and Y. Fang. An Organometallic Super-Gelator with Multiple-Stimulus Responsive Properties. Adv. Mater.,2008,20, 2508-2511.
    [64]X. Li, J. Li, Y. Gao, Y. Kuang, J. Shi and B. Xu. Molecular nanofibers of olsalazine form supramolecular hydrogels for reductive release of an anti-inflammatory agent. J. Am. Chem. Soc.,2010,132,17707-177709.
    [65]O. Kretschmann, S. W. Choi, M. Miyauchi, I. Tomatsu, A. Harada and H. Ritter. Switchable hydrogels obtained by supramolecular cross-linking of adamantyl-containing LCST copolymers with cyclodextrin dimers. Angew. Chem., Int. Ed.,2006,45,4361-4365.
    [66]Y. Okumura and K. Ito. The Polyrotaxane Gel:A Topological Gel by Figure-of-Eight Cross-links. Adv. Mater.,2001,13,485-487.
    [67]S. Yagai, M. Higashi, T. Karatsu and A. Kitamura. Dye-Assisted Structural Modulation of Hydrogen-Bonded Binary Supramolecular Polymers. Chem. Mater.,2005,17,4392-4398.
    [68]E. A. Appel, F. Biedermann, U. Rauwald, S. T. Jones, J.M. Zayed and O. A. Scherman. Supramolecular cross-linked networks via host-guest complexation with cucurbit[8]uril. J. Am. Chem. Soc.,2010,132,14251-14260.
    [69]A. Lendlein and S. Kelch. Shape-Memory Polymers. Angew. Chem., Int. Ed.,2002,41, 2034-2057.
    [70]C. Liu, H. Qin and P. T. Mather. Review of progress in shape-memory polymers. J. Mater. Chem.,2007,17,1543-1558.
    [71]H. Jiang, S. Kelch and A. Lendlein. Polymers Move in Response to Light. Adv. Mater., 2006,18,1471-1475.
    [72]M. Behl, M. Y. Razzaq and A. Lendlein. Multifunctional shape-memory polymers. Adv. Mater.,2010,22,3388-3410.
    [73]T. D. Nguyen, C. M. Yakachi, P. D. Brahmbhatt and M. L. Chambers. Modeling the relaxation mechanisms of amorphous shape memory polymers. Adv. Mater.,2010,22, 34113423.
    [74]W. Voit, T. Ware, R. R. Dasari, P. Smith, L. Danz, D. Simon, S. Barlow, S. R. Marder and K. Gall. High-Strain Shape-Memory Polymers. Adv. Funct. Mater.,2010,20,162-171.
    [75]S.-K. Ahn and R. M. Kasi. Exploiting Microphase Separated Morphologies of Side-Chain Liquid Crystalline Polymer Networks for Triple Shape Memory Properties. Adv. Funct. Mater.,2011,21,4543-4549.
    [76]M. Ebara, K. Uto, N. Idota, J. M. Hoffman and T. Aoyagi. Shape-memory surface with dynamically tunable nano-geometry activated by body heat. Adv. Mater.,2012.24. 273-278.
    [77]P. Agarwal, M. Chopra and L. A. Archer. Nanoparticle netpoints for shape-memory polymers. Angew. Chem., Int. Ed.,2011,50,8670-8673.
    [78]X. Zheng, S. Zhou, X. Li and J. Weng. Shape memory properties of poly(D,L-lactide)/hydroxyapatite composites. Biomaterials,2006,27,4288-4295.
    [79]B. Guo, Y. Chen, Y. Lei, L. Zhang, W. Y. Zhou, A. B. M. Rabie and J. Zhao. Biobased poly(propylene sebacate) as shape memory polymer with tunable switching temperature for potential biomedical applications. Biomacromolecules,2011,12,1312-1321.
    [80]J.-M. Raquez, S. Vanderstappen, F. Meyer, P. Verge, M. Alexzndre, J.-M. Thomassin, C. Jerome and P. Dubois. Design of cross-linked semicrystalline poly(s-caprolactone)-based networks with one-way and two-way shape-memory properties through Diels-Alder reactions. Chem.-Eur. J.,2011,17,10135-10143.
    [81]R. A. Welss, E. Izzo and S. Mandelbaum. New Design of Shape Memory Polymers: Mixtures of an Elastomeric Ionomer and Low Molar Mass Fatty Acids and Their Salts. Macromolecules,2008,41,2978-2980.
    [82]A. Lendlein, H. Jiang, O. Junger and R. Langer. Light-induced shape-memory polymers. Nature,2005,434,879-882.
    [83]T. Ware, K. Hearon, A. Lonnecker, K. L. Wooley, D. J. Maitland and W. Voit. Triple-Shape Memory Polymers Based on Self-Complementary Hydrogen Bonding. Macromolecules, 2012,45,1062-1069.
    [84]M.-M. Fan, Z.-J. Yu, H.-Y. Luo, S. Zhang and B.-J. Li. Supramolecular Network Based on the Self-Assembly of y-Cyclodextrin with Poly(ethylene glycol) and its Shape Memory Effect. Macromol. Rapid Commun.,2009,30,897-903.
    [85]H. Luo, M. Fan, Z. Yu, X. Meng, B. Li and S. Zhang. Preparation and Properties of Degradable Shape Memory Material Based on Partial a-Cyclodextrin-Poly(ε-caprolactone) Inclusion Complex. Macromol. Chem. Phys.,2009,210,669-676.
    [86]S. Zhang, Z. Yu, T. Govender, H. Luo and B. Li. A novel supramolecular shape memory material based on partial α-CD-PEG inclusion complex. Polymer,2008,49,3205-3210.
    [87]S. Chen, J. Hu, H. Zhuo, C. Yuen and L. Chan. Study on the thermal-induced shape memory effect of pyridine containing supramolecular polyurethane. Polymer,2010,51, 240-248.
    [88]H.-B. Yao, G. Huang, C.-H. Cui, X.-H. Wang and S.-H. Yu. Macroscale elastomeric conductors generated from hydrothermally synthesized metal-polymer hybrid nanocable sponges. Adv. Mater.,2011,23,3643-3647.
    [89]Y. Yu and T. Ikeda. Soft actuators based on liquid-crystalline elastomers. Angew. Chem., Int. Ed.,2006,45,5416-5418.
    [90]T. Ikeda, J.-i. Mamiya and Y. Yu. Photomechanics of liquid-crystalline elastomers and other polymers. Angew. Chem., Int. Ed.,2007,46,506-528.
    [91]H. Yang, A. Buguin, J.-M. Taulemesse, K. Kaneko, S. Mery, A. Bergeret and P. Keller. Micron-sized main-chain liquid crystalline elastomer actuators with ultralarge amplitude contractions. J. Am. Chem. Soc.,2009,131,15000-15004.
    [92]M. T. Martello and M. A. Hillmyer.Polylactide-Poly(6-methyl-s-caprolactone)-Polylactide Thermoplastic Elastomers. Macromolecules,2011,44,8537-8545.
    [93]J. Yoon, H.-J. Lee and C. M. Stafford. Thermoplastic Elastomers Based on Ionic Liquid and Poly(vinyl alcohol). Macromolecules,2011,44,2170-2178.
    [94]J. Li, C. L. Lewis, D. L. Chen and M. Anthamatten. Dynamic Mechanical Behavior of Photo-Crosslinked Shape-Memory Elastomers. Macromolecules,2011,44,5336-5343.
    [95]C. B. Anfinsen. Principles that govern the folding of protein chains. Science,1973,181, 223-230.
    [96]A. E. Mirsky and L. Pauling. On the Structure of Native, Denatured, and Coagulated Proteins. Proc. Natl. Acad. Sci. U. S. A.,1936,22,439-440.
    [97]D. J. Hill, M. J. Mio, R. B. Prince, T. S. Hughes and J. S. Moore. A field guide to foldamers. Chem. Rev.,2001,101,3893-4012.
    [98]R. P. Cheng, S. H. Gellman and W. F. Degrado. Beta-Peptides:from structure to function Chem. Rev.,2001,101,3219-3232.
    [99]E. Harth, B. Van Horn, V. Y. Lee, D. S. Germack, C. P. Gonzales, R. D. Miller and C. J. Hawker. A facile approach to architecturally defined nanoparticles via intramolecular chain collapse. J. Am. Chem. Soc.,2002,124,8653-8660.
    [100]A. E. Cherian, F. C. Sun, S. S. Sheiko and G. W. Coates. Formation of nanoparticles by intramolecular cross-linking:following the reaction progress of single polymer chains by atomic force microscopy. J. Am. Chem. Soc.,2007,129,11350-11351.
    [101]T. Terashima, M. Kamigaito, K. Y. Baek, T. Ando and M. Sawamoto. Polymer catalysts from polymerization catalysts:direct encapsulation of metal catalyst into star polymer core during metal-catalyzed living radical polymerization. J. Am. Chem. Soc,2003,125, 5288-5289.
    [102]E. J. Foster, E. B. Berda and E. W. Meijer. Metastable supramolecular polymer nanoparticles via intramolecular collapse of single polymer chains. J. Am. Chem. Soc., 2009,131,6964-6966.
    [103]M. Seo, B. J. Beck, J. M. J. Paulusse, C. J. Hawker and S. Y. Kim. Polymeric nanoparticles via noncovalent cross-linking of linear chains. Macromolecules,2008,41, 6413-6418.
    [104]T. Mes, R. van der Weegen, A. R. A. Palmans and E. W. Meijer. Single-chain polymeric nanoparticles by stepwise folding. Angew. Chem., Int. Ed.,2011,50,5085-5089.
    [105]Y. Kohsaka, K. Nakazono, Y. Koyama, S. Asai and T. Takata. Size-complementary rotaxane cross-linking for the stabilization and degradation of a supramolecular network. Angew. Chem., Int. Ed.,2011,50,4872-4875.
    [106]Z. Ge, J. Hu, F. Huang and S. Liu. Responsive supramolecular gels constructed by crown ether based molecular recognition. Angew. Chem., Int. Ed.,2009,48,1798-1802.
    [107]S. Dong, Y. Luo, X. Yan, B. Zheng, X. Ding, Y. Yu, Z. Ma, Q. Zhao and F. Huang. A dual-responsive supramolecular polymer gel formed by crown ether based molecular recognition. Angew. Chem., Int. Ed.,2011,50,1905-1909.
    [108]Y.-S. Su, J.-W. Liu, Y. Jiang and C.-F. Chen. Assembly of a self-complementary monomer: formation of supramolecular polymer networks and responsive gels. Chem.-Eur. J.,2011, 17,2435-2441.
    [109]O. Uzun, A. Sanyal, H. Nakade, R. J. Thibault and V. M. Rotello. Recognition-induced transformation of microspheres into vesicles:morphology and size control. J. Am. Chem. Soc.,2004,126,14773-14777.
    [110]J. Bu, N. D. Lilienthal, J. E. Woods, C. E. Nohrden, K. T. Hoang, D. Truong and D. K. Smith. Electrochemically controlled hydrogen bonding. Nitrobenzenes as simple redox-dependent receptors for arylureas. J. Am. Chem. Soc.,2005,127,6423-6429.
    [111]M. Herder, M. Patzel, L. Grubert and S. Hecht. Photoswitchable triple hydrogen-bonding motif. Chem. Commun.,2011,47,460-462.
    [112]T. Park and S. C. Zimmerman. A supramolecular multi-block copolymer with a high propensity for alternation. J. Am. Chem. Soc.,2006,128,13986-13987.
    [113]A. M. S. Kumar, S. Sivakova, J. D. Fox, J. E. Green, R. E. Marchant and S. J. Rowan. Molecular Engineering of New Supramolecular Scaffold Coatings that Can Reduce Static Platelet Adhesion. J. Am. Chem. Soc.,2008,130,1466-1467.
    [114]T. Park, E. M. Todd, S. Nakashima and S. C. Zimmerman. A quadruply hydrogen bonded heterocomplex displaying high-fidelity recognition. J. Am. Chem. Soc.,2005,127, 18133-18142.
    [115]B. A. Blight, A. Camara-Campos, S. Djurdjevic, M. Kaller, D. A. Leigh, F. M. McMillan, H. McNab and A. M. Z. Slawin. AAA-DDD triple hydrogen bond complexes. J. Am. Chem. Soc.,2009,131,14116-14122.
    [116]B. A. Blight, C. A. Hunter, D. A. Leigh, H. McNab and P. I. T. Thomson. An AAAA-DDDD Quadruple Hydrogen-Bond Array. Nat. Chem.,2011,3,244-248.
    [117]R. P. Sijbesma, F. H. Beijer, L. Brunsveld, B. J. B. Folmer, J. H. K. K. Hirschberg, R. F. M. Lange, J. K. L. Lowe and E. W. Meijer. Reversible Polymers Formed from Self-Complementary Monomers Using Quadruple Hydrogen Bonding. Science,1997,278, 1601-1604.
    [118]O. A. Scherman, G. B. W. L. Ligthart, R. P. Sijbesma and E. W. Meijer. A Selectivity-Driven Supramolecular Polymerization of an AB Monomer. Angew. Chem., Int. Ed.,2006,45,2072-2076.
    [119]M. M. L. Nieuwenhuizen, T. F. A. de Greef, R. L. J. van der Bruggen, J. M. J. Paulusse, W. P. J. Appel, M. M. J. Smulders, R. P. Sijbesma and E. W. Meijer. Self-assembly of Ureidopyrimidinone dimers into One-Dimensional Stacks by Lateral Hydrogen Bonding. Chem.-Eur. J.,2010,16,1601-1612.
    [120]A. M. Kushner, J. D. Vossler, G. A. Williams and Z. Guan. A biomimetic modular polymer with tough and adaptive properties. J. Am. Chem. Soc.,2009,131,8766-8768.
    [121]M. Nakahata, Y. Takashima, H. Yamaguchi and A. Harada. Redox-responsive self-healing materials formed from host-guest polymers. Nat. Commun.,2011,2,511.
    [122]Q. Yan, J. Yuan, Z. Cai, Y. Xin, Y. Kang and Y. Yin. Voltage-responsive vesicles based on orthogonal assembly of two homopolymers. J. Am. Chem. Soc.,2010,132,9268-9270.
    [123]C. O. Dietrich-Buchecker, J.-P. Sauvage and J.-P. Kintzinger. Une Nouvelle Famille de. Molecules:les Metallo-Catenanes. Tetrahedron Lett.,1983,24,5095-5098.
    [124]G. Schill and H. Zollenko, Justus Liebigs Ann. Chem.,1969,721,53.
    [125]C. O. Dietrich-Buchecker and J.-P. Sauvage. A synthetic molecular trefoil knot. Angew. Chem., Int. Ed. Engl.,1989,28,189-192.
    [126]B. Hudson and J. Vinograd. Catenated circular DNA molecules in HeLa cell mitochondria. Nature,1967,216,647-652.
    [127]W. R. Wikoff, L. Liljas, R. L. Duda, H. Tsuruta, R. W. Hendrix and J. E. Johnson. Topologically linked protein rings in the bacteriophage HK97 capsid. Science,2000,289, 2129-2133.
    [128]O. S. Miljanic and J. F. Stoddart. Dynamic donor-acceptor [2]catenanes. Proc. Natl. Acad. Sci. U. S. A.,2007,104,12966-12970.
    [129]T. Maeda, H. Otsuka and A. Takahara. Repeatable Photoinduced Self- Healing of Covalently Cross- Linked Polymers through Reshuffling of Trithiocarbonate Units. Prog. Polym. Sci.,2009,34,581-604.
    [130]D. Whang, Y. M. Jeon, J. Heo and K. Kim. Self-Assembly of a Polyrotaxane. J. Am. Chem. Soc.,1996,118,11333-11334.
    [131]J. Wu, K. C. F. Leung and J. F. Stoddart. Efficient production of [n]rotaxanes by using template-directed clipping reactions. Proc. Natl. Acad. Sci. U. S. A.,2007,104,17266-17271.
    [132]S. J. Rowan, S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders and J. F. Stoddart. Dynamic covalent chemistry. Angew. Chem., Int. Ed.,2002,41,898-952.
    [133]W. R. Dichtel, O. S. Miljanic, J. M. Spruell, J. R. Heath and J. F. Stoddart. Efficient templated synthesis of donor-acceptor rotaxanes using click chemistry. J. Am. Chem. Soc., 2006,128,10388-10390.
    [134]D. B. Amabilino, P.-L. Anelli, P. R. Ashton, G. R. Brown, E. Cordova, L. A. Godinez, W. Hayes, A. E. Kaifer, D. Philp, A. M. Z. Slawin, N. Spencer, J. F. Stoddart, M. S. Tolley and D. J. Williams. Molecular meccano 4:The self-assembly of [2]catenanes incorporating photoactive and electroactive p-extended systems. J. Am. Chem. Soc.,1995, 117,11142-11170.
    [135]C. B. Gorman, E. J. Ginsburg and R. H. Grubbs. Soluble, highly conjugated derivatives of polyacetylene from the ring-opening metathesis polymerization of monosubstituted cyclooctatetraenes:synthesis and the relationship between polymer structure and physical properties. J. Am. Chem. Soc.,1993,115,1397-1409.
    [136]G. A. Kaminski, R. A. Friesner, J. Tirado-Rives and W. L. Jorgensen. New Linear Interaction Method for Binding Affinity Calculations Using a Continum Solvent Model. J. Phys. Chem. B,2001,105,6474-6487.
    [137]C. Reuter, A. Mohry, A. Sobanski and F. Vogtle. [1]Rotaxanes and Pretzelanes:Synthesis, Chirality, and Absolute Configuration. Chem.-Eur. J.,2000,6,1674-1682.
    [138]Y. Liu, P. A. Bonvallet, S. A. Vignon, S. I. Khan and J. F. Stoddart. Donor-acceptor pretzelanes and a cyclic bis[2]catenane homologue. Angew. Chem., Int. Ed.,2005,44, 3050-3055.
    [139]F. Wang, C. Y. Han, C. L. He, Q. Z. Zhou, J. Q. Zhang, C. Wang, N. Li and F. H. Huang. Self-sorting organization of two heteroditopic monomers to supramolecular alternating copolymers. J. Am. Chem. Soc.,2008,130,11254-11255.
    [140]M. C. Jimenez, C. Dietrich-Buchecker and J. P. Sauvage. Towards Synthetic Molecular Muscles:Contraction and Stretching of a Linear Rotaxane Dimer We are grateful to M. Jean-Daniel Sauer and Dr. Roland Graff for high-field NMR experiments, Helene Nierengarten and Raymond Hubert for mass determinations. M.C.J. thanks the European Commission for a Grant (TMR Contract No. ERBFMBICT972547). We also thank the CNRS for financial support (Programme Physique et Chimie du Vivant). Angew. Chem., Int. Ed.,2000,39,3284-3287.
    [141]J. S.Wu, K.C. F. Leung, D. Bern'tez, J. Y. Han, S. J. Cantrill, L. Fang and J. F. Stoddart. An acid-base-controllable [c2]daisy chain. Angew. Chem., Int. Ed.,2008,47,7470-7474.
    [142]C. D. Gutsche, Calixarenes Revisited, in Monographs in Supramolecular Chemistry, ed. J. F. Stoddart, Royal Society of Chemistry, Cambridge, UK,1998.
    [143]D.M. Homden and C. Redshaw. The use of calixarenes in metal-based catalysis. Chem. Rev.,2008,108,5086-5130.
    [144]W. Zhu, P. Gou and Z. Shen, Macromol. Symp.,2008,261,74-84.
    [145]J. H. Wosnick and T. M. Swager. Enhanced fluorescence quenching in receptor-containing conjugated polymers:a calix[4]arene-containing poly(phenylene ethynylene). Chem. Commun.,2004,2744-2745.
    [146]R. K. Castellano, D. M. Rudkevich and J. Rebek Jr. Polycaps:reversibly formed polymeric capsules. Proc. Natl. Acad. Sci. U. S. A.,1997,94,7132-7137.
    [147]J. Bugler, N. A. J. M. Sommerdijk, A. J. W. G. Visser, A. van Hoek, R. J. M. Nolte, J. F. J. Engbersen and D. N. Reinhoudt. Self-assembly of rodlike hydrogen-bonded nanostructures. J. Am. Chem. Soc.,1999,121,28-33.
    [148]J. Bugler, J. F. J. Engbersen and D. N. Reinhoudt. Stoichiometry of uranyl salophene anion complexes. J. Org. Chem.,1998,63,5339-5344.
    [149]Y. Liu, L. Li, Z. Fan, H.-Y. Zhang, X. Wu, X.-D. Guan and S.-X. Liu. Supramolecular aggregates formed by intermolecular inclusion complexation of organo-selenium bridged bis (cyclodextrin) s with calix[4] arene derivative. Nano Lett.,2002,2,257-261.
    [150]Y. Liu, H. Wang, H.-Y. Zhang, L.-H. Wang and Y. Song, Chem. Lett.,2003,884-885.
    [151]Y. Liu, H. Wang, H.-Y. Zhang and P. Liang. A metallo-capped polyrotaxane containing calix[4]arenes and cyclodextrins and its highly selective binding for Ca2+. Chem. Commun.,2004,2266-2267.
    [152]D. Garozzo, G. Gattuso, F. H. Kohnke, A. Notti, S. Pappalardo, M. F. Parisi, I. Pisagatti, A. J. P. White and D. J. Williams. Inclusion networks of a calix[5]arene-based exoditopic receptor and long-chain alkyldiammonium ions. Org. Lett.,2003,5,4025-4028.
    [153]F. Arnaud-Neu, S. Fuangswasdi, A. Notti, S. Pappalardo and M. F. Parisi. Calix[5]arene-Based Molecular Vessels for Alkylammonium Ions. Angew. Chem., Int. Ed.,1998,37,112-114.
    [154]D. Garozzo, G. Gattuso, F. H. Kohnke, P. Malvagna, A. Notti, S. Occhipinti, S. Pappalardo, M. F. Parisi and I. Pisagatti. Guest-induced Capsular Assembly of Calix[5]arenes. Tetrahedron Lett.,2002,43,7663-7667.
    [155]G. Gattuso, A. Notti, A. Pappalardo, M. F. Parisi, I. Pisagatti, S. Pappalardo, D. Garozzo, A. Messina, Y. Cohen and S. Slovak. Self-assembly dynamics of modular homoditopic bis-calix[5]arenes and long-chain alpha,omega-alkanediyldiammonium components. J. Org. Chem.,2008,73,7280-7289.
    [156]T. Haino, M. Yanase and Y. Fukazawa. Fullerenes Enclosed in Bridged Calix[5]arenes. Angew. Chem., Int. Ed.,1998,37,997-998.
    [157]T. Haino, Y. Matsumoto and Y. Fukazawa. Supramolecular nano networks formed by molecular-recognition-directed self-assembly of ditopic calix[5]arene and dumbbell [60]fullerene. J. Am. Chem. Soc.,2005,127,8936-8937.
    [158]T. Haino, E. Hirai, Y. Fujiwara and K. Kashihara. Supramolecular cross-linking of [60]fullerene-tagged polyphenylacetylene by the host-guest interaction of calix[5]arene and [60]fullerene. Angew. Chem., Int. Ed.,2010,49,7899-7903.
    [159]D.-S. Guo, K.Wang and Y. Liu. Synthesis and Properties of the Emerging Azacalix[14]arenes. J. Inclusion. Phenom.Macrocyclic. Chem.,2008,62,1-21.
    [160]D.-S. Guo, K. Chen, H.-Q. Zhang and Y. Liu. Nano- Supramolecular Assemblies Constructed from Water- Soluble Bis (calix [5] arenes) with Porphyrins and Their Photoinduced Electron Transfer Properties. Chem.-Asian J.,2009,4,436-445.
    [161]A. D'Urso, D. A. Cristaldi, M. E. Fragala, G. Gattuso, A. Pappalardo, V. Villari, N. Micali, S. Pappalardo, M. F. Parisi and R. Purrello. Sequence, stoichiometry, and dimensionality control in porphyrin/bis-calix[4]arene self-assemblies in aqueous solution. Chem.-Eur. J., 2010,16,10439-10446.
    [162]K. Wang, D.-S. Guo and Y. Liu. Temperature-controlled supramolecular vesicles modulated by p-sulfonatocalix[5]arene with pyrene. Chem.-Eur. J.,2010,16,8006-8011.
    [163]K. Wang, D.-S. Guo, X. Wang and Y. Liu. Multistimuli responsive supramolecular vesicles based on the recognition of p-Sulfonatocalixarene and its controllable release of doxorubicin. ACS Nano,2011,5,2880-2894.
    [164]K. Kim, D. Kim, J. W. Lee, Y. H. Ko and K. Kim. Growth of poly(pseudorotaxane) on gold using host-stabilized charge-transfer interaction. Chem. Commun.,2004,848-849.
    [165]K. Kim, MSc thesis, Pohang University of Science and Technology, December 8,2002.
    [166]J. W. Lee and K. Kim. Rotaxane dendrimers. Top. Curr. Chem.,2003,228,111-140.
    [167]S.-Y. Kim, PhD thesis, Pohang University of Science and Technology, December 8,2003.
    [168]B. L. Allwood, H. Shahriarizavareh, J. F. Stoddart and D. J. Williams. Complexation of Paraquat and Diquat by a bismetaphenylene-32-crown-10 derivative. J. Chem. Soc., Chem. Commun.,1987,1058-1061.
    [169]P. R. Ashton, I. Baxter, S. J. Cantrill, M. C. T. Fyfe, P. T. Glink. J. F. Stoddart, A. J. P. White and D. J. Williams. Supramolecular daisy chains. Angew. Chem., Int. Ed.,1998,37, 1294-1297.
    [170]S. J. Cantrill, G. J. Youn, J. F. Stoddart and D. J. Williams. Supramolecular daisy chains. J. Org. Chem.,2001,66,6857-6872.
    [171]H. W. Gibson, N. Yamaguchi, Z. Niu, J. W. Jones, C. Slebodnick, A. L. Rheingold and L. N. Zakharov. Self-assembly of daisy chain oligomers from heteroditopic molecules containing secondary ammonium ion and crown ether moieties. J. Polym. Sci., Part A: Polym. Chem.,2010,48,975-985.
    [172]P. R. Ashton, I. W. Parsons, F. M. Raymo, J. F. Stoddart, A. J. P. White, D. J. Williams and R. Wolf. Self-assembling supramolecular daisy chains. Angew. Chem., Int. Ed.,1998, 37,1913-1916.
    [173]N. Yamaguchi, D. S. Nagvekar and H. W. Gibson. Self-Organization of a Heteroditopic Molecule to Linear Polymolecular Arrays in Solution. Angew. Chem., Int. Ed.,1998,37, 2361-2364.
    [174]N. Yamaguchi and H. W. Gibson. Formation of Supramolecular Polymers from Homoditopic Molecules Containing Secondary Ammonium Ions and Crown Ether Moieties. Angew. Chem., Int. Ed.,1999,38,143-147.
    [175]N. Yamaguchi and H. W. Gibson. Stabilities of Cooperatively Formed Pseudorotaxane Dimers. Chem. Commun.,1999,789-790.
    [176]H. W. Gibson, N. Yamaguchi and J. W. Jones. Supramolecular pseudorotaxane polymers from complementary pairs of homoditopic molecules. J. Am. Chem. Soc.,2003,125, 3522-3533.
    [177]F. Wang, C. Han, C. He, Q. Zhou, J. Zhang, C. Wang, N. Li and F. Huang. Self-sorting organization of two heteroditopic monomers to supramolecular alternating copolymers J. Am. Chem. Soc,2008,130,11254-11255.
    [178]F. Wang, B. Zheng, K. Zhu, Q. Zhou, C. Zhai, S. Li, N. Li and F. Huang. Formation of linear main-chain polypseudorotaxanes with supramolecular polymer backbones via two self-sorting host-guest recognition motifs. Chem. Commun.,2009,4375-4377.
    [179]F. Huang and H. W. Gibson. A supramolecular poly[3]pseudorotaxane by self-assembly of a homoditopic cylindrical bis(crown ether) host and a bisparaquat derivative. Chem. Commun.,2005,1696-1698.
    [180]S.-L. Li, T. Xiao, Y. Wu, J. Jiang and L. Wang. New Linear Supramolecular Polymers that is Driven by the Combination of Quadruple Hydrogen Bonding and Crown Ether-Paraquat Recognition. Chem. Commun.,2011,47,6903-6905.
    [181]S. J. Rowan, S. J. Cantrill, J. F. Stoddart, A. J. P. White and D. J. Williams. Toward Daisy Chain Polymers:"Wittig Exchange" of Stoppers in. Org. Lett.,2000,2,759-762.
    [182]S.-H. Chiu, S. J. Rowan, S. J. Cantrill, J. F. Stoddart, A. J. P. White and D. J. Williams. An hermaphroditic [c2]daisy chain. Chem. Commun.,2002,2948-2949.
    [183]S.-H. Ueng, S.-Y. Hsueh, C.-C. Lai, Y.-H. Liu, S.-M. Peng and S.-H. Chiu. Capturing a [c2]Daisy Chain Using the Threading-Followed-by-Swelling Approach. Chem. Commun., 2008,817-819.
    [184]F. Wang, J. Zhang, X. Ding, S. Dong, M. Liu, B. Zheng, S. Li, L. Wu, Y. Yu, H. Gibson and F. Huang. Metal coordination mediated reversible conversion between linear and cross-linked supramolecular polymers. Angew. Chem., Int. Ed.,2010,49,1090-1094.
    [185]S. Dong, Y. Luo, X. Yan, B. Zheng, X. Ding, Y. Yu, Z. Ma, Q. Zhao and F. Huang. A dual-responsive supramolecular polymer gel formed by crown ether based molecular recognition. Angew. Chem., Int. Ed.,2011,50,1905-1909.
    [186]X. Yan, M. Zhou, J. Chen, X. Chi, S. Dong, M. Zhang, X. Ding, Y. Yu, S. Shao and F. Huang. Supramolecular polymer nanofibers via electrospinning of a heteroditopic monomer. Chem. Commun.,2011,47,7086-7088.
    [187]E. Buhleier, W. Wehner and F. Vogtle. Cascade and nonskid-chain-like synthesis of molecular cavity topologies. Synthesis,1978,155-158.
    [188]A. W. Bosman, H. M. Janssen and E. W. Meijer. About Dendrimers:Structure, Physical Properties, and Applications. Chem. Rev.,1999,99,1665-1688.
    [189]S. H. Medina and M. E. H. El-Sayed. Dendrimers as carriers for delivery of chemotherapeutic agents. Chem. Rev.,2009,109,3141-3157.
    [190]H. Ihre, O. L. Padilla De Jesus and J. M. J. Frechet. Fast and convenient divergent synthesis of aliphatic ester dendrimers by anhydride coupling. J. Am. Chem. Soc.,2001, 123,5908-5917.
    [191]C. J. Hawker and J.M. J. Frechet. Preparation of Polymers with Controlled Molecular Architecture:A New Convergent Approach to Dendritic Macromolecules. J. Am. Chem. Soc.,1990,112,7638-7647.
    [192]T. Kawaguchi, K. L. Walker, C. L. Wilkins and J. S. Moore. Peer Tutoring iwth the Aid of the Internet. J. Am. Chem. Soc.,1995,117,2159-2165.
    [193]J. W. Lee and K. Kim. Rotaxane dendrimers. Top. Curr. Chem.,2003,228,111-140.
    [194]K. C.-F. Leung and K.-N. Lau. Self-Assembly and Thermodynamic Synthesis of Rotaxane Dendrimers and Related Structures. Polym. Chem.,2010,1,988-1000.
    [195]H. W. Gibson, Z. Ge, F. Huang, J. W. Jones, H. Lefebvre, M. J. Vergne and D. M. Hercules. Syntheses and Model Complexation Studies of... Crown Terminated Polymers. Macromolecules,2005,38,2626-2637.
    [196]H. W. Gibson, A. Farcas, J. W. Jones, Z. Ge, F. Huang, M. Vergne and D. M. Hercules. Supramacromolecular Self-Assembly:Chain Extension, Star and Block Polymers via Pseudorotaxane Formation from Well-Defined End-Functionalized Polymers. J. Polym. Sci., Part A:Polym. Chem.,2009,47,3518-3543.
    [197]F. Huang, D. S. Nagvekar, C. Slebodnick and H. W. Gibson. A Supramolecular Triarm Star Polymer from a Homotritopic Tris(Crown Ether) Host and a Complementary Monotopic Paraquat-Terminated Polystyrene Guest by a Supramolecular Coupling Method. J. Am. Chem. Soc.,2005,127,484-485.
    [198]R. P. Sijbesma, F. H. Beijer, L. Brunsveld, B. J. B. Folmer, J. H. K. K. Hirschberg, R. F. M. Lange, J. K. L. Lowe and E.W.Meijer. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science,1997,278, 1601-1604.
    [199]P. S. Corbin and S. C. Zimmerman. Self-Association without Regard to Prototropy. A Heterocycle That Forms Extremely Stable Quadruply Hydrogen-Bonded Dimers J. Am. Chem. Soc.,1998,120,9710-9711.
    [200]M.-O. M. Piepenbrock, G. O. Lloyd, N. Clarke and J. W. Steed. Metal- and anion-binding supramolecular gels. Chem. Rev.,2010,110,1960-2004.
    [201]M. Hasegawa and M. Iyoda. Conducting supramolecular nanofibers and nanorods. Chem. Soc. Rev.,2010,39,2420-2427.
    [202]Y. Liu, Y. Yu, J. Gao, Z. Wang and X. Zhang. Water-Soluble Supramolecular Polymerization Driven by Multiple Host-Stabilized Charge-Transfer Interactions. Angew. Chem., Int. Ed.,2010,49,6576-6579.
    [203]A. Harada, Y. Takashima and H. Yamaguchi. Cyclodextrin-based supramolecular polymers. Chem. Soc. Rev.,2009,38,875-882.
    [204]D.-S. Guo, S. Chen, H. Qian, H.-Q. Zhang and Y. Liu. Electrochemical stimulus-responsive supramolecular polymer based on sulfonatocalixarene and viologen dimers. Chem. Commun.,2010,46,2620-2622.
    [205]Z. Zhang, Y. Luo, J. Chen, S. Dong, Y. Yu, Z. Ma and F. Huang. Formation of linear supramolecular polymers that is driven by C-H…π interactions in solution and in the solid state Angew. Chem., Int. Ed.,2011,50,1397-1401.
    [206]K. S. Chichak, S. J. Cantrill, A. R. Pease, S.-H. Chiu, G. W. V. Cave, J. L. Atwood and J. F. Stoddart. Molecular borromean rings. Science,2004,304,1308-1312.
    [207]C. D. Meyer, R. S. Forgan, K. S. Chichak, A. J. Peters, N. Tangchaivang, G. W. V. Cave, S. I. Khan, S. J. Cantrill and J. F. Stoddart. The dynamic chemistry of molecular borromean rings and Solomon knots. Chem.-Eur. J.,2010,16,12570-12581.
    [208]C. D. Pentecost, K. S. Chichak, A. J. Peters, G. W. V. Cave, S. J. Cantrill and J. F. Stoddart. A molecular solomon link. Angew. Chem., Int. Ed.,2007,46,218-222.
    [209]J.-F. Ayme, J. E. Beves, D. A. Leigh, R. T. McBurney, K. Rissanen and D. Schultz. A synthetic molecular pentafoil knot. Nat. Chem.,2011,4,15-20.
    [210]A. Coskun, M. Banaszak, R. D. Astumian, J. F. Stoddart and B. A. Grzybowski. Great expectations:can artificial molecular machines deliver on their promise? Chem. Soc. Rev., 2012,41,19-30.
    [211]H. Yamaguchi, Y. Kobayashi, R. Kobayashi, Y. Takashima, A. Hashidzume and A. Harada. Photoswitchable gel assembly based on molecular recognition. Nat. Commun., 2012,3,603.
    [212]Y.-L. Zhao and J. F. Stoddart. Azobenzene-based light-responsive hydrogel system. Langmuir,2009,25,8442-8446.
    [213]Y.-L. Zhao, I. Aprahamian, A. Trabolsi, N. Erina and J. F. Stoddart. Organogel formation by a cholesterol-stoppered bistable [2]rotaxane and its dumbbell precursor. J. Am. Chem. Soc.,2008,130,6348-6350.
    [214]Z. Li, J. C. Barnes, A. Bosoy, J. F. Stoddart and J. I. Zink. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev.,2012,41,2590-2605.
    [215]A. Coskun, J. M. Spruell, G. Barin, W. R. Dichtel, A. H. Flood, Y. Y. Botros and J. F. Stoddart. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 2012,41,2590-2605.
    [216]Z. Niu and H. W. Gibson. Polycatenanes. Chem. Rev.,2009,109,6024-6046.
    [217]T. Takata, N. Kihara and Y. Furusho. Polyrotaxanes and polycatenanes:recent advances in syntheses and applications of polymers comprising of interlocked structures. Adv. Polym. Sci.,2004,171,1-75.
    [218]F. Huang and H. W. Gibson. Polypseudorotaxanes and Polyrotaxanes. Prog. Polym. Sci., 2005,30,982-1018.
    [219]G. Wenz, B.-H. Han and A. Mueller. Cyclodextrin rotaxanes and polyrotaxanes. Chem. Rev.,2006,106,782-817.
    [220]A. Harada, A. Hashidzume, H. Yamaguchi and Y. Takashima. Polymeric rotaxanes. Chem. Rev.,2009,109,5974-6023.
    [221]A. Harada, J. Li and M. Kamachi. Preparation and Characterization of a Polyrotaxane Consisting of Monodisperse Poly(ethylene glycol) anda- Cyclodextrin. J. Am. Chem. Soc., 1994,116,3192-3196.
    [222]M. Horn, J. Ihringer, P. T. Glink and J. F. Stoddart. Kinetic versus thermodynamic control during the formation of [2]rotaxanes by a dynamic template-directed clipping process. Chem.-Eur. J.,2003,9,4046-4054.
    [223]Y. X. Shen and H. W. Gibson. Synthesis and Some Properties of a Polyrotaxane Comprised of a Polyurethane Backbone and 60-Crown-20. Macromolecules,1992,25, 2058-2059.
    [224]A. Harada, J. Li and M. Kamachi. The molecular necklace. Nature,1992,356,325-327.
    [225]S.-H. Lee and H. W. Gibson. Hydrocarbon-Based 40- and 44-Membered Macrocycles as Components of Polyrotaxanes. Macromolecules,1997,30,5557-5559.
    [226]H. W. Gibson, P. T. Engen and S.-H. Lee. Synthesis of Poly[(styrene)-rotaxa-(crown ether)]s via Free Radical Polymerization. Polymer,1999,40,1823-1832.
    [227]N. Kihara, K. Hinoue and T. Takata. Solid-state end-capping of pseudopolyrotaxane possessing hydroxy-terminated axle to polyrotaxane and its application to the synthesis of a functionalized polyrotaxane capable of yielding a polyrotaxane network. Macromolecules,2005,38,223-226.
    [228]K. Nakazono, T. Takashima, T. Arai, Y. Koyama and T. Takata. High-Yield One-Pot Synthesis of Permethylated -Cyclodextrin-based Polyrotaxane in Hydrocarbon Solvent through an Efficient Heterogeneous Reaction Macromolecules,2010,43,691-696.
    [229]P. Kuad, A. Miyawaki, Y. Takashima, H. Yamaguchi and A. Harada. External stimulus-responsive supramolecular structures formed by a stilbene cyclodextrin dimer. J. Am. Chem. Soc.,2007,129,12630-12631; E. N. Guidry, J. Li, J. F. Stoddart and R. H. Grubbs. Bifunctional [c2]daisy-chains and their incorporation into mechanically interlocked polymers. J. Am. Chem. Soc.,2007,129,8944-8945; Y. Ho Ko, K. Kim, J. K. Kang, H. Chun, J. W. Lee, S. Sakamoto, K. Yamaguchi, J. C. Fettinger and K. Kim. Designed self-assembly of molecular necklaces using host-stabilized charge-transfer interactions. J. Am. Chem. Soc.,2004,126,1932-1933.
    [230]D. H. Qu, Q. C. Wang and H. Tian. A half adder based on a photochemically driven [2]rotaxane Angew. Chem. Int. Ed.,2005,44,5296-5299; D. H. Qu, Q. Wang, X. Ma and H. Tian. A [3]rotaxane with three stable states that responds to multiple-inputs and displays dual fluorescence addresses. Chem. Eur. J.,2005,11,5929-5937; D. H. Qu, F. Y. Ji, Q. C. Wang and H. Tian. A Double Inhibit Logic Gate Employing Configuration and Fluorescence Changes. Adv. Mater.,2006,18,2035-2038.
    [231]H. Zhang, Q. Wang, M. Liu, X. Ma and H. Tian. Switchable V-type [2]pseudorotaxanes. Org. Lett.,2009,11,3234-3237; L. L. Zhu, D. Zhang, D. H. Qu, Q. C. Wang, X. Ma and H. Tian. Dual-controllable stepwise supramolecular interconversions. Chem. Commun., 2010,46,2587-2589.
    [232]L. L. Zhu, X. Li, F. Y. Ji, X. Ma, Q. C. Wang and H. Tian. Photolockable ratiometric viscosity sensitivity of cyclodextrin polypseudorotaxane with light-active rotor graft. Langmuir,2009,25,3482-3486.
    [233]R. M. Yebeutchou, F. Tancini, N. Demitri, S. Geremia, R. Mendichi and E. Dalcanale. Host-guest driven self-assembly of linear and star supramolecular polymers. Angew. Chem. Int. Ed.2008,47,4504-4508.
    [234]D. S. Guo, L. H. Wang and Y. Liu. Highly effective binding of methyl viologen dication and its radical cation by p-sulfonatocalix[4,5]arenes. J. Org. Chem.,2007,72,7775-7778.
    [235]J. W. Steed, C. P. Johnson, C. L. Barnes, R. K. Juneja, J. L. Atwood, S. Reilly, R. L. Hollis, P. H. Smith and D. L. Clark. Phenoxide Complexes of f-Elements. J. Am. Chem. Soc., 1995,117,11426-11433.
    [236]Q. C. Wang, D. H. Qu, J. Ren, K. C. Chen and H. Tian. A lockable light-driven molecular shuttle with a fluorescent signal. Angew. Chem. Int. Ed.,2004,43,2661-2665; D. H. Qu, Q. C. Wang, J. Ren and H. Tian. A light-driven rotaxane molecular shuttle with dual fluorescence addresses. Org. Lett.,2004,13,2085-2088; L. L. Zhu, X. Ma, F. Y. Ji, Q. C. Wang and H. Tian. Effective enhancement of fluorescence signals in rotaxane-doped reversible hydrosol-gel systems. Chem. Eur. J.,2007,13,9216-9222.
    [237]K. Kano and Y. Ishida. Regulation of alpha-chymotrypsin catalysis by ferric porphyrins and cyclodextrins. Chem. Asican J.,2008,3,678-686; D. S. Guo, K. Chen, H. Q. Zhang and Y. Liu. Nano-supramolecular assemblies constructed from water-soluble bis(calix[5]arenes) with porphyrins and their photoinduced electron transfer properties. Chem. Asican J.,2009,4,436-445.
    [238]X. Ma, D. H. Qu, F. Y. Ji, Q. C. Wang, L. L. Zhu, Y. Xu and H. Tian. A light-driven [1]rotaxane via self-complementary and Suzuki-coupling capping. Chem. Commun.,2007, 1409-1411; X. Ma, Q. C. Wang and H. Tian. Disparate orientation of [1]rotaxanes. Tetrahedron Letters,2007,48,7112-7116.
    [239]S. D. Bergman, F. Wudl. Mendable polymers. J. Mater. Chem.2008,18,41-62; M. E. Belowich, C. Valente, J. F. Stoddart. Template-directed syntheses of rigid oligorotaxanes under thermodynamic control. Angew. Chem. Int. Ed.2010,49,7208-7212; B. Zheng, F. Wang, S. Dong, F. Huang. Supramolecular polymers constructed by crown ether-based molecular recognition. Chem. Soc. Rev.2012,41,1621-1636.
    [240]R. K. Castellano, R. Clark, S. L. Craig, C. Nuckolls, J. Jr. Rebek. Emergent mechanical properties of self-assembled polymeric capsules. Proc. Natl. Acad. Sci. U. S. A.2000,97, 12418-12421; J. H. K. K. Hirschberg, L. Brunsveld, A. Ramzi, J. A. J. M. Vekemans, R. P. Sijbesma, E. W. Meijer. Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs. Nature,2000,407,167-170; V. Berl, M. Schmutz, M. J. Krische, R. G. Khoury, J.-M. Lehn. Supramolecular polymers generated from heterocomplementary monomers linked through multiple hydrogen-bonding arrays--formation, characterization, and properties. Chem.-Eur. J.2002,8,1227-1244; G. B. W. L. Ligthart, H. Ohkawa, R. P. Sijbesma, E. W. Meijer. Complementary quadruple hydrogen bonding in supramolecular copolymers. J. Am. Chem. Soc.2005,127,810-811; T. Park and S. C.Zimmerman. A supramolecular multi-block copolymer with a high propensity for alternation. J. Am. Chem. Soc.2006,128,13986-13987; C. Gao, X. Ma, Q. Zhang, Q. Wang, D. Qu and H. Tian. A light-powered stretch-contraction supramolecular system based on cobalt coordinated [1]rotaxane. Org. Biomol. Chem.2011,9,1126-1132; S. Wu, X. Ma, H. Zhang, Q. Wang and H. Tian. Competitive threading of Ru(bpy)3 stopped "V" type pseudo[2]rotaxane-like supramolecules. Dalton Trans.2011,40,12033-12036; W. Yang, Y. Li, J. Zhang, Y. Yu, T. Liu, H. Liu, Y. Li. Synthesis of a [2]rotaxane operated in basic environment. Org. Biomol. Chem.2011,9,6022-6026.
    [241]U. S. Schubert, C. Eschbaumer. Macromolecules containing bipyridine and terpyridine metal complexes:towards metallosupramolecular polymers. Angew. Chem., Int. Ed.2002, 41,2892-2926; P. R. Andres, U. S. Schubert. New Functional Polymers and Materials Based on 2,2':6',2 "-Terpyridine Metal Complexes. Adv. Mater.2004,16,1043-1068; D. H. Qu, F. Y. Ji, Q. C. Wang and H. Tian. A Double Inhibit Logic Gate Employing Configuration and Fluorescence Changes Adv. Mater.2006,18,2035-2038; X. Ma, Q. Wang, D. Qu and H. Tian. A Light-Driven Pseudo[4]rotaxane Encoded by Induced Circular Dichroism in a Hydrogel. Adv. Funct. Mater.2007,17,829-837; X. Ma, D. Qu, F. Ji and H. Tian. A light-driven [1]rotaxane via self-complementary and Suzuki-coupling capping. Chem.Commun.2007,14,1409-1411
    [241]P. Monk, The Viologens:Physicochemical Properties, Synthesis and Applications of the Salts of 4,4'-Bipyridine, Wiley, New York,1998; Y. H. Ko, E. Kim, H. Hwang, K. Kim. Supramolecular assemblies built with host-stabilized charge-transfer interactions. Chem. Commun.2007,13,1305-1315; D. A. Uhlenheuer, J. F. Young, H. D. Nguyen, M. Scheepstra, L. Brunsveld. Cucurbit[8]uril induced heterodimerization of methylviologen and naphthalene functionalized proteins. Chem. Commun.2011,47,6798-6800.
    [243]R. S. Lokey and B. L. Iverson. New ribbons and threads. Nature,1995,375,303-305; G. J. Gabriel and B. L. Iverson. Aromatic oligomers that form hetero duplexes in aqueous solution. J. Am. Chem. Soc.2002,124,15174-15175; S. Ghosh and S. Ramakrishnan. Small-Molecule-Induced Folding of a Synthetic Polymer. Macromolecules,2005,38, 676-686; U. Rauwald, J. D. Barrio, X. J. Loh, O. A. Scherman.'On-demand'control of thermoresponsive properties of poly(N-isopropylacrylamide) with cucurbit[8]uril host-guest complexes. Chem. Commun.2011,7,6000-6002.
    [244]K, Kim, D. Kim, J. W. Lee, Y. H. Ko and K. Kim. Growth of poly(pseudorotaxane) on gold using host-stabilized charge-transfer interaction. Chem. Commun.2004,7,848-849.
    [245]K. Harada, C. T. Rao, J. Pitha. Crystal structure of 6-O-[(R)-2-hydroxypropyl]cyclo maltoheptaose and 6-0-[(S)-2-hydroxypropyl]cyclomaltoheptaose. Carbohydr. Res.1993, 247,83-98; D. Mentzafos, A. Terzis, A. W. Coleman, C. deRango. The crystal structure of 61-(6-aminohexyl)amino-6I-deoxycyclomaltoheptaose. Carbohydr. Res.1996,282, 125-135; Y. Liu, Z. Fan, H.-Y. Zhang, C.-H. Diao. Binding ability and self-assembly behavior of linear polymeric supramolecules formed by modified beta-cyclodextrin. Org. Lett.2003,5,251-254; V. H. Soto Tellini, A. Jover, L. Galantini, F. Meijide, J. Vazquez Tato. Crystal structure of the supramolecular linear polymer formed by the self-assembly of mono-6-deoxy-6-adamantylamide-beta-cyclodextrin. Acta Crystallogr. 2004, B60,204-210; M. Miyauchi, Y. Takashima, H. Yamaguchi, A. Harada. Chiral supramolecular polymers formed by host-guest interactions. J. Am. Chem. Soc.2005, 127,2984-2989; M. Miyauchi, T. Hoshino, H. Yamaguchi, S. Kamitori, A. Harada. A [2]rotaxane capped by a cyclodextrin and a guest:formation of supramolecular [2]rotaxane polymer. J. Am. Chem. Soc.2005,127,2034-2035.
    [246]X. Ma, R. Y. Sun, W. F. Li and H. Tian. Novel electrochemical and pH stimulus-responsive supramolecular polymer with disparate pseudorotaxanes as relevant unimers. Polym. Chem.2011,2,1068-1070.
    [247]V. Balzani, A. Credi, M. Venturi, Molecular Devices and Machines:Concepts and Perspectives for the Nanoworld,2nd ed; Wiley-VCH:Weiheim,2008; E. R. Kay, D. A. Leigh, F. Zerbetto. Design principles for Brownian molecular machines:how to swim in molasses and walk in a hurricane. Angew. Chem., Int. Ed.2007,46,72-191.
    [248]S. Y. Kim, I. S. Jung, E. Lee, J. Kim, S. Sakamoto, K. Yamaguchi and K. Kim. Macrocycles within Macrocycles:Cyclen, Cyclam, and Their Transition Metal Complexes Encapsulated in Cucurbit[8]uril. Angew. Chem. Int. Ed.2001,40,2119-2121.
    [249]A. Ziganshina, Y. H. Ko, W. S. Jeon and K. Kim. Stable π-dimer of a tetrathiafulvalene cation radical encapsulated in the cavity of cucurbit [8] uril. Chem. Commun.2004,8, 806-807.
    [250]W. S. Jeon, H. J. Kim, C. Lee and K. Kim. Control of the stoichiometry in host-guest complexation by redox chemistry of guests:inclusion of methylviologen in cucurbit[8]uril. Chem. Commun.2002,17,1828-1829.
    [251]K. Moon, A. E. Kaifer. Modes of Binding Interaction between Viologen Guests and the Cucubit[7]uril Host. Org. Lett.2004,6,185-188.
    [252]H.-J. Kim, J. Heo, W. S. Jeon, E. Lee, J. Kim, S. Sakamoto, K. Yamaguchi, and K. Kim. Selective Inclusion of a Hetero-Guest Pair in a Molecular Host:Formation of Stable Charge-Transfer Complexes in Cucurbit. Angew. Chem. Int. Ed.2001,40,1526-1529; H. Hwang, A. Y. Ziganshina, Y. H. Ko, G. Yun, K. Kim. Tuning the Amphiphilicity of Building Blocks:Controlled Self-Assembly and Disassembly for Functional Supramolecular Materials. Chem. Commun.2009,4,416-418.
    [253](a) A. Coskun, M. Banaszak, R. D. Astumian, J. F. Stoddart, B. A. Grzybowski, Great expectations:can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 2012,41,19-30. (b) H. Yamaguchi, Y. Kobayashi, R. Kobayashi, Y. Takashima, A. Hashidzume, A. Harada, Photoswitchable gel assembly based on molecular recognition. Nat. Commun.2012,3,603. (c) Y.-L. Zhao, J. F. Stoddart, Azobenzene-based light-responsive hydrogel system. Langmuir 2009,25,8442-8446. (d) Y.-L. Zhao, I.Aprahamian, A. Trabolsi, N. Erina, J. F. Stoddart, Organogel formation by a cholesterol-stoppered bistable [2]rotaxane and its dumbbell precursor. J. Am. Chem. Soc. 2008,130,6348-6350. (e) Z. Li, J. C. Barnes, A. Bosoy, J. F. Stoddart, J. I. Zink, Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev.2012,41, 2590-2605. (f) D.-S. Guo, Y. Liu, Calixarene-based supramolecular polymerization in solution. Chem. Soc. Rev.2012,41,5907-5921.
    [254](a) T. Haino, Y. Matsumoto, Y. Fukazawa, Supramolecular nano networks formed by molecular-recognition-directed self-assembly of ditopic calix[5]arene and dumbbell [60]fullerene. J. Am. Chem. Soc.2005,127,8936-8937. (b) X. Liao, G. Chen, X. Liu, W. Chen, F. Chen, M. Jiang, Photoresponsive pseudopolyrotaxane hydrogels based on competition of host-guest interactions. Angew. Chem. Int. Ed.2010,49,4409-4413. (c) Y. Chen, Y.-M. Zhang, Y. Liu, Multidimensional nanoarchitectures based on cyclodextrins. Chem. Commun.2010,46,5622-5633. (d) X. Ji, Y. Yao, J. Li, X. Z. Yan, F. Huang, A supramolecular cross-linked conjugated polymer network for multiple fluorescent sensing. J. Am. Chem. Soc.2013,135,74-77.
    [255](a) L. Brunsveld, B. J. Folmer, E. W. Meijer, R. P. Sijbesma, Supramolecular polymers. Chem. Rev.2001,101,4071-4098. (b) W. C. Yount, H. Juwarker, S. L. Craig, Orthogonal control of dissociation dynamics relative to thermodynamics in a main-chain reversible polymer. J. Am. Chem. Soc.2003,125,15302-15303. (c) H. Xu, Rudkevich, D. M. Reversible chemistry of CO2 in the preparation of fluorescent supramolecular polymers. J. Org. Chem.2004,69,8609-8617. (d) D. Garozzo, G. Gattuso, F. H. Kohnke, A. Notti, S. Pappalado, M. Parisi, I. Pisagatti, A. J. P. White, D. Williams, Inclusion networks of a calix[5]arene-based exoditopic receptor and long-chain alkyldiammonium ions. J. Org. Lett.2003,5,4025-4028. (e) F. Huang, H. W. Gibson, Formation of a supramolecular hyperbranched polymer from self-organization of an AB2 monomer containing a crown ether and two paraquat moieties. J. Am. Chem. Soc.2004,126,14738-14739.
    [256]P.Cordier, F. Tournihac, C. Soulie-Ziakovic, L. Leibler, Self-healing and thermoreversible rubber from supramolecular assembly. Nature 2008,451,977-980.
    [257]P. Kuad, A. Miyawaki, Y. Takashima, H. Yamaguchi, A. Harada, External stimulus-responsive supramolecular structures formed by a stilbene cyclodextrin dimer. J. Am. Chem. Soc.2007,129,12630-12631.
    [258](a) R. P. Sijbesma, F. H. Beijer, L. Brunsveld, B. J. B. Folmer, J. H. K. K. Hirschberg, R. F. M. Lange, J. K. L. Lowe, E. W. Meijer, Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 1997,278, 1601-1604. (b) M. O. M. Piepenbrock, G. O. Lloyd, N. Clarke, J. W. Steed, Metal- and anion-binding supramolecular gels. Chem. Rev.2010,110,1960-2004. (c) M. Hasegawa, M. Iyoda, Conducting supramolecular nanofibers and nanorods. Chem. Soc. Rev.2010,39, 2420-2427. (d) Y. Liu, Y. Yu, J. Gao, Z. Wang, X. Zhang, High-Yield One-Pot Synthesis of Permethylated -Cyclodextrin-based Polyrotaxane in Hydrocarbon Solvent through an Efficient Heterogeneous Reaction Angew. Chem. Int. Ed.2010,49,6576-6579. (e) A. Harada, Y. Takashima, H. Yamaguchi, Cyclodextrin-based supramolecular polymers. Chem. Soc. Rev.2009,38,875-882. (f) D.-S. Guo, S. Chen, H. Qian, H.-Q. Zhang, Y. Liu, Electrochemical stimulus-responsive supramolecular polymer based on sulfonatocalixarene and viologen dimers. Chem. Commun.2010,46,2620-2622. (g) Z. Zhang, Y. Luo, J. Chen, S. Dong, Y. Yu, Z. Ma, F. Huang, Formation of linear supramolecular polymers that is driven by C-H…π1 interactions in solution and in the solid state. Angew. Chem. Int. Ed.2011,50,1397-1401.
    [259]U. S. Schubert, C. Eschbaumer, Macromolecules containing bipyridine and terpyridine metal complexes:towards metallosupramolecular polymers. Angew. Chem. Int. Ed.2002, 41,2892-2926.
    [260](a) Y. Jiang, J.-B. Guo, C.-F. Chen, A bifunctionalized [3]rotaxane and its incorporation into a mechanically interlocked polymer. Chem. Commun.2010,46,5536-5538. (b) Y. Chen, Y. Liu, Cyclodextrin-based bioactive supramolecular assemblies. Chem. Soc. Rev. 2010,39,495-505. (c) S.-L. Li, T. Xiao, B. Hu, Y. Zhang, F. Zhao, Y. Ji, Y. Yu, C. Lin, L. Wang, Formation of polypseudorotaxane networks by cross-linking the quadruple hydrogen bonded linear supramolecular polymers via bisparaquat molecules. Chem. Commun.2011,47,10755-10757.
    [261](a) X.-D. Xu, J. Zhang, L.-J. Chen, X.-L. Zhao, D.-X. Wang, H.-B. Yang, Large-scale honeycomb microstructures constructed by platinum-acetylide gelators through supramolecular self-assembly. Chem. Eur. J.2012,18,1659-1667. (b) T. Haino, A. Watanabe, T. Hirao, T. Ikeda, Supramolecular polymerization triggered by molecular recognition between bisporphyrin and trinitrofluorenone. Angew. Chem. Int. Ed.2012,51, 1473-1476. (c) K. Jang, K. Miura, Y. Koyama, T. Takata, Catalyst- and solvent-free click synthesis of cyclodextrin-based polyrotaxanes exploiting a nitrile N-oxide. Org. Lett.2012, 12,3088-3091.
    [262]S. Yagai, K. Ohta, M. Gushiken, K. Iwai, A. Asano, S. Seki, Y. Kikkawa, M. Morimoto, A. Kitamura, T. Karatsu, Photoreversible supramolecular polymerisation and hierarchical organization of hydrogen-bonded supramolecular co-polymers composed of diarylethenes and oligothiophenes. Chem. Eur. J.2012,18,2244-2253.
    [263]H.-X. Zhao, D.-S. Guo, L.-H. Wang, H. Qian, Y. Liu, A novel supramolecular ternary polymer with two orthogonal host-guest interactions. Chem. Commun.2012,48, 11319-11321.
    [264](a) Q. Zhang, G.-Z. Li, C. R. Becer, D. M. Haddleton, Cyclodextrin-centred star polymers synthesized via a combination of thiol-ene click and ring opening polymerization. Chem. Commun.2012,48,8063-8065. (b) Y. Guan, M. Ni, X. Hu, T. Xiao, S. Xiong, C. Lin, Wang, L. Pillar[5]arene-based polymeric architectures constructed by orthogonal supramolecular interactions. Chem. Commun.2012,48,8529-8531.
    [265](a) Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, J. W. Doane, Reversible photoswitchable axially chiral dopants with high helical twisting power. J. Am. Chem. Soc.2007,129,12908-12909. (b) M. Mathews, R. S. Zola, S. Hurley, D. K.Yang, T. J. White, Q. Li, Light-driven reversible handedness inversion in self-organized helical superstructures. J. Am. Chem. Soc.2010,132,18361-18366.
    [266]X. Ma, R. Sun, W. Li, H. Tian, Novel electrochemical and pH stimulus-responsive supramolecular polymer with disparate pseudorotaxanes as relevant unimers. Polym. Chem.2011,2,1068-1070.
    [267]With a-CD, viologen and bis-SC4A, it was too complicated to do the accurate calculation. However, based on the simulated results, reasonable supramolecular structures were proposed. They still could provide valuable information to explain the experimental observations.
    [268]V. Balzani, M. Venturi, A. Credi, Molecular Devices and Machines-Concepts and Perspectives for the Nanoworld, Wiley-VCH:Weinheim, Germany,2008; Belowich, M. E.; Valente, C.
    [269]G. Wenz, B. H. Han, A. Muller, Cyclodextrin rotaxanes and polyrotaxanes. Chem. Rev. 2006,106,782-817; Tian, H.; Wang, Q.-C. Recent progress on switchable rotaxanes. Chem. Soc. Rev.2006,35,361-374; B. Champin, P. Mobian, J. P. Sauvage, Transition metal complexes as molecular machine prototypes. Chem. Soc. Rev.2007,36,358-366; E. R. Kay, D. A. Leigh, F. Zerbetto, Design principles for Brownian molecular machines: how to swim in molasses and walk in a hurricane. Angew. Chem. Int. Ed.2007,46, 72-191.
    [270]V. Balzani, A. Credi, M. Venturi, Light powered molecular machines. Chem. Soc. Rev. 2009,38,1542-1550.
    [271]A. G. Cheetham, M. G. Hutchings, T. D. W. Claridge, H. L. Anderson, Enzymatic synthesis and photoswitchable enzymatic cleavage of a peptide-linked rotaxane. Angew. Chem. Int. Ed.2006,45,1596-1599; E. J. F. Klotz, T. D. W. Claridge, H. L. Anderson, Homo-and hetero-[3]rotaxanes with two pi-systems clasped in a single macrocycle. J. Am. Chem. Soc.2006,128,15374-15375; Y. Liu, L. Yu, Y. Chen, Y. Zhao, H. Yang, Construction and DNA condensation of cyclodextrin-based polypseudorotaxanes with anthryl grafts. J. Am. Chem. Soc.2007,129,10656-10657; Y. Inoue, P. Kuad, Y. Okumura, Y. Takashima, H. Yamaguchi, A. Harada, Thermal and photochemical switching of conformation of poly(ethylene glycol)-substituted cyclodextrin with an azobenzene group at the chain end. J. Am. Chem. Soc.2007,129,6396-6397; Y. Wang, N. Ma, Z. Wang, X. Zhang, Photocontrolled reversible supramolecular assemblies of an azobenzene-containing surfactant with alpha-cyclodextrin. Angew. Chem. Int. Ed.2007, 46,2823-2826; C. F. Ke, C. Yang, T. Mori, T. Wada, Y. Liu, Y. Inoue, Catalytic enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid mediated by a non-sensitizing chiral metallosupramolecular host. Angew. Chem. Int. Ed.2009,48, 6675-6677.
    [272]A. J. McConnell, C. J. Serpell, A. L. Thompson, D. R. Allan, P. D. Beer, Calix[4]arene-based rotaxane host systems for anion recognition. Chem. Eur. J.2010,16, 1256-1264.
    [273]O. Molokanova, M. O. Vysotsky, Y. Cao, I. T. Priv.-Doz, V. Bohmer, Fourfold [2]rotaxanes of calix[4]arenes by ring closure. Angew. Chem. Int. Ed.2006,45, 8051-8055; C. Talotta, C. Gaeta, T. Pierro, P. Neri, Sequence stereoisomerism in calixarene-based pseudo[3]rotaxanes. Org. Lett.2011,13,2098-2101.
    [274]C. Yang, Y. H. Ko, N. Selvapalam, Y. Origane, T. Mori, T. Wada, K. Kim, Y. Inoue, Dynamic switching between single- and double-axial rotaxanes manipulated by charge and bulkiness of axle termini. Org. Lett.2007,9,4789-4792.
    [275]J.-P. Collin, F. Durola, V. Heitz, F. Reviriego, J.-P. Sauvage, Y. Trolez, A cyclic [4]rotaxane that behaves as a switchable molecular receptor:formation of a rigid scaffold from a collapsed structure by complexation with copper(I) ions. Angew. Chem. Int. Ed. 2010,49,10172-10175.
    [276]M. V. Rekharsky, H. Yamamura, M. Kawai, I. Osaka, R. Arakawa, A. Sato, Y. H. Ko, N. Selvapalam, K. Kim, Y. Inoue, Sequential formation of a ternary complex among dihexylammonium, cucurbit[6]uril, and cyclodextrin with positive cooperativity. Org. Lett. 2006,8,815-818.
    [277]T. Ooya, D. Inoue, H. S. Choi, Y. Kobayashi, S. Loethen, D. H. Thompson, Y. H. Ko, K. Kim, N. Yui, pH-responsive movement of cucurbit[7]uril in a diblock polypseudorotaxane containing dimethyl beta-cyclodextrin and cucurbit[7]uril. Org. Lett.2006,8,3159-3162.
    [278]D. H. Qu, Q. C. Wang, J. Ren, H. Tian, A light-driven rotaxane molecular shuttle with dual fluorescence addresses. Org. Lett.2004,6,2085-2088; D. Qu, Q. Wang, X. Ma, H. Tian, A [3]rotaxane with three stable states that responds to multiple-inputs and displays dual fluorescence addresses. Chem. Eur. J.2005,11,5929-5937; Q. Wang, X. Ma, D. Qu, H. Tian, Unidirectional threading synthesis of isomer-free [2]rotaxanes. Chem. Eur. J.2006, 12,1088-1096.
    [279]W. Ong, M. G. Kaifer, A. E. Kaifer, Cucurbit[7]uril:a very effective host for viologens and their cation radicals. Org. Lett.2002,4,1791-1794.
    [280]D.-S. Guo, L.-H. Wang, Y. Liu, Highly effective binding of methyl viologen dication and its radical cation by p-sulfonatocalix[4,5]arenes. J. Org. Chem.2007,72,7775-7778.
    [281]C. Pierre, ORD and CD in Chemistry and Biochemistry, Academic Press:New York, 1972.
    [282]X. Zhang, W. M. Nau, Chromophore Alignment in a Chiral Host Provides a Sensitive Test for the Orientation-Intensity Rule of Induced Circular Dichroism. Angew. Chem. Int. Ed. 2000,39,544-547; B. Mayer, X. Zhang, W. M. Nau, G. Marconi, Co-conformational variability of cyclodextrin complexes studied by induced circular dichroism of azoalkanes. J. Am. Chem. Soc.2001,123,5240-5248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700