新型孔材料的合成、结构及其吸附性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机共轭聚合物是一种新型的多孔材料,具有较大比表面积和良好孔结构性能,在催化化学、环境保护和气体储存等领域有广阔的应用前景,因而得到了广泛的研究与应用。其中芳基炔烃类的有机共轭聚合物含有大范围的π-π共轭体系,具有结构稳定和耐酸碱腐蚀等优点。论文中合成了几类基于Sonogashira-Hagihara反应机理制备的有机共轭聚合物,并且进行了表征分析以及其吸附有机溶剂的应用研究,这些工作将为设计和合成新型多孔材料提供帮助和指导,论文中研究的主要内容及结论概况如下:
     1.以1,3,5-三乙炔苯和/或1,4-二乙炔苯为聚合单体制备了一组偶合共轭微孔聚合物(HCMP)。研究结果表明反应物的单体结构和摩尔比对合成样品的比表面积,孔性能有着显著影响。随着1,3,5-三乙炔苯含量的增加,HCMP样品的比表面积和总孔体积也会增加,其吸附有机溶剂的性能越好;然而体系中微孔的孔体积则不断减少,其吸附氢气的能力也随之降低;
     2.理想状态卜,1,3,5-三乙炔苯和1,3,5-三溴苯聚合后形成的聚合物是2维有序结构的薄膜结构。但是薄膜材料热力学不稳定,容易发生卷曲或团聚。本文研究发现不同的溶剂对聚合物的形貌有较大的影响。在以甲苯、对二甲苯和间三甲苯为反应溶剂时,分别形成了具有球形、中空管形和片层形的不同形貌的颗粒。不同形貌的聚合物吸附氮气和氢气的性能相近,而吸附有机溶剂的性能相差较大,由于聚合物吸附液体后溶胀效应的影响,片层形的聚合物吸附有机溶剂的性能最好;
     3.分别以1,3,5-三乙炔苯和1,4-三溴苯,1,4-二乙炔苯和1,3,5-三溴苯进行反应,合成了具有中空管形结构和平面结构形貌特征的聚合物材料。实验结果表明线性结构1,4-二乙炔苯和平面结构的1,3,5-三乙炔苯在聚合过程中起到了导向剂和模板剂的作用。这两种材料具有较人的比表面积和孔体积,又表现了超强的疏水性质,同时对有机溶剂有良好的吸附性能;
     4.1,4-二乙炔苯与1,3,5-三溴苯酚进行反应,合成了高度聚合,具有弹性的聚合物颗粒。1,4-二乙炔苯在聚合过程中起到了导向剂的作用,材料形成了具有中空管形形貌的聚合物颗粒。当这种材料吸附有机溶剂达到饱和后,通过挤压的物理方式将聚合物中的有机物质分离出来,再生方法简单,有良好的应用价值。
Organic conjugated polymers are new porous materials with large surface areas and good porosity. They have found many useful applications in areas such as catalysis, environmental protection, gas storage, and so on, and therefore relevant research has been widely performed. These polymers with phenylene and acetylenyl units possess large π-π interaction systems, and they have many advantages such as structural stability and corrosion resistant of acid-base. This thesis reports the synthesis of several kinds of novel organic conjugated microporous polymers (CMP) based on Sonogashira-Hagihara cross-coupling reactions, and the characterization and the adsorption performance for organic solvents of these samples are studied. Our work will provide useful guidance for the rational design and synthesis of novel porous materials. The main content and conclusions of this thesis are summarized as:
     1. A series of homocoupled conjugated microporous polymers (HCMPs) were prepared by cross-coupling polymerization of1,3,5-triethynylbenzene and1,4-diethynylbenzene. Our results show that the structures and molar ratio of monomers has a remarkable influence on the surface area, pore volume, and micropore volume of the as-synthesized HCMP samples. With the increase of molar ratio of1,3,5-triethynylbenzene to1,4-diethynylbenzene, the surface area and total pore volume increased, and this will lead to an increase in their adsorption abilities for organic solvents. However, meanwhile the micropore volume decreased for these HCMP samples, which will result in a decrease of hydrogen sorption ability for HCMPs.
     2. Ideally, the polymer prepared by the polymerization of1,3,5-triethynyl-benzene and1,3,5-tribromobenzene shows two-dimensional thin film structure. However, the ultrathin films are thermodynamically unstable, and they tend to roll up or aggregate. Our results show that the reaction solvents have great effect on the morphologies of the polymers. Spherical, tubular and plate-like structures were received during the polymerization by using the toluene, p-xylene, and mesitylene solvents, respectively. The polymers with different morphologies show similar adsorption performance of N2and H2. But the storage capacity for organic solvents is remarkably influenced by CMPs with different morphologies. The plate-like CMP shows best performance for the storage of organic solvents, due to obvious swelling effect.
     3. We synthesized CMP with film and nanotube-like morphologies by1,3,5-triethynylbenzene with1,4-dibromobenzene and1,3,5-tribromobenzene with1,4-diethynylbenzene, respectively. Our results show that the linearly1,4-diethynylbenzene and the planar1,3,5-triethynylbenzene played a role of crystallization directing agent and template agent. Both CMP samples demonstrate large BET surface area, pore volumes, and excellent surface superhydrophobicity, and they show good adsorption capacities for organic solvents.
     4. The elastic polymer particles with high degree of polymerization were synthesized by1,4-diethynylbenzene and1,3,5-tribromophenol.1,4-diethynylbenzene played a role as directing agents during polymerization, and the polymer particles show the morphology of hollow tubular structure. The organic solvent adsorbed in polymer samples can be separated by squeezing, when the organic solvents reached its saturation state. This physical method is simple and has good applications.
引文
1.Yuan W.B., Garay A.L., Pichon A., et,al. Study of the mechanochemical formation and resulting properties of an archetypal MOF:Cu-3(BTC)(2) (BTC=1,3,5-benzenetricarboxylate)[J]. Crystengcomm.,2010,12:4063-4065.
    2.Yaghi O.M., Tranchemontagne D.J., Hunt J.R.. Room temperature synthesis of metal-organic frameworks:MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0[J]. Tetrahedron,2008,64:8553-8557.
    3.Stallmach F., Groger S., Kunzel V., et,al. NMR studies on the diffusion of hydrocarbons on the metal-organic framework material MOF-5[J]. Angew. Chem.-Int. Edit., 2006,45:2123-2126.
    4.Long J.R., Kaye S.S., Dailly A., et,al. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)(3) (MOF-5) [J]. J. Am. Chem. Soc.,2007,129:14176-14177.
    5.Garcia-Garibay M.A., Gould S.L., Tranchemontagne, D., et,al. Amphidynamic character of crystalline MOF-5:Rotational dynamics of terephthalate phenylenes in a free-volume, sterically unhindered environment[J]. J. Am. Chem. Soc.,2008,130:3246-3247.
    6.Furukawa H., Miller M.A., Yaghi O.M. Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal-organic frameworks[J]. J Mater Chem.,2007,17:3197-3204.
    7.Eddaoudi M., Kim J., Rosi N., et,al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science,2002,295:469-472.
    8.Millward A.R., Yaghi O.M.. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[J]. J. Am. Chem. Soc. 2005,127:17998-17999.
    9.Novoselov K.S., Geim A.K., Morozov S.V., et,al. Electric field effect in atomically thin carbon films[J]. Science,2004,306:666-669.
    10.Regan B.C., Aloni S., Ritchie R.O., et,al. Carbon nanotubes as nanoscale mass conveyors[J]. Nature,2004,428:924-927.
    11.Greene M.E., Kinser C.R., Kramer D.E., et,al. Application of scanning probe microscopy to the characterization and fabrication of hybrid nanomaterials[J]. Microscopy Research and Technique,2004,64:415-434.
    12.徐如人,庞文琴.分子筛与多孔材料化学[M].北京:科学出版社,2004.
    13.Wu D., Xu F., Sun B., et,al. Design and preparation of porous polymers[J]. Chem. Rev.,2012,112:3959-4015.
    14.Thomas A.. Functional Materials:From Hard to Soft Porous Frameworks[J]. Angew. Chem.-Int. Edit.,2010,49:8328-8344.
    15.Jiang J.X., Cooper A.I. Microporous Organic Polymers:Design, Synthesis, and Function[J]. Top Curr. Chem.,2010,293:1-33.
    16.Dawson R., Cooper A.I., Adams D.J. Nanoporous organic polymer networks[J]. Prog. Polym. Sci.,2012,37:530-563.
    17.Jiang J.X., Su F., Trewin A., et,al. Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks[J]. J. Am. Chem. Soc.,2008,130:7710-7720.
    18.Jiang J.X., Su F., Trewin A., et,al. Conjugated microporous poly (aryleneethynylene) networks[J]. Angew. Chem.-Int. Edit.,2007,46:8574-8578.
    19.Jiang J.X., Su F., Niu H., et,al. Conjugated microporous poly(phenylene butadiynylene)s[J]. Chem. Commun.,2008,4:486-488.
    20.Dawson R., Laybourn A., Khimyak Y. Z., et,al. High Surface Area Conjugated Microporous Polymers:The Importance of Reaction Solvent Choice[J]. Macro molecules, 2010,43:8524-8530.
    21.Dawson R., Laybourn A., Clowes, et,al. Functionalized Conjugated Microporous Polymers[J]. Macro molecules,2009,42:8809-8816.
    22.Yuan S.W., Dorney B., White D., et,al. Microporous polyphenylenes with tunable pore size for hydrogen storage[J]. Chem. Commun.,2010,46:4547-4549.
    23.张步峰.微孔有机聚合物的设计、合成与性能研究[D].大连:大连理工大学,2010.
    24.徐叔军,梁丽芸,李步怡,等.有机微孔聚合物研究进展[J].化学进展,2011,23:2085.
    25.Tsyurupa M.P., Davankov V.A.. Porous structure of hypercrosslinked polystyrene: State-of-the-art mini-review[J]. React. Funct. Polym.,2006,66:768-779.
    26.Davankov V.A., Pastukhov A.V., Tsyurupa M.P.. Unusual mobility of hypercrosslinked polystyrene networks:Swelling and dilatometric studies[J]. J. Polym. Sci. Pol. Phys.,2000,38:1553-1563.
    27.Wood C.D., Tan B., Trewin A., et,al. Hydrogen storage in microporous hypercrosslinked organic polymer networks[J]. Chem. Mater.,2007,19:2034-2048.
    28.Lee J.Y., Wood C.D., Bradshaw D., et,al. Hydrogen adsorption in microporous hypercrosslinked polymers[J]. Chem. Commun.,2006,25:2670-2672.
    29.Wood C.D., Tan B., Trewin A., et,al. Microporous organic polymers for methane storage[J]. Adv. Mater.,2008,20:1916-1917.
    30.Li B., Su F., Luo H.K., et,al. Hypercrosslinked microporous polymer networks for effective removal of toxic metal ions from water[J]. Micropor. Mesopor. Mat., 2011,138:207-214.
    31.Germain J., Frechet J.M.J., Svec F.. Nanoporous polymers for hydrogen storage[J]. Small,2009,5:1098-1111.
    32.Germain J., Frechet J.M.J., Svec F.. Hypercrosslinked polyanilines with nanoporous structure and high surface area:potential adsorbents for hydrogen storage[J]. J. Mater. Chem., 2007,17:4989-4997.
    33.Germain J., Frechet J.M.J., Svec F. Nanoporous, hypercrosslinked polypyrroles: effect of crosslinking moiety on pore size and selective gas adsorption[J]. Chem. Commun., 2009,12:1526-1528.
    34.McK.eown N.B. Phthalocyanine-containing polymers[J]. J Mater Chem (2000) 10, 1979-1995.
    35.Bader S. Ghanem N. B. M., Peter M. Budd Nasser M. Al-Harbi, Detlev Fritsch, et,al. Synthesis, Characterization, and Gas Permeation Properties of a Novel Group of Polymers with Intrinsic Microporosity:PIM-Polyimides[J]. Macromolecules,2009,42:7881-7888.
    36.Ghanem, B. S., Msayib, K. J., McKeown, N. B., et,al. A triptycene-based polymer of intrinsic microposity that displays enhanced surface area and hydrogen adsorption[J]. Chem. Commun.,2007,1:67-69.
    37.McKeown N.B., Budd P.M. Exploitation of Intrinsic Microporosity in Polymer-Based Materials[J]. Macromolecules,2010,43:5163-5176.
    38.Peter M. Budd B. S. G., Saad Makhseed Neil B. McKeown, Kadhum J. Msayib, et,al. Tattershall. Polymers of intrinsic microporosity (PIMs):robust, solution-processable, organic nanoporous materials[J]. Chem. Commun.,2004,2:230-231. 9.Budd P. M., Ghanem B., Msayib, K., et,al. A nanoporous network polymer derived from hexaazatrinaphthylene with potential as an adsorbent and catalyst support[J]. J. Mater. Chem. 2003,13:2721-2726.
    40.Ghanem B.S., McKeown N.B., Budd P.M., et,al. Synthesis, Characterization, and Gas Permeation Properties of a Novel Group of Polymers with Intrinsic Microporosity: PIM-Polyimides[J]. Macro molecules,2009,42:7881-7888.
    41.Yaghi O.M., El-Kaderi H.M., Hunt J.R., et,al. Designed synthesis of 3D covalent organic frameworks[J]. Science,2007,316:268-272.
    42.Furukawa H., Yaghi O.M. Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications[J]. J. Am. Chem. Soc.,2009,131:8875-8883.
    43.Cote A.P., Benin A.I., Ockwig N.W., et,al. Porous, crystalline, covalent organic frameworks[J]. Science,2005,310:1166-1170.
    44.Yaghi O.M., Doonan C.J., Tranchemontagne D.J., et, al. Exceptional ammonia uptake by a covalent organic framework[J]. Nat. Chem.,2010,2:235-238.
    45.Cote A.P., El-Kaderi H.M., Furukawa H., et,al. Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks [J]. J. Am. Chem. Soc., 2007,129:12914-12915.
    46.El-Kaderi H.M., Hunt J.R., Mendoza-Cortes J.L., et,al. Designed synthesis of 3D covalent organic frameworks[J]. Science,2007,316:268-272.
    47.Lan J.H., Cao D.P., Wang W.C. Li-Doped and Nondoped Covalent Organic Borosilicate Framework for Hydrogen Storage[J]. J. Phys. Chem. C.,2010,114:3108-3114.
    48.Lan J.H., Cao D.P., Wang W.C. High Uptakes of Methane in Li-Doped 3D Covalent Organic Frameworks[J]. Langmuir.,2010,26:220-226.
    49.Bojdys M.J., Jeromenok J., Thomas A., et,al. Rational Extension of the Family of Layered, Covalent, Triazine-Based Frameworks with Regular Porosity[J]. Adv. Mater., 2010,22:2202-2205.
    50.Kuhn P., Antonietti M., Thomas A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis[J]. Angew. Chem.-Int. Edit.,2008,47:3450-3453.
    51.Kuhn P., Thomas A., Antonietti M. Toward Tailorable Porous Organic Polymer Networks:A High-Temperature Dynamic Polymerization Scheme Based on Aromatic Nitriles[J]. Macromolecules,2009,42:319-326.
    52.Zhao H.Y., Jin Z., Su H.M., et,al. Targeted synthesis of a 2D ordered porous organic framework for drug release[J]. Chem. Commun.,2011,47:6389-6391.
    53. Ben T., Ren H., Ma S.Q., et,al. Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area[J]. Angew. Chem.-Int. Edit., 2009,48:9457-9460.
    54.BenT., Pei C.Y., Zhang D.L., et,al. Gas storage in porous aromatic frameworks (PAFs) [J]. Energ. Environ. Sci.,2011,4:3991-3999.
    55. Wang Y., Li A., Wang K.A., et,al. Reversible hydrogen storage of multi-wall carbon nanotubes doped with atomically dispersed lithium[J]. J. Mater. Chem.,2010,20:6490-6494.
    56.Li A., Lu R.F., Wang Y., et,al. Lithium-Doped Conjugated Microporous Polymers for Reversible Hydrogen Storage[J]. Angew. Chem.-Int. Edit.,2010,49:3330-3333.
    57.朱梅.光活性共轭分子体系的结构设计与功能化[D].北京:中国科学院化学研究所,2009.
    58.唐金玉.超临界二氧化碳中铜催化末端炔的氧化偶联反应[D].广州:中国科学院广州化学研究所,2006.
    59.李翠红.有机共轭分子体系的设计、组装及性质研究[D].北京:中国科学院化学研究所,2008.
    60.杨帆.钯催化的Glaser反应与脱芳构化反应研究[D].大连:大连理工大学,2008.
    61.王晔峰,邓维,刘磊,等Sonogashira反应研究的最新进展[J].有机化学2005,25:8-24.
    62.Zhang W., Moore J.S. Alkyne metathesis:Catalysts and synthetic applications[J]. Adv. Synth. Catal.,2007,349:93-120.
    63.Zhang W., Moore J.S.. Shape-persistent macrocycles:Structures and synthetic approaches from arylene and ethynylene building blocks[J]. Angew. Chem.-Int. Edit., 2006,45:4416-4439.
    64.Zhang W., Moore J.S. Reaction pathways leading to arylene ethynylene macrocycles via alkyne metathesis[J]. J. Am. Chem. Soc.,2005,127:11863-11870.
    65.Balakrishnan K., Datar A., Zhang W., et,al. Nanofibril self-assembly of an arylene ethynylene macrocycle[J]. J. Am. Chem. Soc.,2006,128:6576-6577.
    66.Bieri M., Nguyen M.T., Groning O., et,al. Two-Dimensional Polymer Formation on Surfaces:Insight into the Roles of Precursor Mobility and Reactivity[J]. J. Am. Chem. Soc. 2010,132:16669-16676.
    67.Wang Z.G., Zhang B.F., Yu H., et,al. Microporous polyimide networks with large surface areas and their hydrogen storage properties[J]. Chem. Commun.,2010,46:7730-7732.
    68.谢政,张炜,黄鹏程.芳炔类共轭大环化合物[J].有机化学,2002,22:543-554.
    69.Sing K.S.W., Everett D.H., Haul R.A.W., et,al. Reporting Physisorption Data for Gas Solid Systems with Special Reference to the Determination of Surface-Area and Porosity[J]. Pure Appl. Chem.,1985,57:603-619.
    70.陈丽萍,候豪情,洪三国.Pd/C在Sonogashira反应中的应用[J].化工进展,2008,27:687-692.
    71.Miller M.W., Johnson C.R.. Sonogashira coupling of 2-ioda-2-cycloalkenones: Synthesis of (+)-and (-)-harveynone and (-)-tricholomenyn A[J]. J. Org. Chem., 1997,62:1582-1583.
    72.Thorand S., Krause N. Improved procedures for the palladium-catalyzed coupling of terminal Alkynes with aryl bromides (Sonogashira coupling) [J]. J. Org. Chem., 1998,63:8551-8553.
    73.Eckert T., Ipaktschi J. A new method for synthesis of methyl arylpropiolates by direct Heck coupling of aryl iodide and methyl propiolate in presence of K2CO3[J]. Synthetic Commun.,1998,28:327-335.
    74.Batey R.A., Shen M., Lough A.J.. Carbamoyl-substituted N-heterocyclic carbene complexes of palladium(II):Application to Sonogashira cross-coupling reactions[J]. Org. Lett.,2002,4:1411-1414.
    75.Chow H.F., Wan C.W., Low K.H., et,al. A highly selective synthesis of diarylethynes and their oligomers by a palladium-catalyzed Sonogashira coupling reaction under phase transfer conditions[J]. J. Org. Chem.,2001,66:1910-1913.
    76.Nakamura K., Okubo H., Yamaguchi M.. Low temperature Sonogashira coupling reaction[J]. Synlett.,1999,5:549-550.
    77.Dai W.M., Guo D.S., Sun L.P. Chemistry of aminophenols. Part 1:Remarkable additive effect on Sonogashira cross-coupling of 2-carboxamidoaryl triflates and application to novel synthesis of indoles[J]. Tetrahedron Lett.,2001,42:5275-5278.
    78.唐金玉,江焕峰,邓国华,等Glaser偶联反应研究进展[J].有机化学,2005,25:1503-1507.
    79.Rossi R., Carpita A., Bigelli C. A PALLADIUM-PROMOTED ROUTE TO 3-ALKYL-4-(1-ALKYNYL)-HEXA-1,5-DYN-3-ENES AND OR 1,3-DIYNES[J]. Tetrahedron Lett.,1985,26:523-526.
    80.Cho D.H., Lee J.H., Kim B.H.. An improved synthesis of 1,4-bis(3,4-dimethyl-5-formyl-2-pyrryl)butadiyne and 1,2-bis(3,4-dimethyl-5-formyl-2-pyrryl)ethyne[J]. J. Org. Chem.,1999,64:8048-8050.
    81.Liu Q.B., Burton D.J. A facile synthesis of diynes[J]. Tetrahedron Lett., 1997,38:4371-4374.
    82.近藤精一,石川达雄,安部郁夫.吸附科学[M].北京:化学工业出版社,2006.
    83.杨通在,罗顺忠,许云书.氮吸附法表征多孔材料的孔结构[J].炭素,2006,125:17-22.
    84.梁丽芸,李步怡,陈冰,等.多孔聚合物贮氢材料的研究进展[J].高分子通报,2008,10:6-12.
    85.Katko T.S., Luonsi A.A.O., Juuti P.S. Water pollution control and strategies in Finnish pulp and paper industries in the 20th century[J]. International Journal of Environment and Pollution,2005,23:368-387.
    86.Su Y.H., Zhu Y.G., Sheng G., et,al. Linear adsorption of nonionic organic compounds from water onto hydrophilic minerals:Silica and alumina[J]. Environmental Science & Technology,2006,40:6949-6954.
    87.马伟.固水界面化学与吸附技术[M].北京:冶金工业出版社,2011.
    88.赵振国.接触角及其在表面化学研究中的应用[J].化学研究与应用,2000,12:370-374.
    89.Zhu Q., Pan Q., Liu F.. Facile Removal and Collection of Oils from Water Surfaces through Superhydrophobic and Superoleophilic Sponges[J]. J. Phys. Chem. C. 2011,115:17464-17470.
    90.Park I., Efimenko K., Sjoblom J., et,al. Rapid Removal of Organics and Oil Spills from Waters Using Silicone Rubber "Sponges"[J].Journal of Dispersion Science and Technology,2009,30:318-327.
    91.Genzer J., Efimenko K. Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers[J]. Science,2000,290:2130-2133.
    92.Erbil H.Y., Demirel A.L., Avci Y., et,al. Transformation of a simple plastic into a superhydrophobic surface[J]. Science,2003,299:1377-1380.
    93.Lafuma A., Quere D.. Superhydrophobic states[J]. Nat. Mater.,2003,2:457-460.
    94.Gao L., McCarthy T.J.. A perfectly hydrophobic surface (theta(A)/theta(R)=180 degrees/180 degrees) [J]. J. Am. Chem. Soc.,2006,128:9052-9053.
    95.Feng X., Jiang L.. Design and creation of superwetting/antiwetting surfaces[J]. Adv. Mater.,2006,18:3063-3078.
    96.Zhang X., Shi F., Niu J., et,al. Superhydrophobic surfaces:from structural control to functional application[J]. J Mater. Chem.,2008,18:621-633.
    97.Tan D., Fan W., Xiong W., et,al. Study on the Morphologies of Covalent Organic Microporous Polymers:the Role of Reaction Solvents[J]. Macromol Chem. Phys., 2012,213:1435-1440.
    98.Tan D., Fan W., Xiong W., et,al. Study on adsorption performance of conjugated microporous polymers for hydrogen and organic solvents:The role of pore volume[J]. Eur. Polym.J.,2012,48:705-711.
    1. H. Li, M. Eddaoudi, M. O'Keeffe, et,al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature,1999,402(6759):276-279.
    2. X. B. Zhao, B. Xiao, A. J. Fletcher, et,al. Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks[J]. Science,2004,306(5698):1012-1015.
    3. A. P. Cote, A. I. Benin, N. W. Ockwig, et,al. Porous, crystalline, covalent organic frameworks[J]. Science,2005,310 (5751):1166-1170.
    4. A. Zecchina, S. Bordiga, J. G. Vitillo, et,al. Liquid hydrogen in protonic chabazite [J]. J. Am. Chem. Soc.,2005,127(17):6361-6366.
    5. H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortes, et,al. Designed synthesis of 3D covalent organic frameworks[J]. Science,2007,316 (5822):268-272.
    6. A. Thomas. Functional Materials:From Hard to Soft Porous Frameworks[J]. Angew. Chem.-Int. Edit.,2010,49(45):8328-8344.
    7. S. Yuan, B. Dorney, D. White, et,al. Microporous polyphenylenes with tunable pore size for hydrogen storage[J]. Chem Commun,,2010,46(25):4547-4549.
    8. H. Ren, T. Ben, E. Wang, et,al. Targeted synthesis of a 3D porous aromatic framework for selective sorption of benzene[J]. Chem Commun.,2010,46(2):291-293.
    9. T. Ben, H. Ren, S. Ma, et,al. Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area[J]. Angew. Chem.-Int. Edit., 2009,48(50):9457-9460.
    10. R. Dawson, D. J. Adams, A. I. Cooper. Chemical tuning of CO2 sorption in robust nanoporous organic polymers[J]. Chem. Sci.,2011,2(6):1173-1177.
    11. J.-X. Jiang, F. Su, A. Trewin, et,al. Synthetic control of the pore dimension (调结孔 性能)and surface area in conjugated microporous polymer and copolymer networks[J]. J. Am. Chem. Soc.,2008,130(24):7710-7720.
    12. R. Dawson, A. Laybourn, R. Clowes, et,al. Functionalized Conjugated Microporous Polymers[J]. Macromolecules,2009,42(22):8809-8816.
    13. J.-X. Jiang, A. Trewin, F. Su, et,al. Microporous Poly(tri(4-ethynylphenyl)amine) Networks:Synthesis, Properties, and Atomistic Simulation[J]. Macromolecules, 2009,42(7):2658-2666.
    14. E. Stoeckel, X. Wu, A. Trewin, et,al. Chem. Commun.,2009,2:212-214.
    15. R. Dawson, A. Laybourn, Y. Z. Khimyak, et,al. High Surface Area Conjugated Microporous Polymers:The Importance of Reaction Solvent Choice[J]. Macromolecules, 2010,43(20):8524-8530.
    16. T. Hasell, C. D. Wood, R. Clowes, et,al. Palladium Nanoparticle Incorporation in Conjugated Microporous Polymers by Supercritical Fluid Processing[J]. Chem. Mater, 2010,22(2):557-564.
    17. J.-X. Jiang, F. Su, H. Niu, et,al. Conjugated microporous poly(phenylene butadiynylene)s[J]. Chem. Commun.,2008,(4):486-488.
    18. A. Li, R.-F. Lu, Y. Wang, et,al. Lithium-Doped Conjugated Microporous Polymers for Reversible Hydrogen Storage[J]. Angew. Chem.-Int. Edit.,2010,49(19):3330-3333.
    19. J.-X. Jiang, F. Su, A. Trewin, et,al. Conjugated microporous poly (arylcneethynylene) networks[J]. Angew. Chem.-Int. Edit.,2007,46(45):8574-8578.
    20. A. Li, H.-X. Sun, D.-Z. Tan, et,al. Superhydrophobic conjugated microporous polymers for separation and adsorption[J]. Energ Environ Sci.,2011,4(6):2062-2065.
    21. K. S. W. Sing, D. H. Everett, R. A. W. Haul, et,al. Reporting Physisorption Data for Gas Solid Systems with Special Reference to the Determination of Surface-Area and Porosity [J]. Pure Appl. Chem.,1985,57(4):603-619.
    1.Jiang J. X., Cooper A. I. Microporous Organic Polymers:Design, Synthesis, and Function[J]. Top Curr. Chem.,2010,293:1-33.
    2.Thomas A. Functional Materials:From Hard to Soft Porous Frameworks[J]. Angew. Chem.-Int. Edit.,2010,49:8328-8344.
    3.Tan D., Fan W., Xiong W., et,al. Study on adsorption performance of conjugated microporous polymers for hydrogen and organic solvents:The role of pore volume[J]. Eur. Polym.1,2012,48:705-711.
    4.Li A., Sun H. X., Tan D. Z., et,al. Superhydrophobic conjugated microporous polymers for separation and adsorption[J]. Energ Environ. Sci.,2011,4:2062-2065.
    5.Yuan S. W., Dorney B., White D., et,al. Microporous polyphenylenes with tunable pore size for hydrogen storage[J]. Chem. Commun.,2010,46:4547-4549.
    6.Li A., Lu R. F., Wang Y., et,al. Lithium-Doped Conjugated Microporous Polymers for Reversible Hydrogen Storage[J]. Angew. Chem.-Int. Edit.,2010,49:3330-3333.
    7Jiang J. X., Su F., Niu H., et,al. Conjugated microporous poly(phenylene butadiynylene)s[J]. Chem. Commun.,2008,4:486-488.
    8.Jiang J. X., Su F., Trewin A., et,al. Conjugated microporous poly (aryleneethynylene) networks[J]. Angew. Chem.-Int. Edit.,2007,46:8574-8578.
    9.Kropka J. M., Pryamitsyn V., Ganesan V. Relation between glass transition temperatures in polymer nanocomposites and polymer thin films[J]. Phys. Rev. Lett., 2008,101:075702-075704.
    10.Zhou J., Berry B., Douglas J. F., et,al. Nanoscale thermal-mechanical probe determination of'softening transitions'in thin polymer films[J]. Nanotechnology, 2008,19:1-9.
    11.Zelikin A. N. Drug Releasing Polymer Thin Films:New Era of Surface-Mediated Drug Delivery[J]. Acs Nano.,2010,4:2494-2509.
    12.Titirici M. M., Roohi F. Thin thermo-responsive polymer films onto the pore system of chromatographic beads via reversible addition-fragmentation chain transfer polymerization[J]. New J Chem.,2008,32:1409-1414.
    13.Menon N., Huang J., Juszkiewicz M., et,al. Capillary wrinkling of floating thin polymer films[J]. Science,2007,317:650-653.
    14.Guo S. W., Chen C., Zhang H., et,al. Facile loading of metal ions in the nanopores of polymer thin films and in situ generation of metal sulfide nanoparticle arrays[J]. Nanotechnology,2008,19:1-9.
    15.Glynos E., Frieberg B., Oh H., et,al. Role of Molecular Architecture on the Vitrification of Polymer Thin Films[J]. Phys. Rev. Lett.,2011,106:128301-128304.
    16.Gao J., Bonnet W., Tracy C., et,al. Bulk Electroluminescence from Conjugated Polymer Thin Films via the Formation of Gold Nanoislands[J]. Small,2008,4:1707-1710.
    17.Naddo T., Che Y., Zhang W., et,al. Detection of explosives with a fluorescent nanofibril film[J]. J. Am. Chem. Soc.,2007,129:6978-6979.
    18.Zuo Z. C., Guo Y. B., Li Y. L., et,al. Construction of Large-Scale Highly Ordered Macroporous Monoliths of pi-Conjugated Polymers[J]. Macromol Rapid Co mm., 2009,30:1940-1944.
    19.Novoselov K.. S., Geim A. K., Morozov S. V., et,al. Electric field effect in atomically thin carbon films[J]. Science,2004,306:666-669.
    20.Cote A. P., Benin A. I., Ockwig N. W., et,al. Porous, crystalline, covalent organic frameworks[J]. Science,2005,310:1166-1170.
    21.Cote A. P., El-Kaderi H. M., Furukawa H., et,al. Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks[J]. J. Am. Chem. Soc.,2007, 129:12914-12915.
    22.Kobayashi N., Kijima M. Microporous materials derived from two- and three-dimensional hyperbranched conjugated polymers by thermal elimination of substituents[J], J Mater Chem.,2007,17:4289-4296.
    23.K.uhn P., Antonietti M., Thomas A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis[J]. Angew. Chem.-Int. Edit.,2008,47:3450-3453.
    24.Kuhn P., Thomas A., and Antonietti M. Toward Tailorable Porous Organic Polymer Networks:A High-Temperature Dynamic Polymerization Scheme Based on Aromatic Nitriles[J]. Macromolecules,2009,42:319-326.
    25.Zhao H. Y., Jin Z., Su H. M., et,al. Targeted synthesis of a 2D ordered porous organic framework for drug release[J]. Chem. Commun.,2011,47:6389-6391.
    26.Colson J. W., Woll A. R., Mukherjee A., et,al. Oriented 2D Covalent Organic Framework Thin Films on Single-Layer Graphene[J]. Science,2011,332:228-231.
    1.Kuhn P., Antonietti M., Thomas A.. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis[J]. Angew. Chem.-Int. Edit.,2008,47:3450-3453.
    2.Kobayashi N., Kijima M. Microporous materials derived from two- and three-dimensional hyperbranched conjugated polymers by thermal elimination of substituents[J].J Mater Chem.,2007,17:4289-4296.
    3.Cote A.P., Benin A.I., Ockwig N.W., et,al. Porous, crystalline, covalent organic frameworks[J]. Science,2005,310:1166-1170.
    4. Ben T., Ren H., Ma S.Q., et,al. Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area[J]. Angew. Chem.-Int. Edit., 2009,48:9457-9460.
    5.Dawson R., Laybourn A., Clowes R., et,al. Functionalized Conjugated Microporous Polymers[J]. Macromolecules,2009,42:8809-8816.
    6.Dawson R., Laybourn, A., Khimyak, Y.Z., et,al. High Surface Area Conjugated Microporous Polymers:The Importance of Reaction Solvent Choice[J]. Macromolecules, 2010,43:8524-8530.
    7.Jiang J.X., Su F., Niu H., et,al.2008) Conjugated microporous poly(phenylene butadiynylene)s[J]. Chem. Commun.,486-488.
    8.Jiang J.X., Su F., Trewin,A., et,al. Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks[J]. J. Am. Chem. Soc., 2008,130:7710-7720.
    9.Jiang J.X., Su F., Trewin A., et,al. Conjugated microporous poly (arylcneethynylcne) networks[J]. Angew. Chem.-Int. Edit.,2007,46:8574-8578.
    10.Zhang W., Moore J.S. Shape-persistent macrocycles:Structures and synthetic approaches from arylene and ethynylene building blocks[J]. Angew. Chem.-Int. Edit. 2006,45:4416-4439.
    11.Zhang W., Moore J.S. Alkyne metathesis:Catalysts and synthetic applications[J]. Adv. Synth. Catal.,2007,349:93-120.
    12.Tan D., Fan W., Xiong W., et,al. Study on the Morphologies of Covalent Organic Microporous Polymers:the Role of Reaction Solvents[J]. Macromol Chem. Phys., 2012,213:1435-1440.
    13.Hasell T., Wood C.D., Clowes R., et,al. Palladium Nanoparticle Incorporation in Conjugated Microporous Polymers by Supercritical Fluid Processing[J]. Chem. Mater. 2010,22:557-564.
    14.Li A., Sun H.X., Tan D.Z., et,al. Superhydrophobic conjugated microporous polymers for separation and adsorption[J]. Energ Environ. Sci.,2011,4:2062-2065.
    15.Tan D., Fan W., Xiong W., et,al. Study on adsorption performance of conjugated microporous polymers for hydrogen and organic solvents:The role of pore volume[J]. Eur. Polym.J.,2012,48:705-711.
    16.Zhu Q., Pan Q., Liu F.,et,al. Facile Removal and Collection of Oils from Water Surfaces through Superhydrophobic and Superoleophilic Sponges[J]. J Phys. Chem. C. 2011,115:17464-17470.
    17.Park I., Efimenko K., Sjoblom J., et,al. Rapid Removal of Organics and Oil Spills from Waters Using Silicone Rubber "Sponges"[J]. Journal of Dispersion Science and Technology,2009,30:318-327.
    18.Genzer J., Efimenko K. Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolaycrs[J]. Science,2000,290:2130-2133.
    19.Erbil H.Y., Demirel A.L., Avci Y., et,al. Transformation of a simple plastic into a superhydrophobic surface[J]. Science,2003,299:1377-1380.
    20.Lafuma A., Quere D. Superhydrophobic states, Nat. Mater,2003,2:457-460.
    21.Gao L., McCarthy T.J. A perfectly hydrophobic surface (theta(A)/theta(R)=180 degrees/180 degrees) [J]. J. Am. Chem. Soc.,2006,128:9052-9053.
    22.Feng X., Jiang L. Design and creation of superwetting/antiwetting surfaces[J]. Adv. Mater,2006,18:3063-3078.
    23.Zhang X., Shi F., Niu J., et,al. Superhydrophobic surfaces:from structural control to functional application[J]. J Mater Chem.,2008,18:621-633.
    1.Katko T.S., Luonsi A.A.O., Juuti P.S.. Water pollution control and strategies in Finnish pulp and paper industries in the 20th century[J]. International Journal of Environment and Pollution,2005,23:368-387.
    2.Su,Y.H., Zhu Y.G., Sheng G., et, al. Linear adsorption of nonionic organic compounds from water onto hydrophilic minerals:Silica and alumina[J]. Environmental Science & Technology,2006,40:6949-6954.
    3.Zhu Q., Pan Q., Liu, F.. Facile Removal and Collection of Oils from Water Surfaces through Superhydrophobic and Superoleophilic Sponges[J]. J Phys. Chem. C. 2011,115:17464-17470.
    4.Park I., Efimenko K., Sjoblom J., et,al. Rapid Removal of Organics and Oil Spills from Waters Using Silicone Rubber "Sponges"[J]. Journal of Dispersion Science and Technology, 2009,30:318-327.
    5.Genzer J.,Efimenko K.. Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers[J]. Science,2000,290:2130-2133.
    6.Erbil H.Y., Demirel A.L., Avci Y., et, al. Transformation of a simple plastic into a superhydrophobic surface[J]. Science,2003,299:1377-1380.
    7.Lafuma A., Quere D. Superhydrophobic states[J]. Nat. Mater,2003,2:457-460.
    8.Gao L., McCarthy T.J.. A perfectly hydrophobic surface (theta(A)/thcta(R)=180 degrees/180 degrees) [J]. J. Am. Chem. Soc.,2006,128:9052-9053.
    9.Feng X., Jiang L. Design and creation of superwetting/antiwetting surfaces[J]. Adv. Mater,2006,18:3063-3078.
    10.Zhang X., Shi F., Niu J., et, al. Superhydrophobic surfaces:from structural control to functional application[J]. J Mater Chem.,2008,18:621-633.
    11.Dawson R., Laybourn A., Clowes R., et, al. Functionalized Conjugated Microporous Polymers[J]. Macromolecules,2009,42:8809-8816.
    12.Dawson R., Laybourn A., Khimyak Y.Z., et, al. High Surface Area Conjugated Microporous Polymers:The Importance of Reaction Solvent Choice[J]. Macromolecules, 2010,43:8524-8530.
    13.Jiang J.X., Cooper A.I. Microporous Organic Polymers:Design, Synthesis, and Function[J]. Top Curr. Chem.,2010,293:1-33.
    14.Jiang J.X., Su F., Trewin A., et, al. Conjugated microporous poly (aryleneethynylene) networks[J]. Angew. Chem.-Int. Edit.,2007,46:8574-8578.
    15.Jiang J.X., Su F., Trewin A., et, al. Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks[J]. J. Am. Chem. Soc.,2008,130:7710-7720.
    16. Yuan S.W., Dorney B., White D., et, al. Microporous polyphenylenes with tunable pore size for hydrogen storage[J]. Chem. Commun.,2010,46:4547-4549.
    17.Dawson R., Adams D.J., Cooper A.I. Chemical tuning of CO2 sorption in robust nanoporous organic polymers[J]. Chem Sci.,2011,2:1173-1177.
    18.Tan D., Fan W., Xiong W., et, al. Study on adsorption performance of conjugated microporous polymers for hydrogen and organic solvents:The role of pore volume[J]. Eur Polym J.,2012,48:705-711.
    19.Tan D., Fan W., Xiong W., et, al. Study on the Morphologies of Covalent Organic Microporous Polymers:the Role of Reaction Solvents[J]. Macromol Chem Phys., 2012,213:1435-1440.
    20.Li A., Sun H.X., Tan D.Z., et, al. Superhydrophobic conjugated microporous polymers for separation and adsorption[J]. Energ Environ Sci.,2011,4:2062-2065.
    21.王晔峰,邓维,刘磊,等Sonogashira反应研究的最新进展[J].有机化学,2005,25:8-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700