葫芦脲超分子包结物的构建及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超分子化学近年来发展十分迅速,因为其在功能材料、催化化学、生物医药、信息存储等诸多方面有着巨大的潜在应用而备受科学家们的瞩目。主客体化学是主体与客体之间通过非共价键的形式相互作用在一起而形成包结物的超分子化学,其中以具有疏水内腔的大环化合物葫芦脲为主体的主客体包结物是近年来主客体化学领域的研究热点之一。葫芦脲是由甘脲缩合而得,其两端口由羰基组成,这种具有很强刚性的空腔大环化合物因为其具有与阳离子或者带正电基团形成稳定包结物的能力,而被认为是构造超分子包结物的明星分子。
     本文围绕着用葫芦脲构造功能性的超分子包结物为目标而展开,具体内容如下:
     第一章,简述了主客体化学的研究进展,并综述了基于葫芦脲为主体的主客体化学的研究动态。
     第二章,本章设计合成了由对2-[2-[4-(二甲氨基)苯基]乙烯基]吡啶盐(DMA)和对氨基苯氧基乙基(OA)组成的V型菁染料分子DP。
     1、考察了CB[7]与DP分子形成[2]拟轮烷的过程。因为空间位阻,CB[7]只能同时与其中一端包结,在pH控制的条件下CB[7]可以在OA和DMA之间相互转化,并能引起溶液颜色的改变。并通过核磁共振氢谱证明了这两种状态的包结构象。除此之外,又计算了葫芦脲的包结对客体分子DP的pKa的影响。
     2、考察了DP与CB[8]之间包结作用,用一维、二维核磁共振氢谱、质谱以及吸收光谱等手段确定了DP与CB[8]之间的包结构象,并计算了包结常数。并且对比了Y-环糊精、CB[8]与DP的包结能力,并计算了Y-环糊精与DP分子的包结常数。
     第三章,设计合成了一个含有菁染料单元的客体分子LDP,此分子的两个识别点可以与CB[7]包结在一起。通过核磁,质谱和光谱等手段揭示了CB[7]与LDP包结形成拟轮烷CB[7]·LDP和CB[7]2-LDP的构型,并通过光谱数据,计算了CB[7]的包结而引起客体分子氨基pKa值的变化。
     第四章,以合成基于葫芦脲为主体的荧光轮烷为目标,进行了不断的探索,先后设计了不同结构的轮烷R1、R2、R3、R4、R5、R6。
     1、设计了以三聚乙二醇作为连接发色团和控制基团的长链而设计了不同结构的轮烷R1、R2、R3。其中轮烷R1以蒽的衍生物作为荧光输出端,异酞酸作为驱动控制端;轮烷R2以三苯胺衍生物作为荧光输出端,且以异酞酸作为驱动控制端;轮烷R3以三苯胺衍生物作为荧光输出端,以烟酰胺作为控制端;分别通过几种不同的合成路线探索了荧光轮烷R1、R2、R3的合成,但终因反应物的溶解度太小、没有合适溶剂、聚乙二醇链的亲水性等原因导致最终合成失败。
     2、总结之前失败的原因,用纯烷基链代替了聚乙二醇而重新设计了轮烷R4。在最后一步卤代烷与烟酰胺反应组装形成轮烷R4的合成反应中,因反应物的水溶性不好,而导致最后一步反应失败。
     3、为了改善因为反应物水溶性太差而导致的反应失败,引进了溶解性好于三苯胺醛的4-二甲胺基苯甲醛作为荧光输出基团的底物,由此而设计出了荧光轮烷R5。但在最终组装合成轮烷的反应中,反应物在水中溶解度并未得到有效改善,而导致轮烷R5合成失败。
     4、以轮烷R4的客体分子(即两端含有阻挡基团的哑铃型分子)为基础,采用空腔和端口尺寸比CB[6]大的化合物CB[7]作为主体分子,以期待用滑动的方法获得轮烷R6。但因在最后提纯过程中产物与反应物难以分离,而导致合成失败。
     第五章结论
Supramolecular chemistry with rapid developing has been attracted the attention of the chemists for its vast potential application in functional materials, catalyst chemistry, medicine and data storage. In supramolecular chemistry, host-guest chemistry describes complex that are composed of host and guest that are held together by noncovalent bonds. One of the most popular hosts is cucurbituril with hydrophobic cavity macrocyclic compound. The host-guest complex based on cucurbituril received much attention. Cucurbituril is consisting of several glycoluril repeat units. The rigid cage like compound prefers to bind with cation and positive group and can form a stable complex which is regarded as a highlight molecular.
     Our research surrounds the constructing functional supramolecular complex based on cucurbiturils. Details as show:
     Chapter1, the research development of supramolecular chemistry and cucurbiturils are introduced.
     Chapter2. A new V-type cyanine molecular with two recognition points (OA and DMA) was synthesized. CB[7] will bind one of the two sides simultaneously only for the steric hindrance. CB[7] can switch between the two moieties accompanying the color change by adjusting the pH of solution.1H-NMR was carried out for disclosing the conformation of the two states. In addition, one and two dimensional H-NMR, ESI-MS and absorption spectra were taken advantaged to investigate the configuration of V-type molecule and CB[8].
     Chapter3. A new guest LDP was synthesized which contains a cyanine unit. There are two recognition points can bind with CB[7].1H-NMR, ESI-MS and absorption spectra were carried out to disclose the conformation of [2]pseudorotaxane CB[7]·LDP and [3]pseudorotaxane CB[7]2·LDP.
     Chapter4, our goal is synthesis of fluorescent rotaxane based on cucurbituril. Different structure rotaxanes R1, R2, R3, R4, R5, and R6were designed and tried synthesis.
     1, the rotaxanes R1, R2and R3were devised with the same connection group: oligomeric ethylene glycol. R1is composing of anthracene and5-aminoisophthalic acid which are utilized to as a fluorescence output moiety and controllable moiety respectively. But the reaction is failed for the low solubility of the reactant. The rotaxane R2are designed by using the triphenylamine as the fluorescence output moiety and5-aminoisophthalic acid as controllable moiety. The rotaxane R3are designed by using the triphenylamine as the fluorescence output moiety and niacinmide as controllable moiety. The result was failed for the little solubility of reactants and hydrophilic oligomeric ethylene glycol chain.
     2. A pure decyl chain as a new bridge was introduced to join the functional and controllable group. The low solubility of intermediate was the reason for the failure at the last step for synthesizing rotaxane R4.
     3. To improve the solubility of reactant,4-dimethylaminobenzaldehyde was introduced as fluorescence moiey. But the reactant solubility wasn't increased efficiently, so the synthesis of rotaxane R5was failure.
     4. The bigger host compound CB[7] was introduced for instead of CB[6]. At last, we didn't get the pure rotaxane R6because we can't separate it from the products.
     Chapter5is the conclusion.
引文
[1]Tomalia D A. Supramolecular chemistry:Fluorine makes a difference. Nature Materials. 2003,2:711-712
    [2]Lehn J M. Supramolecular Chemistry-Scope And Perspectives Molecules-Supra molecules-Molecular Devices. Noble Lecture.1987,12
    [3]Lehn J M. Supramolecular Chemistry. Science.1993,260:1762-1763
    [4]Lehn J M. Supramolecular Chemistry. Wiley-VCH.1995, ISBN 1-35
    [5]Faul C F J, Antonietti M. Ionic self-assembly:facile synthesis of supramolecular materials. Adv. Mater.2003,15:673-683
    [6]Wendell M L, Worth H R. Polarity and Ionization from the Stndpoint of the Lewis Theory of Valence. J. Am. Chem. Soc.1920,42:1419-1433
    [7]Lah M S, Pecoraro V L. Isolation and Characterization of{MnⅡ[MnⅢ(salicylhydro ximate)]4(acetate)2(DMF)6}-2DMF:An Inorganic Analogue of M2+(12-crown-4). J. Am. Chem. Soc.1989,111(18):7258-7259
    [8]Pedersen C J. Journal of the American Chemical Society.1967,89 (26):7017-7036
    [9]Pedersen C J. Journal of the American Chemical Society 1967,89 (10):2495-2496
    [10]Pedersen C J. Macrocyclic Polyethers:Dibenzo-18-Crown-6 Polyether and Dicyclohexyl-18-Crown-6 Polyether. Org. Synth.1988,6:395
    [11]Suzuki K, Kazuhiko W, Yukihiro M, MitKuoba Y, Sayaka S, Dwi S, Hideaki H. Design and Synthesis of Calcium and Magnesium Ionophores Based on Double-Armed Diazacrown Ether Compounds and Their Application to an IonlSensing Component for an Ion-Selective Elect rode. Analytical Chemistry.1995,67(2):324-334
    [12]Peter R A, Roberto B, Balzani V, Matthew C T, Fyfe M, Teresa G, Victoria M, Martinez D, Marco M, Cesare S. Selective Self-Assembly and Acid-Base Controlled De-/Rethreading of Pseudorotaxanes Constructed Using Multiple Recognition Motifs. Chem. Eur. J.1998,4 (11):2332-2341
    [13]童林荟.环糊精化学—基础与应用.北京:科学出版社,2001.
    [14]Szejtli J, Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998,98:1743-1754
    [15]Wenz G, Han B H, Muller A. Cyclodextrin rotaxancs and polyrotaxanes. Chem. Rev. 2006,106:782-817
    [16]Villiers A. Sur la transformation de la fecule en dextrine par le ferment butyrique. Compt. Rend. Fr. Acad. Sci.1891,435-438
    [17]Szejtli J. Cyclodextrin Technology.1998, (1) Springer, New York
    [18]Gil A, Chamayou A, Leverd E, Bougaret J, Baron M, Couarraze G Evolution of the interaction of a new chemical entity, eflucimibe, with gamma cyclodextrin during kneading process. Eur. J. Pharm Sciences.1998, (23):123-129
    [19]Murakami H, Kawabuchi A, Matsumoto R, Ido T, Nakashima N, A Multi-Mode-Driven Molecular Shuttle:Photochemically and Thermally Reactive Azobenzene Rotaxanes. J. Am. Chem. Soc.2005,127:15891-15899
    [20]Wang Y, Ma N, Wang Z Zhang X. Photocontrolled Reversible Supramolecular Assemblies of an Azobenzene-Containing Surfactant with a-Cyclodextrin. Angew. Chem. Int. Ed.2007,46:2823-2827
    [21]Liao X, Chen G, Liu X, Chen W, Chen F Jiang M. Photoresponsive Pseudopolyrotaxane Hydrogels Based on Competition of Host-Guest Interactions. Angew. Chem. Int. Ed. 2010,49:4409-4413
    [22]Gellert R W, Robert B. The Structure of the [Platinum(ethylenediamine)(guanosine)] Cation. J. Am. Chem. Soc.1975,97:7379-7380
    [23]Kawaguchi Y, Harada A. A Cyclodextrin-Based Molecular Shuttle Containing Energetically Favored and Disfavored Portions in Its Dumbbell Component. Org. Lett. 2000,2:1353-1356
    [24]Mirzoian A, Kaifer A E. Reactive Pseudorotaxanes:Inclusion Complexation of Reduced Viologens by the Hosts b-Cyclodextrin and Heptakis(2,6-di-O-methyl)-b-Cyclodextrin. Chem. Eur. J.1997,3:1052-1058
    [25]Heo J, Jeon Y M, Mirkin C A. Reversible Interconversion of Homochiral Triangular Macrocycles and Helical Coordination Polymers. J. Am. Chem. Soc.2007,129: 7712-7713
    [26]Yang H B, Ghosh K, Northrop B H, Zheng Y R, Lyndon M M, Muddiman D C, Stang P J. A Highly Efficient Approach to the Self-Assembly of Hexagonal Cavity-Cored Tris[2]pseudorotaxanes from Several Components via Multiple Noncovalent Interactions. J. Am. Chem. Soc.2007,129:14187-14189
    [27]Tomoki O, Yoshinori T, Hiroyasu Y, Harada A. Chemically-Responsive Sol-Gel Transition of Supramolecular Single-Walled Carbon Nanotubes (SWNTs) Hydrogel Made by Hybrids of SWNTs and Cyclodextrins. J. Am. Chem. Soc.2007,129: 4878-4879
    [28]Deng W, Hiroyasu Y, Yoshinori T, Harada A. Chemical-Responsive Supramolecular Hydrogel from Modified Cyclodextrins. Angew. Chem. Int. Ed.2007,46:5144-5147
    [29]Wei D, Yamaguchi H, Takashima Y, Harada A.Construction of Chemical-Responsive Supramolecular Hydrogels fromGuest-Modified Cyclodextrins. Chem. Asian J.2008,3: 687-695
    [30]Liu Y, Zhao Y L, Zhang H Y, Song H B. Polymeric Rotaxane Constructed from the Inclusion Complex of β-Cyclodextrin and 4,4'-Dipyridine by Coordination with Nickel(II) Ions. Angew. Chem. Int. Ed.2003,42:3260-3263
    [31]Yang H B, Ghosh K, Northrop B H, Zheng Y R, Lyndon M M, Muddiman D C, Stang P J. A Highly Efficient Approach to the Self-Assembly of Hexagonal Cavity-Cored Tris[2]pseudorotaxanes from Several Components via Multiple Noncovalent Interactions. J. Am. Chem. Soc.2007,129:14187-14189
    [32]Zhu L L, Lu M Q, Qu D H, Wang Q C, Tian H. Coordinaion-Assembly for Quantitative construction of Bis-Branched Molecular Shuttles. Org. Biomol. Chem.2011,9: 4226-4233
    [33]朱亮亮,基于环糊精及其衍生物的多模式分子机器.华东理工大学博士论文.2011,3:34-36
    [34]Connors K A. The stability of cyclodextrin complexes in solution. Chem. Rev.1997, 97:1325-1358
    [35]Szejtli J, Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998,98:1743-1754
    [36]Harada A, Li J, Kamachi M, Double-stranded inclusion complexes of cyclodextrin threaded on poly(ethylene glycol). Nature.1994,370:126-128
    [37]曹飞.杯芳烃的研究进展.江西化工.2003,3:36-38
    [38]Gutsche C D. Calixarenes.1989, Cambridge:Royal Society of Chemistry
    [39]Antesberger J, Cave G W, Ferrarelli M C, Heaven M W, Raston C L, Atwood J L Solvent-free, direct synthesis of supramolecular nano-capsules. Chemical communications.2005, (7):892-894
    [40]Mcmahon G, O'Malley S, Nolan K, Diamond D. Important Calixarene Derivatives-their Synthesis and Applications. Arkivoc Part (vii). Article 2003
    [41]Nachtigall F F, Lazzarotto M, Braz F N J. Interaction of Calix[4]arene and Aliphatic Amines:A Combined NMR, Spectrophotometric and Conductimetric Investigation. Journal of the Brazilian Chemical Society.2004, (3):13-16
    [42]Serena S, Arturo A, Andrea P, Andrea S, Massimiliano T, Francii M, Raymo D, Massimo B, Credi A. A Simple Molecular Machine Operated by Photoinduced Proton Transfer. J. Am. Chem. Soc.2007,129:13378-13379
    [43]Ma X, Sun R Y, Li W F Tian H. Novel electrochemical and pH stimulus-responsive supramolecular polymer with disparate pseudorotaxanes as relevant unimers. DOI: 10.1039/c0py00419g
    [44]You M J, Jaheon K, Dongmok W, Kim K. Molecular Container Assembly Capable of Controlling Binding and Release of Its Guest Molecules:Reversible Encapsulation of Organic Molecules in Sodium Ion Complexed Cucurbituril. J. Am. Chem. Soc.1996, 118:9790-9791
    [45]Suresh G, Elizabeth K. B, Kaifer A E. Controlling the Formation of Cyanine Dye H-and J-Aggregates with Cucurbituril Hosts in the Presence of Anionic Polyelectrolytes. Chem. Eur. J.2009,15:6025-6031
    [46]Rauwald U, Scherman O A. Supramolecular Block Copolymers with Cucurbit[8]uril in Water. Angew. Chem. Int. Ed.2008,47:3950-3953
    [47]Pischel U, Vanya D U, Patricia R, Nau W M. Supramolecular logic with macrocyclic input and competitive reset. Chem. Commun.,2010,46:2635-2637
    [48]Liu S M, Christian R, Pritam M, Sriparna C, Peter Y Z, Isaacs L. The Cucurbit[n]uril Family:Prime Components for Self-Sorting Systems. J. Am. Chem. Soc.2005,127 (45): 15959-15967
    [49]Jason L, Pritam M, Sriparna C, Isaacs L. The Cucurbit[n]uril Family. Angew. Chem. Int. Ed.2005,44:4844-4870
    [50]Mock W L, Shih N Y. Structure and selectivity in host-guest complexes of cucurbituril. J. Org. Chem.1986,51:4440-4446
    [51]Vladimir S, Mabel A, Cejas F, Raymo M, Kaifer A E. Tight inclusion complexation of 2,7-dimethyldiazapyrenium in cucurbit[7]uril. New J. Chem.2005,29:280-282
    [52]Freeman W A, Mock W L, Shih N Y. Cucurbituril. J. Am. Chem. Soc.1981,103: 7367-7368
    [53]Kim J, Jung I S, Kim S Y, Lee E, Kang J K, Sakamoto S, Yamaguchi K, Kim K. New Cucurbituril Homologues:Syntheses, Isolation, Characterization, and X-ray Crystal Structures of Cucurbit[n]uril (n= 5,7, and 8). J. Am. Chem. Soc.2000,122:540-541
    [54]Day A I, Blanch R J, Arnold A P, Lorenzo S, Lewis G R, Dance I. A Cucurbituril-Based Gyroscane:A New Supramolecular Form. Angew. Chem.2002,114:285-287; Angew. Chem. Int. Ed.2002,41:275-277
    [55]Rekharsky M V, Mori T, Yang C, Ko Y H, Selvapalam N, Kim H, Sobransingh D, Kaifer A E, Liu S, Isaacs L, Chen W, Moghaddam S, Gilson M K, Kim K, Inoue Y. A synthetic host-guest system achieves avidin-biotin affinity by overcoming enthalpy-entropy compensation. Proc. Natl. Acad. Sci. U.S.A.2007,104:20737-20742
    [56]Honig B, Nicholls A. Classical electrostatics in biology and chemistry. Science.1995, 268:1144-1149
    [57]Lee J W, Samal L, Selvapalam N, Kim H J, Kim K. Cucurbituril Homologues and Derivatives:New Opportunities in Supramolecular Chemistry. Acc. Chem. Res.2003, 36:621-630
    [58]Buschmann H J, Jansen K, Schollmeyer E. Cucurbituril as host molecule for the complexation of aliphatic alcohols, acids and nitriles in aqueous solution. Thermochim Acta.2000,346:33-36
    [59]Bastos M, Briggner L E, Shehatta I, Wadso I. The binding of alkane-α, ω-diols to a-cyclodextrin A microcalorimetric study. Bull. Chem. Soc. Jpn.1987,60:3891-3894
    [60]Buschmann H J, Jansen K, Schollmeyer E. Cucurbituril as host molecule for the complexation of aliphatic alcohols, acids and nitriles in aqueous solution. Thermochim. Acta. J. Solution. Chem.1998,27:135-140
    [61]Izatt R M, Terry R E, Haymore B L, Hansen L D, Dalley N K., Avondet A G, Christensen J. Calorimetric titration study of the interaction of several uni-and bivalent cations with 15-crown-5,18-crown-6, and two isomers of dicyclohexo-18-crown-6 in aqueous solution at 25 degree C and mu=0.1. J. Am. Chem. Soc.1976,98:7620-7626
    [62]Meschke C, Buschmann H J, Schollmeyer E. Complexes of cucurbituril with alkyl mono-and diammonium ions in aqueous formic acid studied by calorimetric titrations. Thermochim. Acta.1997,297:43-48
    [63]Mock W L, Shih N Y. Structure and selectivity in host-guest complexes of cucurbituril. J. Org. Chem.1986,51:4440-4446
    [64]Mock W L, Shih N Y. Host-guest binding capacity of cucurbituril. J. Org. Chem.1983, 48:3618-3619
    [65]You M J, Jaheon K, Dongmok W, Kim K. Molecular Container Assembly Capable of Controlling Binding and Release of Its Guest Molecules:Reversible Encapsulation of Organic Molecules in Sodium Ion Complexed Cucurbituril. J. Am. Chem. Soc.1996, 118:9790-9791
    [66]Mock W L, Shih N Y. Halogen Interchange during Complex Formation between N-Halosuccinimides and Quaternary Ammonium Halides. J. Org. Chem.1986,51: 4440-4446
    [67]Virovets A V, Blatov V A, Shevchenko A P. Acta Crystallogr. Sizes of molecules in organic crystals:the Voronoi-Dirichlet approach B.2004,60:350-357
    [68]Jeon W S, Ziganshina A Y, Lee J W, Ko Y H, Kang J K, Lee C, Kim K. A [2]Pseudorotaxane-Based Molecular Machine:Reversible Formation of a Molecular Loop Driven by Electrochemical and Photochemical Stimuli. Angew. Chem. Int. Ed. 2003,42:4097-4100
    [69]Ooya T, Inoue D, Choi H S, Kobayashi Y, Loethen S, Thompson D H, Ko Y H, Kim K, Yui N. pH-Responsive Movement of Cucurbit[7]uril in a Diblock Polypseudorotaxane Containing Dimethyl P-Cyclodextrin and Cucurbit[7]uril. Org. Lett.2006,8: 3159-3162
    [70]Ma X, Wang Q C, Qu D H, Xu Y, Ji F Y, Tian H. A Light-Driven Pseudo[4]rotaxane Encoded by Induced Circular Dichroism in a Hydrogel. Adv. Funct.Mater.2007,17: 829-837
    [71]Yin J, Chi C Y, Wu J S. Efficient synthesis of a hetero[4]rotaxane by a "thread ing-stoppering-followed-by-clipping"approach. Org. Biomol. Chem.2010,8:2594-2599
    [72]Lee J W, Young H K, Park S H, Yamaguchi K, Kim K. Novel Pseudorotaxane-Terminated Dendrimers:Supramolecular Modification of Dendrimer Periphery. An gew. Chem. Int. Ed.2001,40:746-749
    [73]Zeng Y, Li Y Y, Li M, Yang G Q, Li Y. Enhancement of Energy Utilization in Light-Harvesting Dendrimers by the Pseudorotaxane Formation at Periphery. J. Am. Chem. Soc.2009,131:9100-9106
    [74]Whang D, Jeon,Y M, Heo J, Kim K. Self-Assembly of a Polyrotaxane Containing a Cyclic "Bead" in Every Structural Unit in the Solid State:Cucurbituril Molecules Threaded on a One-Dimensional Coordination Polymer. J. Am. Chem. Soc.1996,118: 11333-11334
    [75]Kim K, Jeon W S, Kang J K, Lee J W, Jon S Y, Kim T. A pseudorotaxane on gold: Formation of self-assembled monolayers, reversible dethreading and rethreading of the ring, and ion-gating behavior. Angew. Chem. Int. Ed.2003,42:2293-2296
    [76]An Q, Li G T, Tao C G, Li Y, Wu Y G, Zhang W X. A general and efficient method to form self-assembled cucurbit[n]uril monolayers on gold surfaces. Chem. Commun. 2008,1989-1991
    [77]Chakrabarti S, Mukhopadhyay P, Lin S, Isaacs L. Reconfigurable Four-Component Molecular Switch Based on pH-Controlled Guest Swapping. Org. Lett.2007,9:2349
    [78]Buschmann H J, Jansen K, Schollmeyer E. The formation of cucurbituril complexes with amino acids and amino alcohols in aqueous formic acid studied by calorimetric titrations. Thermochim.Acta.1998,317,95-98
    [79]Buschmann H J, Meschke C, Schollmeyer E. Formation of pseudorotaxanes between cucurbituril and some 4,4'-bipyridine derivatives. An. Quim. Int. Ed.1998,94,241-243
    [80]Jansen K, Wego A, Buschmann H J. Einfluss von Salzen und Huminstoffen auf die Komplexbildung von Aromaten mit dem makrocyclischen Liganden Cucurbituril Schollmeyer, VomWasser 2000,94,177-190
    [81]Jansen K, Buschmann H J, Zliobaite E, Schollmeyer E. Schollmeyer Steric factors influencing the complex formation with cucurbit[6]uril. Thermochim. Acta.2002,385: 177-184
    [82]Buschmanna H J, Schollmeyer E, Mutihac L. The formation of amino acid and dipeptide complexes with a-cyclodextrin and cucurbit[6]uril in aqueous solutions studied by titration calorimetry. Thermochimica Acta.2003,399:203-208
    [83]Zhang H Z, Paulsen E S, Walker K A, Krakowiak K E, Dearden D V. Cucurbit[6]uril Pseudorotaxanes:Distinctive Gas-Phase Dissociation and Reactivity J. Am. Chem. Soc. 2003,125:9284-9285
    [84]Mock W L, Pierpont J. A Cucurbituril-based Molecular Switch. J. Chem. Soc. Chem.Commun.1990,1509-1511
    [85]Ling X, Samuel E L, Patchell D L, Masson Eric. Cucurbituril Slippage:Translation is a Complex Motion. Org. Lett.201012:2730-2733
    [86]Ling X, Samuel E L, Patchell D L, Masson Eric. Cucurbituril Slippage:Translation is a Complex Motion. Org. Lett.201012:2730-2733
    [87]Sarah A, Niveen M K, Yang Y W, Ali T, Hussam A K, Stoddart J F, Zink J I. pH Clock-Operated Mechanized Nanoparticles. J. Am. Chem. Soc.2009,131: 12912-12914
    [88]Sindelar V, Silvi S, Kaifer A E. Switching a molecular shuttle on and off:simple, pH-controlled pseudorotaxanes based on cucurbit[7]uril. Chem. Commun.2006,20: 2185-2187
    [89]Trabolsi A, Hmadeh M, Khashab N M, Douglas C, Friedman, Belowich M E, Humbert N, Elhabiri M, Khatib H A, Albrecht G A M, Stoddart J F. Redox-driven switching in pseudorotaxanes. New J. Chem.2009,33:254-263
    [90]Okamoto A, Tanaka K, Saito I. DNA Logic Gates. J. Am. Chem. Soc.2004,126:9458-9463
    [91]Vladimir S, Mabel A, Cejas F, Raymo M, Kaifer A E. Tight inclusion complexation of 2,7-dimethyldiazapyrenium in cucurbit[7]uril. New J. Chem.2005,29:280-282
    [92]Kim H J, Jeon W S, Young H K, Kim K. Inclusion of methylviologen in cucurbit[7]uril. Proc. Natl. Acad. Sci.2002,99:5007-5011
    [93]Lee D W, Park K M, Banerjee M. Supramolecular fishing for plasma membrane proteins using an ultrastable synthetic host-guest binding pair. Nature Chemistry.2011,3(2): 154-159
    [94]Lin J X, Lu J A, Cao M N. Effects of Cocrystalline Subunits on the Supramolecular Chemistry of Me(10)Q[5]:From Simple Inorganic Anions to Cluster Anions. Crystal Growth & Design.2011,11, (3):778-783
    [95]Yang F, Dearden D V. Guanidinium-capped cucurbit[7]uril molecular cages in the gas phase:5th International Symposium on Macrocyclic and Supramolecular Chemistry. Superamolecular Chemistry.2011,23:53-58
    [96]Lin J X, Lu J A, Cao M N. Effects of Cocrystalline Subunits on the Supramolecular Chemistry of Me(10)Q[5]:From Simple Inorganic Anions to Cluster Anions. Crystal Growth & Design.2011,3:778-783
    [97]Antonia P, David M B, Thomas S, Nau W M. Design of a Fluorescent Dye for Indicator Displacement from Cucurbiturils:A Macrocycle-Responsive Fluorescent Switch Operating through a pKa Shift. Org. Lett.2008,10 (18):4089-4092
    [98]Apurba L K, Nau W M. Cucurbituril Encapsulation of Fluorescent Dyes. Supramolecular Chemistry.2007,19 (1-2):55-66
    [99]Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L. The Cucurbit[n]uril Family. Angew. Chem. Int. Ed.2005,44:4844-4870
    [100]Ghosh S, Isaacs Lyle. Biological Catalysis Regulated by Cucurbit[7]uril Molecular Containers. J. Am. Chem. Soc.2010,132:4445-4454
    [101]Yu J S, Wu F G, Tao L F. Mechanism of the fast exchange between bound and free guests in cucurbit[7]uril-guest systems. Physical Chemistry Chemical Physics.2011,9: 3638-3641
    [102]Cui S C, Tachikawa T, Fujitsuka M. Photoinduced Electron Transfer in a Quantum Dot-Cucurbituril Supramolecular Complex. Journal of Physical Chemistry C.2011,5: 1824-1830
    [103]Yang X N, Jiang S, Li X J. Interaction of Cucurbit[n]uril (n=6-8) with Buflomedil. Chemical Journal of Chinese Universities-Chinese.2010,12:2425-2430
    [104]Koner A L, Ghosh I, Saleh N. Supramolecular encapsulation of benzimidazole-derived drugs by cucurbit[7]uril. Canadian Journal of Chemistry-Revue Canadienne de Chimie. 2011,2:139-147
    [105]Jeon W S, Kim H J, Chongmok L, Kim K. Control of the stoichiometry in host-guest complexation by redox chemistry of guests:Inclusion of methylviologen in cucurbit[8]uril. Chem. Commun.2002,1828-1829
    [106]Jeon W S, Kim H J, Chongmok L, Kim K. Unprecedented host-induced intramolecular charge-transfer complex formation. Chem. Commun.2002,2692-2693
    [107]Jeon W S, Albina Y, Ziganshina J, Wook L, Young H K, Jin K K, Chongmok L, Kim K. A [2]Pseudorotaxane-Based Molecular Machine:Reversible Formation of aMolecular Loop Driven by Electrochemical and Photochemical Stimuli. Angew. Chem.2003,115: 4231-4234
    [108]Jeon W S, Eunju K, Young H K, Ilha H, Jae W L, Soo Y K, Hee J K, Kim K. Molecular Loop Lock:A Redox-Driven Molecular Machine Based on a Host-Stabilized Charge-Transfer Complex. Angew. Chem.2005,117:89-93
    [109]Jiao De, Biedermann F, Tian F, Scherman O A. A Systems Approach to Controlling Supramolecular Architecture and Emergent Solution Properties via Host-Guest Complexation in Water. J. Am. Chem. Soc.2010,132 (44):15734-15743
    [110]Eric A A, Biedermann F, Rauwald U, Samuel T J, Jameel M Z, Scherman O A. Supramolecular Cross-Linked Networks via Host-Guest Complexation with Cucurbit[8]uril. J. Am. Chem. Soc.2010,132(40):14251-14260
    [111]Roger J C, Samuel T J, Lee T C, Appel E A, Scherman O A. Supramolecular gold nanoparticle-polymer composites formed in water with cucurbit[8]uril. Chem. Commun.2011,47:164-166
    [112]Koner A L, Marquez C, Dickman M H. Transition-Metal-Promoted Chemoselective Photoreactions at the Cucurbituril Rim. Angew. Chem. Int. Ed.2011,2:545-548
    [113]Huang Y, Xue S F, Tao Z. Voltammetric studies of the interaction of 6-mercaptopurine with cucurbit[7]uril and DNA. Journal of Inclusion Phenomena and Macrocyclic Chemistry.2011,1:131-137
    [114]Cong H, Li C R, Xue S F. Cucurbituril-resisted acylation of the anti-tuberculosis drug isoniazid via a supramolecular strategy. Organic & Biomolecular.2011,4:1041-1046
    [115]Miskolczy Z, Megyesi M, Tarkanyi. Inclusion complex formation of sanguinarine alkaloid with cucurbit[7]uril:inhibition of nucleophilic attack and photooxidation. Organic & Biomolecular.2011,4:1061-1070
    [116]An Q, Chen Q, Zhu W, Li Y, Tao C, Yang H, Li Z P, Wan L J, Tian H, Li G T. A facile method for preparing one-molecule-thick free-standing organic nanosheets with a regular square shape. Chem. Commun.2010,46:725-727
    [117]Nguyen H D, Dang D T, Joost L J D, Brunsveld L. Protein Dimerization Induced by Supramolecular Interactions with Cucurbit[8]uril. Angew. Chem. Int. Ed.2010,49: 895-898
    [118]Rudkevich D M. Emerging Supramolecular Chemistry of Gases. Angew. Chem. Int. Ed. 2004,43:558-571
    [119]Katherine A K, Anderson J D, Sarah M. W, Krzysztof E K, Dearden D V. Encapsulation of N2,02, Methanol, or Acetonitrile by Decamethylcucurbit[5]uril(NH4+)2 Complexes in the Gas Phase:Influence of the Guest on "Lid" Tightness. J. Am. Chem. Soc.2001, 123:11316-11317
    [120]Miyahara Y, Abe K, Takahiko I. "Molecular" Molecular Sieves:Lid-Free Decamethylcucurbit[5]uril Absorbs and Desorbs Gases Selectively. Angew. Chem. Int. Ed.2002,41:3020-3023
    [121]Gaspard H, Legrand F X, Lewin V, Delphine B, Heck M P, Patrick B. Interaction of Xenon with Cucurbit[5]uril in Water. Chem. Phys. Chem.2011,6:1053-1055
    [122]Liu S, Zavalij P Y, Isaacs L. Cucurbit[10]uril. J. Am. Chem. Soc.2005,127: 16798-1679
    [123]Michelle J P, Zhao Y, Lynne W, Clifford E. W, Richard F K, Day A I, Collins J G. Cucurbit[10]uril binding of dinuclear platinum(II) and ruthenium(II) complexes: association/dissociation rates from seconds to hours. Dalton Trans.,2010,39: 2078-2086
    [124]Cong H, Zhu Q J, Xue S F. Direct coordination of metal ions to cucurbit[n]urils.Chinese Science Bulletin.2010,32:3633-3640
    [125]Mitkina T V, Naumov D Y, Gerasko O A. Crystal structure and chemical oxidation of the palladium(II) cyclam complex within the cavity of cucurbit[8]uril. Inorganic Chimica Acta.2010,15:4387-4391
    [126]Alexis M, Alberto S, Gerhard A, Enrique M. Host guest interactions between calixarenes and Cp2NbCl2. Journal of Organometallic Chemistry.2011, (696): 2519-2527
    [127]Tu C L, Zhu L J, Li P P, Chen Y,Su Y, Yan D Y, Zhu X Y, Zhou G Y. Supramolecular polymeric micelles by the host-guest interaction of star-like calix[4]arene and chlorin e6 for photodynamic therapy. Chem. Commun.,2011,47,6063-6065
    [128]Efremova O A, Mironov Y V, Kuratieva N V. Novel supramolecular compounds based on Cucurbit[6]uril,1,8-diaminooctane and octahedral thiohydroxo anions with cluster core [Re6S8]. Inorganic Chimica Acta.2010,15:4411-4415
    [129]Wheate N J, Vora V, Anthony N G Host-guest complexes of the antituberculosis drugs pyrazinamide and isoniazid with cucurbit[7]uril. Journal of Inclusion Phenomena Macrocyclic Chemistry.2010,3-4:359-367
    [130]Jiao D Z, Biedermann F, Tian F. A Systems Approach to Controlling Supramolecular Architecture and Emergent Solution Properties via Host-Guest Complexation in Water. J. Am. Chem. Soc.2010,44:15734-15743
    [131]Lima S M, Gomez J A, Barros V P. A new oxovanadium(IV)-cucurbit[6]uril complex: Properties and potential for confined heterogeneous catalytic oxidation reactions. Polyhedron.2010,15:2008-2013
    [132]Dong N, Dong M Y, Zhao A T. Preparation and characterization of inclusion complexes of antitumor camptothecin with cucurbit[n=7,8]urils. Science China-Chemistry.2010, 11:2304-2310
    [133]Chen W J, Zeng J P, Zhang Y Q. Crystal Structures of Two Partially Methyl-Substituted Cucurbit[n]urils. Chinese Journal of Inorganic Chemistry.2010,11:2018-2024
    [134]Li Z F, Wu F, Zhou F G. Approach to 10-Unit "Bracelet" Frameworks Based on Coordination of Alkyl-Substituted Cucurbit[5]urils and Potassium Ions. Crystal Growth & Design.2010,12:5113-5116
    [135]Wu H, Liu H Y, Liu Y Y. An unprecedented 2D->3D metal-organic polyrotaxane framework constructed from cadmium and a flexible star-like ligand. Chem. Commun. 2011,6:1818-1820
    [136]Ko Y H, Kim Y, Kim H. U-Shaped Conformation of Alkyl Chains Bound to a Synthetic Receptor Cucurbit[8]uril. Chem. Asian J.2011,2:652-657
    [137]Ogoshi T, Aoki T, Kitajima K. Facile R, High Y. Synthesis of Pillar[5]arene from Commercially Available Reagents and Its X-ray Crystal Structure. J. Org. Chem.2011, 1:328-331
    [138]Gadde S, Kaifer A E. Cucurbituril Complexes of Redox Active Guests. Current Organic Chemistry.2011,1:27-38
    [139]Zhang M M, Zheng B, Xia B Y. Synthesis of a Bis(1,2,3-phenylene) Cryptand and Its Dual-Response Binding to Paraquat and Diquat. European Journal of Organic Chmistry. 2010,35:6804-6809
    [140]Cong H, Tao Z, Xue S F. Host-induced Chemical Control:Supramolecular Catalysis Based on the Host-Guest Interaction of Cucurbit[n]urils. Current Organic Chmistry. 2011,1:86-95
    [141]Sun S G, Gao W Y, Liu F Y. Redox-induced Ru(bpy)-methylviologen radical formation and its dimerization in cucurbit[8]uril. Physical Chemistry Chemical Physics.2011,2: 570-575
    [142]Wang W, Kaifer A E. Transfer of cationic cucurbit[7]uril inclusion complexes from water to non-aqueous solvents. Supramolecular Chemistry.2010,11-12:710-716
    [143]Montes N P, Garcia H. Long-Lived Charge Separation in Gold Nanoparticles Encapsulated inside Cucurbit[7]uril and Its Relevance for Photocatalysis. Journal of Physical Chemistry C.2010,44:18847-18852
    [144]Bakovets V V, Nadolinnyi V A, Erenburg S B. Hydrogen reduction of the Cu(acac)(2) complex sorbed by cucurbit[8]uril. Russian Journal of Inorganic Chemistry.2010,12: 1897-1902
    [145]Saleh N, Apurba L K, Nau W M. Activation and Stabilization of Drugs by Supramolecular pKa Shifts:Drug-Delivery Applications Tailored for Cucurbiturils. Angew. Chem. Int. Ed.2008,47:5398-5401
    [146]Lee D W, Kyeng M P, Mainak B, Sang H H, Lee T, Kyungwon S, Somak P, Hyuntae J, Kim J, Narayanan S, Sung H R, Kim K. Supramolecular fishing for plasma membrane proteins using an ultrastable synthetic host-guest binding pair. NATURE CHEMISTRY.2011,3:154-159
    [147]Goldstein J L, Brown M S. History of discovery:The LDL receptor. Arterioscler. Thromb. Vasc. Biol.2009,29 (4):431-438
    [148]Brown M S, Goldstein J L. Cholesterol feedback:from Schoenheimer's bottle to Scap's Meladl. J. Lipid Res.2009,50:15-27
    [149]Walker S, Kaur R, McInnes F J. Synthesis, Processing and Solid State Excipient Interactions of Cucurbit[6]uril and Its Formulation into Tablets for Oral Drug Delivery. Molecular Pharmaceutics.2010,6:2166-2172
    [150]Premkumar T, Geckeler K E. Cucurbit[7]uril as a Tool in the Green Synthesis of Gold Nanoparticles. Chem. Asian. J.2010,12:2468-2476
    [151]Nally R, Scherman O A, Isaacs L. Polymer deaggregation and assembly controlled by a double cavity cucurbituril. Supramolecular Chemistry.2010,11-12:683-690
    [152]Stendahl J C, Li L M, Zubarev R, Chen Y R, Stupp S I. Toughening of polymers by self-assembling molecules. Adv. Mater.2002,14:1540-1543
    [153]Cavallini M, Biscarni F, Leon S, Zerbetto F, Bottari G, Leigh D A. Information Storage Using Supramolecular Surface Patterns [J]. Science.2003,299:531
    [154]Feng M, Guo X F, Lin X, He X B, Ji W, Du S X, Zhang D Q, Zhu D B, Gao H J. Stable, Reproducible Nanorecording on Rotaxane Thin Films. J. Am. Chem. Soc.2005,127: 15338-15339
    [155]Li M, Zaman M B, David B, Wu X, Wang D, Margeson J C, Donald M L, John A R, Christopher I. R, Lin Q, Bai Y, Yu K. Photoluminescent quantum dot-cucurbituril nanocomposites. Chem. Commun.2009:6807-6809
    [156]Avelino C, Hermenegildo G, Pedro M N, Ana P, Joso J C, Susana T. Gold Nanoparticles in Organic Capsules:A Supramolecular Assembly of Gold Nanoparticles and Cucurbituril. Chem. Eur. J.2007,13:6359-6364
    [157]Cao M, Lin J, Yang H, Cao R. Facile synthesis of palladium nanoparticles with high chemical activity using cucurbit[6]uril as protecting agent. Chem. Commun.,2010,46: 5088-5090
    [158]Murthy V S N M, Lakshmi S K, Arunkumar N, Mahesh P, Ramamurthy V. Preorientation of Olefins toward a Single Photodimer:Cucurbituril-Mediated Photodimerization of Protonated Azastilbenes in Water. Langmuir 2007,23,7545-7554
    [159]Pattabiraman M, Natarajan A, Kaliappan R, Joel T M, Ramamurthy V. Template directed photodimerization of trans-1,2-bis(n-pyridyl)-ethylenes and stilbazoles in water. Chem. Commun.2005,4542-4544
    [160]Zhou W, Heng H, Li Z Y, Liu H, Li Y. Synthesis of Sulfuric Macrocycles and a Rotaxane through Thiol-yne Click and Dithiol Coupling Reactions. Org. Lett.2010,12: 4078-4081
    [161]Wang J Y, Han J M, Yan J, Ma Y H, Pei J. A Mechanically Interlocked [3]Rotaxane as a Light-Harvesting Antenna:Synthesis, Characterization, and Intramolecular Energy Transfer. Chem. Eur. J.2009,15:3585-3594
    [162]Zhao Y L, Dichtel W R, Trabolsi A, Saha S. Aprahamian I, Stoddart, J F. A Redox-Switchable r-Cyclodextrin-Based [2]Rotaxane. J. Am. Chem. Soc.2008,130: 11294-11296
    [163]Zheng H, Zhou W, Lv J, Yin X, Li Y, Liu H, Li Y. A Dual-Response [2]Rotaxane Based on a 1,2,3-Triazole Ring as a Novel Recognition Station. Chem. Eur. J.2009,15: 13253-13262
    [164]Narita Y M, Shimizu T, Asakawa M. Threading-Followed-by-Shrinking Protocol for the Synthesis of a [2]Rotaxane Incorporating a Pd(II)-Salophen Moiety. J. Am. Chem. Soc.2004,126:16740-16741
    [165]Chiu C W, Lai C C, Chiu S H. "Threading-Followed-by-Swelling":A New Protocol for Rotaxane Synthesis. J. Am. Chem. Soc.2007,129:3500-3501
    [166]Collin J P, Durot S, Keller M, Sauvage J P, Trolez Y, Cetina M, Rissanen K. Synthesis of [5]Rotaxanes Containing Bi-and Tridentate Coordination Sites in the Axis. Chem. Eur. J.2011,17:947-957
    [167]Basu S, Coskun A, Friedman D C, Olson M A, Benitez D, Tkatchouk E, Barin G, Yang J, Fahrenbach A C, Goddard W A, Stoddart J F. Donor-Acceptor Oligorotaxanes Made to Order. Chem. Eur. J.2011,17:2017-2119
    [168]Ma X, Cao J J, Wang Q C, Tian H. Photocontrolled reversible room temperature phosphorescence (RTP) encoding beta-cyclodextrin pseudorotaxane. Chem. Commun. 2011,47:3559-3561
    [169]Ding Z J, Zhang Y M, Teng X, Liu Y. Controlled Photophysical Behaviors between Dibenzo-24-crown-8 Bearing Terpyridine Moiety and Fullerene-Containing Ammonium Salt. J. Org. Chem.2011,76:1910-1913
    [170]Wongmekiat A, Yoshimatsu S, Tozuka Y, Moribe K, Yamamoto K J. Investigation of Drug Nanoparticle Formation by Co-grinding with Cyclodextrins:Studies for Indomethacin, Furosemide and Naproxen. J. Incl. Phenom. Macrocyclic Chem.2006, 56:29-32
    [171]Cavallini M, Biscarni F, Leon S, Zerbetto F, Bottari G, Leigh D A. Information Storage Using Supramolecular Surface Patterns. Science.2003,299:531
    [172]Angelos S, Yang Y W, Patel K, Stoddart J F, Zink J I. pH-Responsive Supramolecular Nanovalves Based on Cucurbit[6]uril Pseudorotaxanes. Angew. Chem. Int. Ed.2008, 47:2222-2226
    [173]Suresh G, Elizabeth K B, Kaifer A E. Controlling the Formation of Cyanine Dye H-and J-Aggregates with Cucurbituril Hosts in the Presence of Anionic Polyelectrolytes. Chem. Eur. J.2009,15:6025-6031
    [174]Tara V, Rao S, Jeffrey B, Huff C B. Supramolecular Control of Photophysicai Properties of Cyanine Dyes. Tetrahedron.1998,54:10627-10634
    [175]Artem I V, Natalia A, Lyudmila G K, Judith A K H, Yuri A S, Michael V A, Sergey P G Pseudorotaxane complexes between viologen vinylogues and cucurbit[7]uril:New prototype of photocontrolled molecular machine. Journal of Molecular Structure.2011, 989,(1-3):114-121
    [176]Ding Z J, Zhang H Y, Wang L H, Ding F, Liu Y. A Heterowheel [3]Pseudorotaxane by Integrating β-Cyclodextrin and Cucurbit[8]uril Inclusion Complexes. Org. Lett.2011, 13 (5):856-859
    [177]苏克曼,潘铁英,张玉兰.波普解析法.华东理工大学出版社.2002年8月第一版。170-196页
    [178]Hall W E, Higuchi T, Pitman I H, Uekama K. Aminolysis of acid anhydrides in water. II. Nonlinear structure-reactivity relations in the aminolyses of phthalic and succinic anhydrides. J. Am. Chem. Soc.1972,94 (23):8153-8156
    [179]Kim H J, Heo J, Woo S J, Eunsung L, Kim J, Shigeru S, Kentaro Y, Kim K. Selective Inclusion of a Hetero-Guest Pair in a Molecular Host:Formation of Stable Charge-Transfer Complexes in Cucurbit[8]uril. Angew. Chem. Int. Ed.2001,40: 1526-1529
    [180]Hwang I, Albina Y Z, Young H K, Gyeongwon Y, Kim K. A new three-way supramolecular switch based on redox-controlled interconversion of hetero-and homo-guest-pair inclusion inside a host molecule. Chem. Commun.2009,416-418
    [181]Lee J W, Hwang I, Woo S J, Young H K, Shigeru S, Kentaro Y, Kim K. Synthetic Molecular Machine Based on Reversible End-to-Interior and Endto-End Loop Formation Triggered by Electrochemical Stimuli. Chem. Asian J.2008,3:1277-1283
    [182]Wu X J, Meng X G, Cheng G. A novel 1:2 cucurbit[8]uril inclusion complex with N-phenylpiperazine hydrochloride. J Incl Phenom Macrocycl Chem.2009,64:325-329
    [183]Murakami H, Kawabuchi A, Kotoo K, Kunitake M, Nakashima N. A Light-Driven Molecular Shuttle Based on a Rotaxane. J Am Chem Soc.1997,119:7605-7606
    [184]Zhu L L, Ma X, Ji F Y, Wang Q C, Tian H. Effective Enhancement of Fluorescence Signals in Rotaxane-Doped Reversible Hydrosol-Gel Systems. Chem. Eur. J.2007,13: 9216-9222
    [185]Kodaka M. Application of a General Rule to Induced Circular Dichroism of Naphthalene Derivatives Complexed with Cyclodextrins. J. Phys. Chem. A.1998,102: 8101-8103
    [186]Zhao Y L, Li Z X, Kabehie S, Youssry Y B, Stoddart J F, Zink J I. "pH-Operated nanopistons on the surfaces of mesoporous silica nanoparticles" J. Am. Chem. Soc. 2010,132:13016-13025
    [187]Meng H, Xue M, Xia T, Zhao Y L, Kabehie S, Tamanoi F, Stoddart J F, Zink J I. Andre E N. "Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles derivatized with pH-sensitive supramolecular nanovalves". J. Am. Chem. Soc.2010,132:12690-12697
    [188]Moorthy S, Amal K M, Manoj K K, Adarsh N N, Bishwajit G, Ravi K K, Anunay S, Amitava D F. Unfolding Movements in a [2]Pseudorotaxane. J. Org. Chem.2011,76 (1):138-144
    [189]Zhang M M, Luo Y, Zheng B, Yan X Z, Fronczek F R, Huang F H. Improve d Pseudorotaxane and Catenane Formation from a Derivative of Bis(m-phenylene)-32-crown-10. European Journal of Organic Chemstry.2010,35:6798-6803
    [190]Tian H, Wang Q C. Recent progress on switchable rotaxanes. Chem. Soc. Rev.2006, 35:361-374
    [191]Wang Q C, Ma X, Qu D H, Tian H. Unidirectional Threading Synthesis of Isomer-Free [2]Rotaxanes. Chem. Eur. J.2006,12:1088-1096
    [192]Wang Q C, Qu D H, Ren J, Chen K C, Tian H. A Lockable Light-Driven Molecular Shuttle with a Fluorescent Signal. Angew. Chem. Int. Ed.2004,43:2661-2665
    [193]Li Y J, Li H, Li Y L, Liu H B, Wang S, He X R, Wang N, Zhu D B. Energy Transfer Switching in a Bistable Molecular Machine. Org. lett.2005,7:4835-4838
    [194]Ji F Y, Zhu L L, Ma X, Wang Q C, Tian H. A new thermo-and photo-driven [2]rotaxane. Tetrahedron Letters.2009,50:597-600
    [195]Ji F Y, Zhu L L, Zhang D, Chen Z F, Tian H. Coordination-driven self-organization of switchable [2]rotaxane. Tetrahedron.2009,65:9081-9085
    [196]Oddy F E, Brovelli S, Stone M T, Klotz E J F. Cacialli F, Anderson H. L. Influence of cyclodextrin size on fluorescence quenching in conjugated polyrotaxanes by methyl viologen in aqueous solution. J. Mater. Chem.2009,19:2846-2852
    [197]Yamauchi K, Miyawaki A, Takashima Y, Yamaguchi H, Harada A. A Molecular Reel: Shuttling of a Rotor by Tumbling of a Macrocycle. J. Org. Chem.2010,75:1040-1046
    [198]Lei F, Olson M A, Benitez D, Tkatchouk E, William A G, Stoddart J F. Mechanically bonded macromolecules. Chem. Soc. Rev.2010,39:17-29
    [199]Zhao Y L, Aprahamian I, Trabolsi A, Erina N, Stoddart J F. Organogel Formation by a Cholesterol-Stoppered Bistable [2]Rotaxane and Its Dumbbell Precursor. J. Am. Chem. Soc.2008,130; 6348-6350
    [200]Qu D H, Wang Q C, Tian He. A Half Adder Based on a Photochemically Driven [2]Rotaxane. Angew. Chem.2005,117:5430-5433
    [201]Claudia M, Buschmann H J, Schollmeyer E. Synthesis of mono-, oligo-and polyamide-cucurbituril rotaxanes. Macromol. Rapid Commun.1998,19:59-63
    [202]Liu Y, Shi J, Chen Y, Ke C F. A Polymeric Pseudorotaxane Constructed from Cucurbituril and Aniline, and Stabilization of Its Radical Cation. Angew. Chem. Int. Ed. 2008,47:7293-7296
    [203]He X Y, Li G, Chen H L. A new cucurbituril-based metallo-rotaxane. Inorganic Chemistry Communications.2002,5:633-636
    [204]Tuncel D, Martin K. pH-Triggered Dethreading-Rethreading and Switching of Cucurbit[6]uril on Bistable [3]Pseudorotaxanes and [3]Rotaxanes. Chem. Eur. J.2008, 14,4110-4116
    [205]Qu D H, Wang Q C, Ren J, Tian H. A Light-Driven Rotaxane Molecular Shuttle with Dual Fluorescence Addresses. Org. Lett.2004,6:2085-2088
    [206]赵玉婧,王巧纯,刘敏华,田禾.钡离子驱动荧光准轮烷.2010,40(4):364-371
    [207]Zhao Y L, Li Z X, Kabehie S, Youssry Y B, Stoddart J F, Zink J I. "pH-Operated nanopistons on the surfaces of mesoporous silica nanoparticles" J. Am. Chem. Soc. 2010,132:13016-13025
    [208]Samsonenko D G, Virovets A V, Lipkowski J O, Geras'ko A, Fedin V P. Distortion of The Ccucurbituril Molecule by an Included 4-Methylpyridinum Cation. Journal of Structural Chemistry.2002,43(4):664-668

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700