Kv和BK通道在大鼠小动脉平滑肌细胞的分布及牛磺酸对钾通道电流的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与方法:
     血管的反应性差异很大程度上与其血管平滑肌的多种受体及离子通道的分布类型和分布密度差异有密切关系。平滑肌细胞膜离子通道的活动正常是血管平滑肌兴奋收缩过程起始的关键,也是细胞的兴奋性与膜的稳定性得以维持的保证。K~+通道分布广泛,是调节血管平滑肌的收缩性与舒张性的主要离子通道。K~+通道电流微小的改变即可导致膜电位的很大变化,K~+经K~+通道跨细胞膜外流,细胞内电位降低,具有细胞膜稳定作用;细胞内电位降低还使电压依赖性钙通道的开放几率降低。K~+通道也因此成为治疗药物作用的重要靶标之一。K~+通道是目前已知的亚型(包括功能分型和结构分型)最多的一类细胞膜离子通道。一些通过影响K~+通道而起作用的药物已逐渐应用于临床。但目前临床上所用的K~+通道开放药对组织的选择性不够高,在组织特异性和功能多样性方面的一系列问题导致了药物在临床应用过程中的疗效不理想,甚至治疗失败。因此,了解各组织细胞K~+通道的分布情况和功能状态对研发新药、临床针对性地合理选择药物治疗极其重要。
     大电导钙激活钾通道(high-conductance Ca~(2+)-activated K~+ channel, BK通道)和电压依赖性钾通道(voltage-dependent K~+ channel, Kv通道)是血管平滑肌细胞(vascular smooth muscle cell, VSMC)中普遍存在而且发挥优势作用的两类负载外向型钾电流的K~+通道。它们不同的通道亚型对细胞功能的调节和影响有所不同,保障了VSMC能对各种不同的刺激做出适当的反应。尽管Kv通道和BK通道在某些血管上的情况已经得到一些研究,但不同部位的血管上的各种K~+通道的表达和功能还远不清楚。心脏和脑的血液供应受心脏冠状动脉和脑血管平滑肌张力的影响。明确冠状动脉和大脑中动脉平滑肌细胞(SMC)的Kv通道和BK通道的分布差异有助于更好地掌握其生理作用,进一步了解其在不同生理和病理状态的动态调整;为明确Kv通道和BK通道在冠状动脉和大脑中动脉SMC介导多种血管活性物质的调节作用机制以及在多种病理过程中的作用奠定基础;也为研究开发以K~+通道为靶点的选择性高、副作用少的药物提供新思路、新线索。
     牛磺酸是人和哺乳动物体内广泛存在的含硫β氨基酸,在心血管组织中含量最丰富。国内外大量研究表明,牛磺酸具有广泛生物学效应,是调节机体正常生理功能的重要物质,对多种情况下病理损伤具有积极的保护作用。在心血管功能异常的病理状态下补充牛磺酸可以对疾病的发生发展起积极防治作用。作为天然内源性物质,与一般化学合成药物不同的是,牛磺酸作用靶点十分广泛,可以通过多环节、多途径调节心血管系统功能,在防治心脑血管疾病方面展示出良好应用前景。许多研究表明,牛磺酸能够通过作用于包括K~+通道在内的多种离子通道而产生心血管效应,但到目前为止,国内外有关牛磺酸的研究多集中于心肌和骨骼肌。我室前期研究表明,牛磺酸对血管平滑肌收缩和舒张功能的影响与多种K~+通道有关。
     本实验中,急性酶解分离成年雄性SD大鼠冠状动脉和大脑中动脉SMC,利用全细胞膜片钳技术记录Kv通道和BK通道的电流,应用单细胞反转录聚合酶链反应(RT-PCR)方法观察Kv通道和BK通道亚型在转录水平的基因表达情况;记录给予牛磺酸后Kv通道和BK通道电流的变化,了解牛磺酸对此两类通道的影响。
     主要实验结果:
     一、大鼠冠状动脉和大脑中动脉SMC的Kv通道
     大鼠冠状动脉和大脑中动脉SMC的静息电位分别为-28.91±3.93 mV(n = 15)和-30.82±2.79 mV(n = 19)(P>0.05);膜电容分别为17.66±0.95 pF(n =46)和14.28±1.01 pF(n =42)(P>0.05)。
     大鼠冠状动脉和大脑中动脉SMC的Kv电流约在膜电位正于-40mV开始呈电压依赖性的增加和外向整流特性;电流在除极后约10~20ms达到最大,500 ms内无明显失活,呈延迟整流特性。Boltzmann方程拟合得到大鼠冠状动脉和大脑中动脉SMC的Kv通道电流半激活电位(V1/2)分别为-4.39±1.44mV和-9.89±1.72 mV(P<0.05),斜率因子(K)分别为12.42±1.19和13.03±1.62(P>0.05);半失活电位(V1/2)分别为-11.78±1.47 mV和-25.77±2.29 mV(P<0.05),斜率因子(K)分别为14.73±1.54和16.37±2.33(P>0.05)。给予Kv通道阻断药4-氨基吡啶(4-aminopyridine, 4-AP, 3mM)后,通道电流分别被抑制61.2%(n=11)和62.7%(n=12)。
     国外研究资料表明,Kv通道的Kv1.1、Kv1.2、Kv1.5、Kv1.6和Kv2.1亚型具有延迟整流特性,因此,我们采用单细胞RT-PCR方法检测了这些亚型在大鼠冠状动脉和大脑中动脉SMC转录水平的表达。结果表明,Kv1.2和Kv1.5亚型在大鼠冠状动脉和大脑中动脉SMC均有表达。取甘油醛-3-磷酸脱氢酶(GAPDH)作为内参照,计算各目的基因相对表达量。Kv1.2亚型在此二动脉VSMC的表达分别为94.4±7.59%和98.1±5.08%(P>0.05, n=7)。Kv1.5亚型在此二动脉VSMC的表达分别为87.3±4.20%和80.2±6.06%(P>0.05, n=7)。Kv1.1亚型在大脑中动脉有表达,其与GAPDH的相对值为54.7±3.05%,表达率100%;在冠状动脉偶有弱的表达,其与GAPDH的相对值为37.6%,表达率14.3%。Kv1.1亚型在此二动脉VSMC的表达有显著性差异(P<0.01, n=7)。Kv1.6和Kv2.1亚型在此二动脉VSMC均无表达。
     二、大鼠冠状动脉和大脑中动脉SMC的BK通道
     大鼠冠状动脉和大脑中动脉SMC的BK电流呈电压依赖性,在除极大于+10mV开始呈明显外向整流特性;浴槽液中给予BK通道阻断药四乙胺(tetraethylammonium, TEA,1mM)后通道电流明显降低,峰值电流分别较给药前减小63.4%(n=9)和72.7%(n=8)。采用EGTA作胞内钙的螯合剂,控制胞内钙螯合状态及游离钙浓度,可见大鼠冠状动脉和大脑中动脉SMC的BK电流随细胞内游离Ca~(2+)浓度增减而升降,具有钙敏感性。BK通道α亚单位在大鼠冠状动脉SMC上的表达为48±8.80%(与GAPDH的相对值),而在大脑中动脉SMC上的表达为80.9±8.37%(P<0.01, n=7);BK通道β1亚单位在此二动脉VSMC上的表达相当,与GAPDH的相对值分别为23.5±5.33%和22.7±5.27%(P>0.05, n=7)。
     三、牛磺酸对大鼠冠状动脉和大脑中动脉Kv通道和BK通道电流的影响
     1.牛磺酸对大鼠冠状动脉SMC的Kv通道电流的影响牛磺酸在较低浓度(1mM、3mM、10mM)时表现出对大鼠冠状动脉SMC的Kv通道电流的抑制作用,而在较高浓度(40mM、60mM)时表现为增强作用。
     1mM、3mM和10mM牛磺酸对大鼠冠状动脉SMC上的Kv通道电流有显著抑制作用。在+20mV膜电位,1mM(n=11)、3mM(n=12)和10mM(n=11)牛磺酸使大鼠冠状动脉SMC的Kv通道电流分别降到5.28±0.23 pA/pF、4.47±0.26 pA/pF和4.19±0.28 pA/pF,与给药前(6.29±0.2 pA/pF)相比差异均显著(P<0.05)。在+20mV膜电位,3mM和10mM牛磺酸分别与1mM牛磺酸相比对电流的抑制具有显著性差异(P<0.05)。在+10mV膜电位,3mM和10mM牛磺酸使Kv通道电流从给药前的5.18±0.28 pA/pF分别降到3.71±0.29 pA/pF(P<0.05)和3.72±0.14 pA/pF(P<0.05)。在0mV膜电位,3mM和10mM牛磺酸使Kv通道电流从给药前的4.06±0.24 pA/pF分别降到2.96±0.18 pA/pF(P<0.05)和2.69±0.13 pA/pF(P<0.05)。
     20mM(n=9)牛磺酸对各膜电位水平的Kv电流均与给药前无显著性差异(P>0.05)。
     40mM(n=11)和60mM(n=11)牛磺酸对Kv电流具有增强作用。60mM牛磺酸在+10mV和+20mV膜电位的电流幅度分别为6.34±0.54 pA/pF和7.27±0.35 pA/pF,与给药前(5.18±0.28 pA/pF和6.29±0.2 pA/pF)相比均有显著性差异(P<0.05)。
     2.牛磺酸对大鼠大脑中动脉SMC的Kv通道电流的影响
     在大鼠大脑中动脉SMC,1mM(n=11)和3mM(n=11)牛磺酸降低Kv电流,且1mM牛磺酸在+10mV(4.18±0.21 pA/pF)和+20mV(4.29±0.18 pA/pF)膜电位对电流的抑制作用与给药前(4.99±0.31 pA/pF和5.94±0.26 pA/pF)相比差异显著(P<0.05)。10mM(n=12)牛磺酸与给药前相比对电流影响不明显(P>0.05)。20mM(n=11)、40mM(n=11)和60mM(n=11)牛磺酸浓度依赖性地增强Kv电流。与给药前(4.99±0.31 pA/pF和5.94±0.26 pA/pF)相比,40mM和60mM牛磺酸在+10mV(5.91±0.25 pA/pF和6.89±0.43 pA/pF)和+20mV(6.87±0.25 pA/pF和7.74±0.28 pA/pF)膜电位的电流幅度差异均具有显著性(P<0.05)。40mM和60mM牛磺酸之间对Kv电流的增强作用在+10mV和+20mV膜电位均具有显著性差异(P<0.05)。
     3.1mM牛磺酸对大鼠VSMC的Kv通道作用的时间依赖性
     大鼠冠状动脉和大脑中动脉SMC均显示,给予1mM牛磺酸后1min即可见对通道的抑制作用,给药后5min其作用明显,给药后10min与给药后5min水平相当。而洗脱后5min记录,通道电流可恢复到给药前的90%以上。
     4.60mM牛磺酸对大鼠VSMC的BK通道电流的影响
     在大鼠冠状动脉SMC,60mM牛磺酸(n=12)在低膜电位水平(-30mV ~ +10mV)表现为对BK通道电流的增强作用,在-20mV、-10mV和0mV膜电位时BK电流分别为:4.9±0.46 pA/pF、5.35±0.49 pA/pF和6.47±0.6 pA/pF,与给药前(3.29±0.31 pA/pF、3.82±0.35 pA/pF和4.42±0.38 pA/pF)相比差异均显著(P< 0.05);在高膜电位水平(+40mV-+80mV)表现为对BK通道电流的抑制作用,+60mV、+70mV和+80mV膜电位时BK电流分别为:16.26±1.51 pA/pF、19.81±1.84 pA/pF和24.04±2.24 pA/pF,与给药前(24.26±1.55 pA/pF、29.31±1.86 pA/pF和32.89±2.02 pA/pF)相比差异均显著(P< 0.05)。
     在大鼠大脑中动脉SMC,60mM牛磺酸(n=9)表现为从-40mV到+40mV膜电位对BK通道电流的增强作用,而膜电位高于+40mV时对BK电流影响不明显,但未产生如冠状动脉平滑肌一样的抑制作用。60mM牛磺酸对BK通道电流的增强作用从-40mV到+10mV膜电位(4.65±1.35 pA/pF,5.18±1.32 pA/pF,5.98±1.4 pA/pF,6.48±1.51 pA/pF,8.2±1.5 pA/pF和10.05±1.43 pA/pF)均与给药前(1.33±0.25 pA/pF,1.74±0.37 pA/pF,1.94±0.46 pA/pF,2.34±0.5 pA/pF,2.84±0.59 pA/pF和3.54±0.52 pA/pF)有显著差异(P< 0.05)。
     综合以上研究结果,Kv通道和BK通道在大鼠冠状动脉和大脑中动脉SMC上的功能和表达有一定的差异。Kv通道在大鼠冠状动脉SMC的激活与失活阈值均较大脑中动脉SMC高。大鼠冠状动脉SMC的Kv通道亚型主要是Kv1.2和Kv1.5亚型,而大脑中动脉SMC主要是Kv1.2、Kv1.5和Kv1.1亚型。BK通道α亚单位在大鼠大脑中动脉表达高于冠状动脉。对于其他通道亚型的表达,以及各通道亚型在蛋白水平的表达情况仍需进一步的研究,从而明确通道四聚体的分子构成,以证实这些通道亚型在生理及病理条件下在VSMC中确切的功能。
     高浓度牛磺酸增强大鼠冠状动脉和大脑中动脉SMC的Kv通道电流;低浓度牛磺酸抑制大鼠冠状动脉和大脑中动脉SMC的Kv通道电流,且具有时间依赖性和可逆性。牛磺酸对大鼠冠状动脉和大脑中动脉SMC的BK通道的作用表现不一致。60mM牛磺酸在大鼠冠状动脉SMC表现为负膜电位增强而正膜电位抑制BK电流的双向作用;在大鼠大脑中动脉SMC则仅表现为低于+40mV膜电位增强BK电流作用,高于+40mV膜电位对BK电流无明显影响。牛磺酸对大鼠冠状动脉和大脑中动脉SMC的Kv通道和BK通道的作用具有一定的差异性和多样性,有待于深入研究。
Diversity of vascular smooth muscle cell (VSMC) function may be important in physiology and pathophysiology, allowing responses to vasodilators and vasoconstrictors to vary within or between vascular beds. Heterogeneity of VSMC is related to many kinds of recepts and ion channels distributed in their membrane. The normal of ion channels in VSMC plays pivotal role not only in the regulation of vascular smooth muscle contraction, but also in the maintenance of cellular excitation and membrane stability. Potassium channel, a family of widely expressed in VSMC, is required for maintenance of vascular tone by providing a repolarizing current to counteract and balance vasoconstrictive in?uences. Relatively a few potassium current may vary membrane potential severely. Potassium efflux from VSMC results in membrane repolarization and, by promoting the close for voltaged-dependent calcium channel, reduces intracellular free calcium concentration. As an important therapeutic target, some potassium channel regulators have been used clinically. However, as the most complicated classification (including functional and structural classification) among the membrane ion channels, various subfamilies of potassium channels result in the low selectivity and satisfaction of potassium channel regulators which had been used in clinical therapy at present.
     Four main classes of K~+ channels have been described in VSMC. Two types of K~+ channels that are known to be prevalent and contribute significantly to the repolarization of VSMC membranes are the high-conductance Ca~(2+)-activated K~+ (BK) channels and the voltage-gated K~+ (Kv) channels. While most VSMC identified to date contain both BK and Kv channels, the expression of individual channel occurs in a tissue-specific manner, thereby providing functional specificity. The heterogeneity of channel subunits in VSMC ensures the appropriate responses of VSMC to diverse stimuli. Although BK channel and Kv channel had been studied in some arteries, the function and expression of them in the VSMC of different circulatory beds remain largely unknown. Vascular tone of coronary and cerebral artery is thought to regulate the blood flow of heart and brain. It is essential to establish the precise diversity of VSMC Kv channel and BK channel in coronary artery and middle cerebral artery in physiology, pathophysiology and pharmacology.
     In the last few years, several laboratories have focused their attentions on the investigation of the cellular mechanisms underlying the effects of taurine, a well known sulfonic amino acid distributed widely in different tissues and abundantly in cardiovascular tissues. These concerns come from the multiple and surprising effects exerted by taurine involved in many physiological processes and the positive effects induced by supplement of taurine in some cardiovascular pathologic state.
     The targets of taurine are complicated. The cellular mechanism of action of taurine is under investigation and appears to involve the interaction with several ion channels including potassium channels. Previous findings from our laboratory have demonstrated that taurine changes vasomotion by interaction with VSMC potassium channels.
     In this study, VSMCs were freshly isolated from rat coronary arteries and middle cerebral arteries. Whole cell patch clamp and multicell RT-PCR techniques were used in the experiments to investigate the function and expression diversities of Kv channel and BK channel between coronary artery and middle cerebral artery. The changes of Kv currents and BK currents after taurine perfusion were recorded as well.
     The results were as follows:
     1. VSMC Kv channel of rat coronary artery and middle cerebral artery
     The VSMC resting membrane potential of coronary artery and middle cerebral artery was -28.91±3.93 mV (n = 15) and -30.82±2.79 mV (n = 19), respectively. The capacitance was 17.66±0.95pF (n = 46) and 14.28±1.01pF (n = 42), respectively. Both of them had insignificant difference between coronary artery and middle cerebral artery (P> 0.05).
     In rat coronary artery and middle cerebral artery, the VSMC Kv currents were voltage dependent, delayed rectifying and outward rectifying. The currents were activated about -40 mV and slowly inactivated during the 500ms recording period. 4-aminopyridine (4-AP; 3 mM), the classic Kv channel blocker, inhibited Kv currents significantly. Fitted to a conventional Boltzmann distribution equation, membrane potential producing half-maximal activation and the slope were -4.39±1.44 mV and 12.42±1.19 in coronary artery SMC, whereas -9.89±1.72 mV and 13.03±1.62 in middle cerebral artery SMC. Membrane potential producing half-maximal inactivation and the slope were -11.78±1.47 mV and 14.73±1.54 in coronary artery SMC, whereas -25.77±2.29 mV and 16.37±2.33 in middle cerebral artery SMC. The test potentials at which VSMC outward current was half-activated or half-inactivated were significantly shifted toward more positive membrane potentials in coronary artery compared with middle cerebral artery (P< 0.05, n=11), whereas slope was not different.
     To identify the tetramer composition of Kv channels in rat VSMCs, multicell RT-PCR was used to screen for mRNAs encoding each of the five Kv subfamilies (Kv1.1, Kv1.2, Kv1.5, Kv1.6 and Kv2.1) which have delayed rectifier properties. Kv1.2 and Kv1.5 subfamilies were detected outstandingly both in rat coronary artery and middle cerebral artery SMC. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) served as a housekeeping gene. The expression of VSMC Kv1.2 relative to GAPDH was 94.4±7.59% and 98.1±5.08% (P>0.05, n=7) in coronary artery and middle cerebral artery, respectively. The amounts of VSMC Kv1.5 transcripts relative to GAPDH were 87.3±4.20% and 80.2±6.06% (P>0.05, n=7) in coronary artery and middle cerebral artery, respectively. VSMC Kv1.1 subfamily was detected moderately in rat middle cerebral artery and the amounts of Kv1.1 transcripts relative to GAPDH were 54.7±3.05%. However, in rat middle cerebral artery, a faint band of VSMC Kv1.1 expression was detected in one group and its amount of transcripts relative to GAPDH was 37.6%. The positive expression rate of VSMC Kv1.1 was 100% in middle cerebral artery and was 14.3% in coronary artery. VSMC Kv1.6 and Kv2.1 were silent both in rat coronary artery and middle cerebral artery.
     2. VSMC BK channel of rat coronary artery and middle cerebral artery
     The BK current recorded was voltage dependent, outward rectifying and intracellular calcium sensitive. The rectifying component of the outward current was inhibited by tetraethylammonium (TEA, 1 mM), a BK channel blocker.
     The expression of VSMC BKαsubunit in rat coronary artery was less than which in middle cerebral artery. The amounts of VSMC BKαsubunit transcripts relative to GAPDH were 48±8.80% in coronary artery whereas it was 80.9±8.37% in middle cerebral artery (P<0.01, n=7). The level of VSMC BKβ1 transcripts in coronary artery was comparable to that in middle cerebral artery. The amounts of VSMC BKβ1 transcripts relative to GAPDH were 23.5±5.33% and 22.7±5.27% (P>0.05, n=7) in coronary artery and middle cerebral artery, respectively.
     3. Effect of taurine on VSMC Kv current and BK current of rat coronary artery and middle cerebral artery
     1) The effect of taurine on VSMC Kv current of rat coronary artery
     Kv current was attenuated after perfusing 1mM, 3mM or 10mM taurine whereas it was increased by 40mM or 60mM taurine.
     Kv current was decreased significantly by 1mM (n=11) taurine at +20 mV test potential (5.28±0.23 pA/pF) (P<0.05, compared with absence of taurine, 6.29±0.2 pA/pF).
     Kv current was decreased significantly by 3mM (n=12), 10mM (n=11) taurine at +20 mV, +10 mV and 0 mV test potential (P<0.05, compared with absence of taurine). At +20 mV test potential, Kv current was 6.29±0.2pA/pF, 4.47±0.26 pA/pF and 4.19±0.28 pA/pF in absence of taurine or perfused with 3mM and 10mM taurine, respectively. At +10 mV test potential, Kv current was 5.18±0.28 pA/pF, 3.71±0.29 pA/pF and 3.72±0.14 pA/pF in absence of taurine or perfused with 3mM and 10mM taurine. At 0 mV test potential, Kv current was 6.29±0.2 pA/pF, 4.47±0.26 pA/pF and 4.19±0.28 pA/pF in absence of taurine or perfused with 3mM and 10mM taurine, respectively.
     Kv current was not altered by 20mM taurine (P>0.05).
     Kv current was increased by 40mM (n=11) and 60mM taurine (n=11). In the presence of 60mM taurine, Kv current was 6.34±0.54pA/pF and 7.27±0.35 pA/pF at +10 mV and +20 mV test potential that was augmented significantly compared with absence of taurine (5.18±0.28 pA/pF and 6.29±0.2 pA/pF, P<0.05).
     2) The effect of taurine on VSMC Kv current of rat middle cerebral artery
     Kv current was decreased by 1mM and 3mM taurine (n=11). At +10 mV and +20 mV test potential, Kv current was attenuated significantly by 1mM taurine (4.18±0.21 pA/pF and 4.29±0.18 pA/pF) (P<0.05, compared with absence of taurine, 4.99±0.31 pA/pF and 5.94±0.26 pA/pF).
     Kv current was not altered by 10mM but was significantly increased by 20mM (n=11), 40mM (n=11) and 60mM (n=11) taurine concentration-dependently.
     At +20 mV test potential, Kv current was 5.94±0.26 pA/pF, 6.87±0.25 pA/pF and 7.74±0.28 pA/pF in absence of taurine or perfusing 40mM and 60mM taurine, respectively. At +10 mV test potential, Kv current was 4.99±0.31 pA/pF, 5.91±0.25pA/pF and 6.89±0.43pA/pF in absence of taurine or perfused with 40mM and 60mM taurine, respectively. Campared with absence of taurine, the increase of Kv current in presence of taurine was significant (P<0.05). Campared with presence of 40mM taurine, the increase of Kv current in presence of 60mM taurine was significant at +20 mV and +10 mV test potential (P<0.05).
     3) Time-dependent and reversible effect of taurine (1mM) on VSMC Kv current
     Both in rat coronary artery and middle cerebral artery SMC, Kv current decreased after 1min taurine perfusion and attenuated significantly at 5min perfusion. The current recovered to about 90% level of pretaurine after washout taurine for 5min.
     4) The effect of taurine (60mM) on VSMC BK current of rat coronary artery and middle cerebral artery
     In rat coronary artery SMC, BK current was increased at negative membrane potential whereas it was attenuated at positive membrane potential after perfusion of taurine (60mM, n=12). Compared with absence of taurine (3.29±0.31pA/pf, 3.82±0.35pA/pF and 4.42±0.38pA/pF), BK current was augmented significantly to 4.9±0.46pA/pF, 5.35±0.49pA/pF and 6.47±0.6pA/pF at -20 mV, -10 mV and 0 mV test potential, respectively (P< 0.05). Compared with absence of taurine (24.26±1.55 pA/pF, 29.31±1.86 pA/pF and 32.89±2.02 pA/pF), BK current was attenuated significantly to 16.26±1.51pA/pF,19.81±1.84pA/pF and 24.04±2.24 pA/pF at +60 mV, +70 mV and +80 mV test potential, respectively (P< 0.05).
     In rat middle cerebral artery SMC, BK current was increased significantly by taurine (60mM, n=9) from -40 mV to +10 mV test potential (P< 0.05, compared with absence of taurine) whereas was not altered above +40 mV test potential. From -40 mV to +10 mV test potential, BK current was 4.65±1.35 pA/pF, 5.18±1.32 pA/pF, 5.98±1.4pA/pF, 6.48±1.51 pA/pF, 8.2±1.5 pA/pF and 10.05±1.43 pA/pF in the presence of taurine. Absence of taurine, BK current was 1.33±0.25 pA/pF, 1.74±0.37 pA/pF, 1.94±0.46 pA/pF, 2.34±0.5 pA/pF, 2.84±0.59 pA/pF and 3.54±0.52 pA/pF from -40 mV to +10 mV test potential, respectively.
     In summary, the function and expression of both VSMC Kv channel and BK channel are disparity between rat coronary artery and middle cerebral artery. The VSMC Kv channel thresholds of both activation and inactivation potential were significantly higher in coronary artery than in middle cerebral artery. Among the detected five Kv channel subfamilies, the member was Kv 1.2 and Kv1.5 subfamily in rat coronary artery SMC and the member was Kv 1.2, Kv1.5 and Kv 1.1 subfamily in rat middle cerebral artery SMC. The expression level of VSMC BKαsubunit was lower in coronary artery than in middle cerebral artery. The precise functions of these members under physiological and pathological conditions should be determined by further studies.
     In the presence of taurine, Kv currents of rat coronary artery and middle cerebral artery SMC were augmented in higher concentration whereas inhibited in low concentration time-dependently and reversibly. As for the effects of taurine on BK channel, it was different between rat coronary artery and middle cerebral artery SMC. In coronary artery, VSMC BK currents were increased at negative membrane potential and decreased at positive membrane potential after taurine perfusion. In middle cerebral artery, taurine inhibited VSMC BK currents when the membrane potential was lower than +40 mV test potential and had no effect above +40 mV test potential. The effect of taurine on VSMC Kv current and BK current seems to be different and complicated in rat coronary artery and middle cerebral artery.
引文
1 Lagaud GJ, Skarsgard PL, Laher I, van Breemen C. Heterogeneity of endothelium-dependent vasodilation in pressurized cerebral and small mesenteric resistance arteries of the rat. J Pharmacol Exp Ther 1999;290:832-9.
    2 England SK, Wooldridge TA, Stekiel WJ, Rusch NJ. Enhanced single-channel K~+ current in arterial membranes from genetically hypertensive rats. Am J Physiol 1993;264:H1337-45.
    3 Jackson WF. Ion channels and vascular tone. Hypertension 2000;35:173-8.
    4 Peng W, Hoidal JR, Farrukh IS. Role of a novel KCa opener in regulating K~+ channels of hypoxic human pulmonary vascular cells. Am J Respir Cell Mol Biol 1999;20:737-45.
    5 Sobey CG. Potassium channel function in vascular disease. Arterioscler Thromb Vasc Biol 2001;21:28-38.
    6 Kuriyama H, Kitamura K, Nabata H. Pharmacological and physiological significance of ion channels and factors that modulate them in vascular tissues. Pharmacol Rev 1995;47:387-573.
    7 Horiuchi T, Dietrich HH, Tsugane S, Dacey RG, Jr. Role of potassium channels in regulation of brain arteriolar tone: comparison of cerebrum versus brain stem. Stroke 2001;32:218-24.
    8 Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 1981;391:85-100.
    9 Guia A, Wan X, Courtemanche M, Leblanc N. Local Ca~(2+) entry through L-type Ca~(2+) channels activates Ca~(2+)-dependent K~+ channels in rabbit coronary myocytes. Circ Res 1999;84:1032-42.
    10 Schubert R, Noack T, Serebryakov VN. Protein kinase C reduces the KCa current of rat tail artery smooth muscle cells. Am J Physiol 1999;276:C648-58.
    11 Heaps CL, Tharp DL, Bowles DK. Hypercholesterolemia abolishesvoltage-dependent K~+ channel contribution to adenosine-mediated relaxation in porcine coronary arterioles. Am J Physiol Heart Circ Physiol 2005;288:H568-76.
    12 Volk KA, Matsuda JJ, Shibata EF. A voltage-dependent potassium current in rabbit coronary artery smooth muscle cells. J Physiol 1991;439:751-68.
    13 Heaps CL, Bowles DK. Gender-specific K(+)-channel contribution to adenosine-induced relaxation in coronary arterioles. J Appl Physiol 2002;92:550-8.
    14 Miller AL, Morales E, Leblanc NR, Cole WC. Metabolic inhibition enhances Ca(2+)-activated K~+ current in smooth muscle cells of rabbit portal vein. Am J Physiol 1993;265:H2184-95.
    15 Knock GA, Mishra SK, Aaronson PI. Differential effects of insulin-sensitizers troglitazone and rosiglitazone on ion currents in rat vascular myocytes. Eur J Pharmacol 1999;368:103-9.
    16沈建中,郑秀凤.血管血管平滑肌钙激活钾通道及其调节机制.中国药理学通报1998;14:3.
    17 Carl A, Lee HK, Sanders KM. Regulation of ion channels in smooth muscles by calcium. Am J Physiol 1996;271:C9-34.
    18 Nelson MT, Quayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 1995;268:C799-822.
    19 Yokoshiki H, Sunagawa M, Seki T, Sperelakis N. ATP-sensitive K~+ channels in pancreatic, cardiac, and vascular smooth muscle cells. Am J Physiol 1998;274:C25-37.
    20 Aiello EA, Walsh MP, Cole WC. Phosphorylation by protein kinase A enhances delayed rectifier K~+ current in rabbit vascular smooth muscle cells. Am J Physiol 1995;268:H926-34.
    21 Gordienko DV, Clausen C, Goligorsky MS. Ionic currents and endothelin signaling in smooth muscle cells from rat renal resistance arteries. Am J Physiol 1994;266:F325-41.
    22 Straub SV, Nelson MT. Molecular coding of Kv1 channels to oppose myogenic constriction. Circ Res 2006;99:13-4.
    23 Korovkina VP, England SK. Molecular diversity of vascular potassium channel isoforms. Clin Exp Pharmacol Physiol 2002;29:317-23.
    24 Jan LY, Jan YN. Cloned potassium channels from eukaryotes and prokaryotes. Annu Rev Neurosci 1997;20:91-123.
    25 Korovkina VP, England SK. Detection and implications of potassium channel alterations. Vascul Pharmacol 2002;38:3-12.
    26 Chen TT, Luykenaar KD, Walsh EJ, Walsh MP, Cole WC. Key role of Kv1 channels in vasoregulation. Circ Res 2006;99:53-60.
    27 Amberg GC, Rossow CF, Navedo MF, Santana LF. NFATc3 regulates Kv2.1 expression in arterial smooth muscle. J Biol Chem 2004;279:47326-34.
    28 Amberg GC, Santana LF. Kv2 channels oppose myogenic constriction of rat cerebral arteries. Am J Physiol Cell Physiol 2006;291:C348-56.
    29 Albarwani S, Nemetz LT, Madden JA, Tobin AA, England SK, Pratt PF, Rusch NJ. Voltage-gated K~+ channels in rat small cerebral arteries: molecular identity of the functional channels. J Physiol 2003;551:751-63.
    30 Kharkhun MI, Belevich AE, Povstian OV, Shuba MF. [The role of voltage-gated potassium channels in the formation of a resting membrane potential in the myocytes of rat resistive arteries]. Fiziol Zh 2000;46:91-7.
    31 Michelakis ED, Reeve HL, Huang JM, Tolarova S, Nelson DP, Weir EK, Archer SL. Potassium channel diversity in vascular smooth muscle cells. Can J Physiol Pharmacol 1997;75:889-97.
    32 Wu SN. Large-conductance Ca~(2+)- activated K~+ channels:physiological role and pharmacology. Curr Med Chem 2003;10:649-61.
    33 Knaus HG, Garcia-Calvo M, Kaczorowski GJ, Garcia ML. Subunit composition of the high conductance calcium-activated potassium channel from smooth muscle, a representative of the mSlo and slowpoke family of potassium channels. J Biol Chem 1994;269:3921-4.
    34 Knaus HG, Folander K, Garcia-Calvo M, Garcia ML, Kaczorowski GJ, Smith M, Swanson R. Primary sequence and immunological characterization of beta-subunit of high conductance Ca(2+)-activated K~+ channel from smooth muscle.J Biol Chem 1994;269:17274-8.
    35 Knaus HG, McManus OB, Lee SH, Schmalhofer WA, Garcia-Calvo M, Helms LM, Sanchez M, Giangiacomo K, Reuben JP, Smith AB, 3rd, et al. Tremorgenic indole alkaloids potently inhibit smooth muscle high-conductance calcium-activated potassium channels. Biochemistry 1994;33:5819-28.
    36 Ghatta S, Nimmagadda D, Xu X, O'Rourke ST. Large-conductance, calcium-activated potassium channels: structural and functional implications. Pharmacol Ther 2006;110:103-16.
    37 Tanaka Y, Meera P, Song M, Knaus HG, Toro L. Molecular constituents of maxi KCa channels in human coronary smooth muscle: predominant alpha + beta subunit complexes. J Physiol 1997;502 ( Pt 3):545-57.
    38 Xu L, Enyeart JJ. Properties of ATP-dependent K(+) channels in adrenocortical cells. Am J Physiol Cell Physiol 2001;280:C199-215.
    1 Ciechanowska B. [Taurine as a regulator of fluid-electrolyte balance and arterial pressure]. Ann Acad Med Stetin 1997;43:129-42.
    2 Hayes KC, Stephan ZF, Sturman JA. Growth depression in taurine-depleted infant monkeys. J Nutr 1980;110:2058-64.
    3 Huxtable RJ. Physiological actions of taurine. Physiol Rev 1992;72:101-63.
    4 Kendler BS. Taurine: an overview of its role in preventive medicine. Prev Med 1989;18:79-100.
    5张平伟,杨祖英.牛磺酸的生理功能及其营养作用.中国食品卫生杂志1997;9:36-40.
    6 Yamori Y, Liu L, Ikeda K, Miura A, Mizushima S, Miki T, Nara Y. Distribution of twenty-four hour urinary taurine excretion and association with ischemic heart disease mortality in 24 populations of 16 countries: results from the WHO-CARDIAC study. Hypertens Res 2001;24:453-7.
    7 Shi YR, Bu DF, Qi YF, Gao L, Jiang HF, Pang YZ, Tang CS, Du JB. Dysfunction of myocardial taurine transport and effect of taurine supplement in rats with isoproterenol-induced myocardial injury. Acta Pharmacol Sin 2002;23:910-8.
    8曾哲,邱汉婴.牛磺酸对心血管系统保护作用研究进展医学综述2008;14:916-9.
    9 Ristori MT, Verdetti J. Effects of taurine on rat aorta in vitro. Fundam Clin Pharmacol 1991;5:245-58.
    10 Li N, Sawamura M, Nara Y, Ikeda K, Yamori Y. Direct inhibitory effects of taurine on norepinephrine-induced contraction in mesenteric artery of stroke-prone spontaneously hypertensive rats. Adv Exp Med Biol 1996;403:257-62.
    11李辉,李俭春.牛磺酸对自发性高血压大鼠血压及其心脑肾脂质过氧化损伤的影响. Chin J Appl Physiol 1995;11:186-9.
    12 Harada H, Tsujino T, Watari Y, Nonaka H, Emoto N, Yokoyama M. Oral taurine supplementation prevents fructose-induced hypertension in rats. Heart Vessels 2004;19:132-6.
    13 Fujita T, Ando K, Noda H, Ito Y, Sato Y. Effects of increased adrenomedullary activity and taurine in young patients with borderline hypertension.Circulation 1987;75:525-32.
    14 Fujita T, Sato Y. Hypotensive effect of taurine. Possible involvement of the sympathetic nervous system and endogenous opiates. J Clin Invest 1988;82:993-7.
    15 Militante JD, Lombardini JB. Treatment of hypertension with oral taurine: experimental and clinical studies. Amino Acids 2002;23:381-93.
    16于文杰,姚兴海,苏加林等.牛磺酸对大鼠胰岛素抵抗高血压的影响.高血压杂志1997 5:172-4.
    17于文杰,姚兴海,侯永健等.牛磺酸对果糖诱导的高血压胰岛素抵抗大鼠红细胞L-精氨酸/一氧化氮途径的影响中国病理生理杂志2000;16:1202 - 6.
    18葛敏,饶曼人.尼群地平、依那普利与牛磺酸合用并应用对肾性高血压大鼠降压的协同研究.中国药理学通报1995;11:306-8.
    19 Conte Camerino D, De Luca A, Mambrini M, Ferrannini E, Franconi F, Giotti A, Bryant SH. The effects of taurine on pharmacologically induced myotonia. Muscle Nerve 1989;12:898-904.
    20 Satoh H. Cardiac actions of taurine as a modulator of the ion channels, in Taurine 3: Cellular and Regulatory Mechanisms (Schaffer S, Lombardini JB and Huxtable RJ eds) New York.: Plenum Press, 1998.
    21 Satoh H. Inhibition by taurine of the inwardly rectifying K~+ current in guinea pig ventricular cardiomyocytes. Eur J Pharmacol 1998;346:309-13.
    22 Han J, Kim E, Ho WK, Earm YE. Blockade of the ATP-sensitive potassium channel by taurine in rabbit ventricular myocytes. J Mol Cell Cardiol 1996;28:2043-50.
    23 Satoh H. Direct inhibition by taurine of the ATP-sensitive k+ channel in guinea pig ventricular cardiomyocytes. Gen Pharmacol 1996;27:625-7.
    24 Tricarico D, Barbieri M, Camerino DC. Taurine blocks ATP-sensitive potassium channels of rat skeletal muscle fibres interfering with the sulphonylurea receptor. Br J Pharmacol 2000;130:827-34.
    25 Tricarico D, Barbieri M, Conte Camerino D. Voltage-dependent antagonist/agonist actions of taurine on Ca(2+)-activated potassium channels of rat skeletal muscle fibers. J Pharmacol Exp Ther 2001;298:1167-71.
    26 Niu LG, Zhang MS, Liu Y, Xue WX, Liu DB, Zhang J, Liang YQ. Vasorelaxant effect of taurine is diminished by tetraethylammonium in rat isolated arteries. Eur J Pharmacol 2008;580:169-74.
    27薛文鑫,张明升,牛龙刚,刘宇,梁月琴.牛磺酸对大鼠胸主动脉的舒张作用及其机制的研究.中国药理学与毒理学杂志2007;21:23-7.
    28 Xue W, Zhang M, Li J, Wu D, Niu L, Liang Y. Effects of taurine on aortic rings isolated from fructose-fed insulin resistance Sprague-Dawley rat are changed. Cardiovasc Drugs Ther 2008;22:461-8.
    29 Franconi F, Giotti A, Manzini S, Martini F, Stendardi I, Zilletti L. The effect of taurine on high potassium-and noradrenaline-induced contraction in rabbit ear artery. Br J Pharmacol 1982;75:605-12.
    30刘丹冰.不同年龄大鼠阻力血管对不同血管活性物质反应性比较.山西:山西医科大学(硕士学位论文), 2007.
    31张明升.牛磺酸对心肌损伤的保护作用和对血管舒缩性的影响.山西:山西医科大学(博士学位论文), 2006.
    32 Pierno S, De Luca A, Camerino C, Huxtable RJ, Camerino DC. Chronic administration of taurine to aged rats improves the electrical and contractile properties of skeletal muscle fibers. J Pharmacol Exp Ther 1998;286:1183-90.
    33 McPherson CD, Pierce GN, Cole WC. Ischemic cardioprotection by ATP-sensitive K~+ channels involves high-energy phosphate preservation. Am J Physiol 1993;265:H1809-18.
    34 Hearse DJ. Activation of ATP-sensitive potassium channels: a novel pharmacological approach to myocardial protection? Cardiovasc Res 1995;30:1-17.
    35 Allo SN, Bagby L, Schaffer SW. Taurine depletion, a novel mechanism for cardioprotection from regional ischemia. Am J Physiol 1997;273:H1956-61.
    36 Suleiman MS, Moffatt AC, Dihmis WC, Caputo M, Hutter JA, Angelini GD, Bryan AJ. Effect of ischaemia and reperfusion on the intracellular concentration of taurine and glutamine in the hearts of patients undergoing coronary artery surgery. Biochim Biophys Acta 1997;1324:223-31.
    37 Hille B. Potassium channels and chloride channels, in Ion Channels of Excitable Membranes. Sunderland,MA.: Sinauer Associates, Inc 1984.
    38石彦荣,齐永芳,卜定方,高霖,王冬彦等. Dysfunction of myocardial and vascular taurine transport inspontaneously hypertensive rats. Acta Physiologica Sinica 2002;54:359-64.
    39华浩明,伊藤崇志,邱志刚,东纯一.牛磺酸对心血管系统作用及机理的研究进展.中国中药杂志2005;30:356-11.
    40 Han X, Budreau AM, Chesney RW. Molecular cloning and functional expression of an LLC-PK1 cell taurine transporter that is adaptively regulated by taurine. Adv Exp Med Biol 1998;442:261-8.
    1 England SK, Wooldridge TA, Stekiel WJ, Rusch NJ. Enhanced single-channel K~+ current in arterial membranes from genetically hypertensive rats. Am J Physiol 1993;264:H1337-45.
    2 Jackson WF. Ion channels and vascular tone. Hypertension 2000;35:173-8.
    3 Peng W, Hoidal JR, Farrukh IS. Role of a novel KCa opener in regulating K~+ channels of hypoxic human pulmonary vascular cells. Am J Respir Cell Mol Biol 1999;20:737-45.
    4 Sobey CG. Potassium channel function in vascular disease. Arterioscler Thromb Vasc Biol 2001;21:28-38.
    5 Lawson K. Potassium channel openers as potential therapeutic weapons in ion channel disease. Kidney Int 2000;57:838-45.
    6 Brayden JE. Potassium channels in vascular smooth muscle. Clin Exp Pharmacol Physiol 1996;23:1069-76.
    7 Quayle JM, Nelson MT, Standen NB. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol Rev 1997;77:1165-232.
    8 Nelson MT, Quayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 1995;268:C799-822.
    9沈建中,郑秀凤.血管血管平滑肌钙激活钾通道及其调节机制.中国药理学通报1998;14:3.
    10 Kharkhun MI, Belevich AE, Povstian OV, Shuba MF. [The role of voltage-gated potassium channels in the formation of a resting membrane potential in the myocytes of rat resistive arteries]. Fiziol Zh 2000;46:91-7.
    11 Michelakis ED, Reeve HL, Huang JM, Tolarova S, Nelson DP, Weir EK, Archer SL. Potassium channel diversity in vascular smooth muscle cells. Can JPhysiol Pharmacol 1997;75:889-97.
    12 Toro L, Wallner M, Meera P, Tanaka Y. Maxi-K(Ca), a Unique Member of the Voltage-Gated K Channel Superfamily. News Physiol Sci 1998;13:112-7.
    13 Chen TT, Luykenaar KD, Walsh EJ, Walsh MP, Cole WC. Key role of Kv1 channels in vasoregulation. Circ Res 2006;99:53-60.
    14 McManus OB, Helms LM, Pallanck L, Ganetzky B, Swanson R, Leonard RJ. Functional role of the beta subunit of high conductance calcium-activated potassium channels. Neuron 1995;14:645-50.
    15 Rasmusson RL, Morales MJ, Wang S, Liu S, Campbell DL, Brahmajothi MV, Strauss HC. Inactivation of voltage-gated cardiac K~+ channels. Circ Res 1998;82:739-50.
    16王晓良,段大跃.心血管系统离子通道药理学.北京:人民卫生出版社, 1997.
    17 Cox RH. Molecular determinants of voltage-gated potassium currents in vascular smooth muscle. Cell Biochem Biophys 2005;42:167-95.
    18 Wallner M, Meera P, Toro L. Determinant for beta-subunit regulation in high-conductance voltage-activated and Ca(2+)-sensitive K~+ channels: an additional transmembrane region at the N terminus. Proc Natl Acad Sci U S A 1996;93:14922-7.
    19 Tian L, Coghill LS, MacDonald SH, Armstrong DL, Shipston MJ. Leucine zipper domain targets cAMP-dependent protein kinase to mammalian BK channels. J Biol Chem 2003;278:8669-77.
    20 Zhou XB, Arntz C, Kamm S, Motejlek K, Sausbier U, Wang GX, Ruth P, Korth M. A molecular switch for specific stimulation of the BKCa channel by cGMP and cAMP kinase. J Biol Chem 2001;276:43239-45.
    21 Wang J, Zhou Y, Wen H, Levitan IB. Simultaneous binding of two protein kinases to a calcium-dependent potassium channel. J Neurosci 1999;19:RC4.
    22 Levitan ES, Takimoto K. Dynamic regulation of K~+ channel gene expression in differentiated cells. J Neurobiol 1998;37:60-8.
    23 Mays DJ, Foose JM, Philipson LH, Tamkun MM. Localization of the Kv1.5 K~+ channel protein in explanted cardiac tissue. J Clin Invest 1995;96:282-92.
    24 Ohya S, Tanaka M, Watanabe M, Maizumi Y. Diverse expression of delayed rectifier K~+ channel subtype transcripts in several types of smooth muscles of the rat. J Smooth Muscle Res 2000;36:101-15.
    25 Jan LY, Jan YN. Cloned potassium channels from eukaryotes and prokaryotes. Annu Rev Neurosci 1997;20:91-123.
    26 Wang H, Kunkel DD, Martin TM, Schwartzkroin PA, Tempel BL. Heteromultimeric K~+ channels in terminal and juxtaparanodal regions of neurons. Nature 1993;365:75-9.
    27 Bahring R, Milligan CJ, Vardanyan V, Engeland B, Young BA, Dannenberg J, Waldschutz R, Edwards JP, Wray D, Pongs O. Coupling of voltage-dependent potassium channel inactivation and oxidoreductase active site of Kvbeta subunits. J Biol Chem 2001;276:22923-9.
    28 Lee JK, Nishiyama A, Kambe F, Seo H, Takeuchi S, Kamiya K, Kodama I, Toyama J. Downregulation of voltage-gated K(+) channels in rat heart with right ventricular hypertrophy. Am J Physiol 1999;277:H1725-31.
    29 Matsubara H, Suzuki J, Inada M. Shaker-related potassium channel, Kv1.4, mRNA regulation in cultured rat heart myocytes and differential expression of Kv1.4 and Kv1.5 genes in myocardial development and hypertrophy. J Clin Invest 1993;92:1659-66.
    30 Takimoto K, Li D, Hershman KM, Li P, Jackson EK, Levitan ES. Decreased expression of Kv4.2 and novel Kv4.3 K~+ channel subunit mRNAs in ventricles of renovascular hypertensive rats. Circ Res 1997;81:533-9.
    31 Yamashita T, Murakawa Y, Hayami N, Fukui E, Kasaoka Y, Inoue M, Omata M. Short-term effects of rapid pacing on mRNA level of voltage-dependent K(+)channels in rat atrium: electrical remodeling in paroxysmal atrial tachycardia. Circulation 2000;101:2007-14.
    32 Mori Y, Matsubara H, Folco E, Siegel A, Koren G. The transcription of a mammalian voltage-gated potassium channel is regulated by cAMP in a cell-specific manner. J Biol Chem 1993;268:26482-93.
    33 Enyeart JA, Xu L, Enyeart JJ. A bovine adrenocortical Kv1.4 K(+) channel whose expression is potently inhibited by ACTH. J Biol Chem 2000;275:34640-9.
    34 Takimoto K, Levitan ES. Glucocorticoid induction of Kv1.5 K~+ channel gene expression in ventricle of rat heart. Circ Res 1994;75:1006-13.
    35 Ghanam K, Javellaud J, Ea-Kim L, Oudart N. Effects of treatment with 17beta-estradiol on the hypercholesterolemic rabbit middle cerebral artery. Maturitas 2000;34:249-60.
    36 Manganas LN, Trimmer JS. Subunit composition determines Kv1 potassium channel surface expression. J Biol Chem 2000;275:29685-93.
    37 Ren J, Zhang L, Benishin CG. Parathyroid hypertensive factor inhibits voltage-gated K~+ channels in vascular smooth muscle cells. Can J Physiol Pharmacol 1999;77:860-5.
    38 Imbrici P, Tucker SJ, D'Adamo MC, Pessia M. Role of receptor protein tyrosine phosphatase alpha (RPTPalpha) and tyrosine phosphorylation in the serotonergic inhibition of voltage-dependent potassium channels. Pflugers Arch 2000;441:257-62.
    39 Wang Q. Regulation of a human neuronal voltage-gated potassium channel (hKv1.1) by protein tyrosine phosphorylation and dephosphorylation. Ann N Y Acad Sci 1999;868:447-9.
    40 Li D, Takimoto K, Levitan ES. Surface expression of Kv1 channels is governed by a C-terminal motif. J Biol Chem 2000;275:11597-602.
    41 Shi G, Nakahira K, Hammond S, Rhodes KJ, Schechter LE, Trimmer JS. Betasubunits promote K~+ channel surface expression through effects early in biosynthesis. Neuron 1996;16:843-52.
    42 Martens JR, Navarro-Polanco R, Coppock EA, Nishiyama A, Parshley L, Grobaski TD, Tamkun MM. Differential targeting of Shaker-like potassium channels to lipid rafts. J Biol Chem 2000;275:7443-6.
    43 Gulbis JM, Mann S, MacKinnon R. Structure of a voltage-dependent K~+ channel beta subunit. Cell 1999;97:943-52.
    44 Rettig J, Heinemann SH, Wunder F, Lorra C, Parcej DN, Dolly JO, Pongs O. Inactivation properties of voltage-gated K~+ channels altered by presence of beta-subunit. Nature 1994;369:289-94.
    45 Ha M, Kwon S, Lee YH, Yeon D, Ahn DS. Sulfhydryl modification affects coronary artery tension by changing activity of delayed rectifier K~+ current. Yonsei Med J 2000;41:372-80.
    46 Kwak YG, Navarro-Polanco RA, Grobaski T, Gallagher DJ, Tamkun MM. Phosphorylation is required for alteration of kv1.5 K(+) channel function by the Kvbeta1.3 subunit. J Biol Chem 1999;274:25355-61.
    47 Singer-Lahat D, Dascal N, Lotan I. Modal behavior of the Kv1.1 channel conferred by the Kvbeta1.1 subunit and its regulation by dephosphorylation of Kv1.1. Pflugers Arch 1999;439:18-26.
    48 Dhulipala PD, Kotlikoff MI. Cloning and characterization of the promoters of the maxiK channel alpha and beta subunits. Biochim Biophys Acta 1999;1444:254-62.
    49 Iverson LE, Mottes JR, Yeager SA, Germeraad SE. Tissue-specific alternative splicing of Shaker potassium channel transcripts results from distinct modes of regulating 3' splice choice. J Neurobiol 1997;32:457-68.
    50 Xie J, McCobb DP. Control of alternative splicing of potassium channels by stress hormones. Science 1998;280:443-6.
    51 Brem AS, Bina RB, Mehta S, Marshall J. Glucocorticoids inhibit the expression of calcium-dependent potassium channels in vascular smooth muscle. Mol Genet Metab 1999;67:53-7.
    52 Shipston MJ, Kelly JS, Antoni FA. Glucocorticoids block protein kinase A inhibition of calcium-activated potassium channels. J Biol Chem 1996;271:9197-200.
    53 Saito M, Nelson C, Salkoff L, Lingle CJ. A cysteine-rich domain defined by a novel exon in a slo variant in rat adrenal chromaffin cells and PC12 cells. J Biol Chem 1997;272:11710-7.
    54 Tseng-Crank J, Foster CD, Krause JD, Mertz R, Godinot N, DiChiara TJ, Reinhart PH. Cloning, expression, and distribution of functionally distinct Ca(2+)-activated K~+ channel isoforms from human brain. Neuron 1994;13:1315-30.
    55 Tian L, Duncan RR, Hammond MS, Coghill LS, Wen H, Rusinova R, Clark AG, Levitan IB, Shipston MJ. Alternative splicing switches potassium channel sensitivity to protein phosphorylation. J Biol Chem 2001;276:7717-20.
    56 Schubert R, Lehmann G, Serebryakov VN, Mewes H, Hopp HH. cAMP-dependent protein kinase is in an active state in rat small arteries possessing a myogenic tone. Am J Physiol 1999;277:H1145-55.
    57 Taguchi K, Kaneko K, Kubo T. Protein kinase C modulates Ca~(2+)-activated K~+ channels in cultured rat mesenteric artery smooth muscle cells. Biol Pharm Bull 2000;23:1450-4.
    58 White RE, Kryman JP, El-Mowafy AM, Han G, Carrier GO. cAMP-dependent vasodilators cross-activate the cGMP-dependent protein kinase to stimulate BK(Ca) channel activity in coronary artery smooth muscle cells. Circ Res 2000;86:897-905.
    59 Yokoshiki H, Seki T, Sunagawa M, Sperelakis N. Inhibition of Ca~(2+)-activated K~+ channels by tyrosine phosphatase inhibitors in rat mesenteric artery. Can J Physiol Pharmacol 2000;78:745-50.
    60 Miura H, Liu Y, Gutterman DD. Human coronary arteriolar dilation to bradykinin depends on membrane hyperpolarization: contribution of nitric oxide and Ca~(2+)-activated K~+ channels. Circulation 1999;99:3132-8.
    61 Vanheel B, Calders P, Van den Bossche I, Van de Voorde J. Influence of some phospholipase A2 and cytochrome P450 inhibitors on rat arterial smooth muscle K~+ currents. Can J Physiol Pharmacol 1999;77:481-9.
    62 Zink MH, Oltman CL, Lu T, Katakam PV, Kaduce TL, Lee H, Dellsperger KC, Spector AA, Myers PR, Weintraub NL. 12-lipoxygenase in porcine coronary microcirculation: implications for coronary vasoregulation. Am J Physiol Heart Circ Physiol 2001;280:H693-704.
    63 Zarei MM, Zhu N, Alioua A, Eghbali M, Stefani E, Toro L. A novel MaxiK splice variant exhibits dominant-negative properties for surface expression. J Biol Chem 2001;276:16232-9.
    64 Meera P, Wallner M, Jiang Z, Toro L. A calcium switch for the functional coupling between alpha (hslo) and beta subunits (KV,Ca beta) of maxi K channels. FEBS Lett 1996;382:84-8.
    65 Tanaka Y, Meera P, Song M, Knaus HG, Toro L. Molecular constituents of maxi KCa channels in human coronary smooth muscle: predominant alpha + beta subunit complexes. J Physiol 1997;502 ( Pt 3):545-57.
    66 Brenner R, Perez GJ, Bonev AD, Eckman DM, Kosek JC, Wiler SW, Patterson AJ, Nelson MT, Aldrich RW. Vasoregulation by the beta1 subunit of the calcium-activated potassium channel. Nature 2000;407:870-6.
    67 Pluger S, Faulhaber J, Furstenau M, Lohn M, Waldschutz R, Gollasch M, Haller H, Luft FC, Ehmke H, Pongs O. Mice with disrupted BK channel beta1 subunit gene feature abnormal Ca(2+) spark/STOC coupling and elevated blood pressure. Circ Res 2000;87:E53-60.
    68 Dworetzky SI, Boissard CG, Lum-Ragan JT, McKay MC, Post-Munson DJ, Trojnacki JT, Chang CP, Gribkoff VK. Phenotypic alteration of a human BK (hSlo)channel by hSlobeta subunit coexpression: changes in blocker sensitivity, activation/relaxation and inactivation kinetics, and protein kinase A modulation. J Neurosci 1996;16:4543-50.
    69 Catacuzzeno L, Pisconti DA, Harper AA, Petris A, Franciolini F. Characterization of the large-conductance Ca-activated K channel in myocytes of rat saphenous artery. Pflugers Arch 2000;441:208-18.
    70 Xia X, Hirschberg B, Smolik S, Forte M, Adelman JP. dSLo interacting protein
    1, a novel protein that interacts with large-conductance calcium-activated potassium channels. J Neurosci 1998;18:2360-9.
    71 Zhou Y, Schopperle WM, Murrey H, Jaramillo A, Dagan D, Griffith LC, Levitan IB. A dynamically regulated 14-3-3, Slob, and Slowpoke potassium channel complex in Drosophila presynaptic nerve terminals. Neuron 1999;22:809-18.
    72 Liu Y, Pleyte K, Knaus HG, Rusch NJ. Increased expression of Ca~(2+)-sensitive K+ channels in aorta of hypertensive rats. Hypertension 1997;30:1403-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700