TNFα、AII与mmLDL致血管内皮细胞膜钙激活钾通道异常
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管内皮细胞能合成合释放多种血管活性物质,对维持血管的舒缩,抑制血小板的聚集及平滑肌的增殖均具有重要意义。内皮细胞功能障碍是许多严重心血管病如高血压、动脉粥样硬化等发病的共同环节和关键,而且内皮细胞也是大多数心血管病因子的主要作用部位。认识致病因子攻击内皮细胞的早期反应的种种机制至关重要。
     肿瘤坏死因子-α(TNFα)、血管紧张素Ⅱ(AⅡ)与轻度氧化低密度蛋白(mmLDL)是动脉粥样硬化和高血压等主要心血管病的重要致病因子。它们攻击内皮细胞以致损害的一个重要环节是使胞内钙浓度升高。胞内钙的升高依赖外钙内流和胞内钙库释放。促进外钙内流的电化学驱动力则受控于膜电位。所以,参与膜电位形成和调控膜电位变化的钾通道,尤其是电导颇大的钙激活钾通道(KCa)在维持膜的稳定性和调节胞内钙浓度,影响内皮细胞功能方面的作用甚为重要。由此,对内皮细胞膜上KCa的动力学特征及其在致病因子作用下的改变进行探讨从而认识受害的内皮细胞在疾病早期反应中的离子通道机制,以寻找更有效的早期的防治措施实属首要。然而,目前关于血管内皮细胞离子通道的研究鲜见报道,上述致病因子作用下的报告更加缺乏。为此,本文设计实验,以人脐静脉内皮细胞株ECV304为研究对象,应用膜片箝技术探讨以上三个致病因子对大电导钙激活钾通道(BKCa)活动的影响,以期逐步阐明内皮细胞受损早期离子通道机制。
     结果发现:
     1、ECV304细胞膜存在BKCa,其电导为202.54±16.62pS,反转电位在0mV左右。
     2、200U/ml TNFα可强烈而迅速地激活BKCa,使其电流幅值增大,开放时延长,关闭时缩短,开放概率增加。激活G蛋白可加强TNFα的增强效应。
Introductionratherosclerosis and hypertensin are associated with adherence of blood cell, thrombosis, vasoconstriction and proliferation of vascular smooth muscle. A lot of cardiovascular risk factors act on vascular endothelium leading to endothelial cells dysfunction which induced the above pathological changes through different mechanisms.
    Stimulation of endothelial cells with tumor necrosis factor-a(TNFa), generates two types of signals rone that initiates programmed cell death, and the other one leads to activation of the transcription factor NF-kB and subsequently to the inflammatory response. Endothelial cells are exposed to angiontensinII(AII), which also induces apoptosis. In addition,AII activates NOS and increases the synthesis of NO. The interaction between NO and superoxide generates peroxynitrite. The latter is well known as a mediator of NO toxicity. Minimally modified low density lipoprotein(mmLDL)plays a significant role in early stage of atherogenesis. It promots adherence of monocyte to endothelial and produce foma cells.
    The increasing of cytoplasmic calcium concentration is companied by endothelial cell dysfunction. Cytoplamic calcium elavation depends on calcium influx from extracellular space and intracellular calcium releasing from calcium store. Electrochemical gradient for calcium influx is affected by membrane potential. So the postassium channel, forming and regulating the membrane potential, especially maxi-conductance calcium activated potassium channel is very important in the regulation of
引文
1 Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of smooth muscle by acetylcholine. Nature 1980, 288: 373-6
    2 Drexler H, Hornig B. Endothelial dysfunction in human disease. J Mol Cell Cardiol 1999, 31: 51-60
    3 Shimokawa H. Primary endothelial dysfunction: atherosclerosis. J Mol Cell Cardiol 1999, 31: 23-37
    4 Mombouli JV, Vanhoutte PM. Endothelial dysfunction: from physiology to therapy J Mol Cell Cardiol 1999, 31: 61-74
    5 Boulanger CM. Secondary endothelial dysfunction: hypertension and heart failure J Mol Cell Cardiol 1999, 31: 39-49
    6 张翠华,郑永芳,王晓芳.美蓝与消炎痛对自发性高血压大鼠内脏血管内皮依赖性舒张减弱的影响.基础医学与临床 1994,14 (4):42-45
    7 郑永芳,张翠华,王晓芳.L-NNA和还原型Hb对SHR_(SP)肠系膜动脉内皮细胞依赖性舒张的影响.生理学报 1994,46 (6):568-574
    8 Camussi G, Alaano E, Tetta C et al. The molecular action of tumor necrosis factor-α Eur J Biochem 1991, 202: 3-14
    9 Modur V, Zimmerman GA, Prescott SM et al. Endothelial cell cell inflammatory responses to tumor necrosis factor-α. J Biochem 1996, 271(22): 13094-13102
    10 Peiretti F, Alessi MC, Henry M. Intracellular calcium mobilization suppresses the TNFα stimulated synthesis of PA-1 in human endothelial cells. Arterioscler Thromb Vasc Biol 1997, 17: 1550-1560
    11 Stehlik C, de Martin R, Kumabashiri I. Nuclear factor(NF)-κB-regulated-X-chromosome-linked iap gene expression protects endothelial colls from tumor necrosis factor-??α-induced apoptosis. J Exp Med 1998, 188: 211-216
    12 Tobored M, Blanc EM, Kaiser S et al. Linoleic acid potentiates TNF-mediated oxidative stress, disruption of calcium homeostasis, and apoptosis of cultured vascular endothelial cells. J Lipid Res 1997, 38: 2155-2167
    13 McConkey DJ, Orrenius S. The role of calcium in the regulation of apoptosis. J Lenkoc Biol 1996, 59: 775-783
    14 Itoh H, Mukoyama M, Pratt RE et al. Multiple autocrine growth factors modulate vascular smooth muscle cell growth response to angiontensin Ⅱ. J Clin Invest 1993, 91: 2268-2274
    15 Dimmeler S, Rippmanr V, Weiland U et al. Angiontensin Ⅱ induces apoptosis of human endothelial cells-protective effect of nitric oxide. Circ Res 1997, 81: 970-976
    16 Maria EP, Arnal JF, Rami J et al. Angiotensin Ⅱ stimulates the production of NO and peroxynitrite in endothelial cells. Am J Pysiol 1998, 274(43): C214-220
    17 Stefanie D, Volker R, Weiland U et al. Angiotensin Ⅱ induces apoptosis of human endothelial cell. Circ Res 1997, 81: 970-976
    18 Stanimirovic D, Morley P, Ball R et al. Angiotensin Ⅱ-induced fluid phase endocytosis in human cerebromicrovascular endothelial cells is regulated by the inositol-phosphate signaling pathway. J Cellular Physiol 1996, 169: 455-467
    19 Li DY, Yang BC, Philips MI et al. Proapoptotic effects of AⅡ in human cornary artery endothelial cells: role of AT_1 receptor and PKC activation. Am J Physiol 1999, 276: (45): H786-792
    20 Li DY, Yang BC, Mehta J. Ox-LDL induces apoptosis in human cornary artory endothelial cells: role of PKC, PTK, bc1-2, and Fas. Am J Physiol 1998, 275(44): H568-H576
    21 Erl W, Weber PC, Weber Christian. Monocytic cell adhesion to endothelial cell stimulated by oxidized low density lipoprotein is mediated by distinct endothelial ligands. Atherosclerosis??1999, 136: 297-303
    22 Michael G, Auch-Schwelk W, Hartmut H et al. Human cardiac microvascular and macrovascular endothelial cells respond differently to oxidatively modified LDL. Atherosclerosis 1998, 137: 87-95
    23 Liao F, Berliner JA, Mehrabian M et al. Minimally modified low density lipoprotein is biologically in vivo in mice. J Clin Invest 1991, 87: 2253-2257
    24 Honda HM, Leitinger N, Frankel M et al. Induction of monocyte binding to endothelial cell by mm-LDL. Arterioscler Thromb Vasc Biol 1999, 19: 680-686
    25 Channon JY, Leslie CC. A calcium-dependent mechnism for associating a soluble arachidonoy-hydrolyzing phospholipose A_2 with membrane in the macrophage cell line RAW 264. 7. J Biol Chem. 1990, 265: 5409-5413
    26 Calderon TM, Factor SM, Hatcher VB et al. An endothelial cell adhesion protein for monocytes recognized by monoconal antibody IG9. Lab Invest 1994, 70: 836
    27 Adams DJ, Barakeh J, Laskey R et al. Ion channels and regulation of intracellular calcium in vascular endothelial cells. FASEB J 1989, 3: 2389-2400
    28 Nilius B, Viana F, Droogmans G. Ion channels in vascular endothelium. Annu Row Physiol 1997, 59: 145-70
    29 Luscher TE The endothelium and cardiovascular disease-a complex relation. New Eng J Med 1994, 330(15): 1081-1082
    30 Baca L, Schilling WP, Knnze DL. G-protein-mediated regulation era Ca~(2+)-dependent K~+ channel in culturded vascular endothelial cells. Pflugers Arch 1992, 422: 66-74
    31 Jaffe EA, Nachman RL, Becker CC et al. Culture of human endothelial cell derived from umbilical veins. J Clin Invest 1973, 52: 2745-2756
    32 Takahashi K, Sawasaki Y, Hata JI. Spontaneous transformation and immortalization of human??endothelial cells. In Vitro Cell Dev Biol 1990, 25: 265-274
    33 司徒镇强,吴军政.细胞冻存与复苏.见:细胞培养79-83司徒镇强、吴军政主编,世界图书出版社,1996北京
    34 Hille B. Ionic channels of excitable membranes 1984
    35 Hodgkin AL, Huxley AF. A quntitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 1952, 117: 500
    36 Hamill OP, Marty A, Neher E et al. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 1981, 391: 85: 100
    37 郑永芳.细胞膜离子单通道与膜片箝技术 1992,15 (6):448-449
    38 屈金河,郑永芳.膜片箝方法(patch clamp technique)-细胞膜离子单通道记录 见:实验技巧全书 下册 197-232 方福德,周吕,丁廉 主编:北京医科大学、协和医科大学联合出版社,1995 北京
    39 Rusko J, Tanaz F, van Breemen C et al. Calcium-activated potassium channels in native endothelial cells from rabbit aorta: conductance, Ca~(2+) sensitivty and block, J Physiol 1992, 455: 601-621
    40 陈晨.研究胞内信息传递和胞膜离子通道之间联系的特异方法.生理通讯 1999,18 (2):32-34
    41 李东.单个细胞RT-PCR与膜片箝技术的结合及其应用.生理通讯 1998,17(1):suppl73-74
    42 Latorre R, Oberhauser A, Labarca P et al. Varieties of calcium-activated potassium channels Annu Rev Physiol 1989, 51: 385-399
    43 Rusko BJ, Tanzi F, van Brcemen C et al. Calcium-activated potassium channels in native endothelial cells from rabbit aorta: conductance, Ca~(2+) sensitivity and block. J Physiol 1992, 455: 601-62144 鲍光宏,于德洁,林琳等.ECV304内皮细胞的钙激活钾通道非选择性阳离子通道及肿瘤坏死因子的抑制作用.中国医学科学院学报(已接受)
    45 Bregestovski P, Bakhramov A. Histamine-induced inward currents in cultured endothelial cells from human umbilical vein. Br J Pharmacol 1988, 95: 429-436
    46 Takeda K, Schini V. Voltage-activated potassium, but not calcium currents in cultured bovine aortic endothelial cells. Pflugers Arch 1988, 410: 385-393
    47 Anan TB, Parekh, Penner R. Store depletion and calcium influx. Physiol Rev 1997, 77: 901-930
    48 Rusko J, Tanaz F, van Breemen C et al. Calcium-activated potassium channels in native endothelial cells from rabbit aorta: conductance, Ca~(2+) sensitivty and block. J Physiol 1992, 455: 601-621
    49 Manabe K, Takano M, Noma A. Non-selective cation current of guinea-pig endocardial endothelial cells. J Physiol 1995, 487(2): 407-419
    50 Magoski NS, Kaczarek LK. Direct and indirect regulation era single ion channel J Physiol 1998, 509(1): 1-2
    51 Larrick JL, Wright S. Cytotoxic mechanism of tumor necrosis factor-α. FASEB J 1990, 4: 3215-3223
    52 Kang J, Posener P, Sumners C. Angiotensin Ⅱ type 2 receptor stimulation of neuronal K~+ currents involves an inhibitory GTP binding protein. Am J Physiol 1994, 267(36): C1389-C1397
    53 Gelband CH, Warth JD, Mason HS et al. Angiotensin Ⅱ type 1 receptor-mediated inhibition of K~+ channel subunit Kv2. 2 in brain stem and hypothalamic neurons. Circ Res 1999, 84: 352-359
    54 Snmners C, Zhu M, Gelaban CH et al. Angiontensin Ⅱ type 1 receptor modulation of nenronal K~+ and Ca~(2+) currents: intracellular mechanisms. Am J Physiol 271(40): C154-C163
    55 Bkaily G, Peyrow M, Sculptoreanu A et al. Transient outward current in adult rat supraoptic??neurones with slice patch clamp technique: inhibition by angiotensin Ⅱ. J Physiol 1995, 485(1): 87- 96
    56 Vinet R, Vargas FF. L-and T-type voltage-gated Ca~(2+) currents in adrenal medulla endothilial cells. Am J Physiol 1999, 276(45): H1313-1322
    57 de las Heras N, Araguncillo P, Maeso R et al. AT_1 receptor antagonism recduces endothelial dysfunction and intimal thickening in atherosclerotic rabbits. Hypertension 1999, 34(2): 967- 975
    58 Hennington BS, Zhang H, Miller MT et al. Angiotensin Ⅱ stimulates synthesis of endothelial nitric oxide synthase. Hypertension 1998, 31(2): 283-288
    59 Romero F, Silva B, Nouailhetas BAN, Aboulafia J. Activation of Ca~(2+)-activated K~+ channel by angiotensin Ⅱ in myocytes of the guinea pig ileum. Am J Physiol 1998, 274(43): C983-C991
    60 Lambers DS, Greenberc SG, Clark KE. Functional role of angiotensin Ⅱ type 1 and 2 receptors in regulation of uterine blood flow in nonpreguant sheep. Am J Physiol 2000, 278: H353-359
    61 Toro L, Amador M, Stefani E. ANG Ⅱ inhibits calcium-activated potassium channels from coronary smooth muscle in lipid bilayers. Am J Physiol 1990, 258(27): H912-H915
    62 Boland LM, Jackson KA. Protein kinase C inhibits Kvl. 1 potassium channel function. Am J Physiol 1999, 277(46): C100-C110
    63 Zhang H, Weir B, Daniel EE. Activation of protein . kinase C inhibits potassium currents in cultured endothelial cells. Pharmacology 50: 247-256, 1995
    64 Berliner JA, Territo MC, Sevanian A et al. Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest 1990, 85: 1260-1266
    65 刘勇,许彦钢,林奇.川芎嗪对脑血管内皮细胞ICAM-1表达的影响.西安医科大学学报 1998,19 (2):148-150
    66 刘军,吴味平,刘洁晓等.大鼠脑缺血再灌注区ICAM-1表达与白细胞游走的观察及丹参的影响.中国神经精神疾病杂志 1999,25 (4):198-2001. Furchgott and Zawadzki. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980, 288: 373-376.
    2.肖殿模.血管内皮细胞与心血管疾病.见:吴其夏主编《体液因素和血液循环病理生理》北京医科大学、中国协和医科大学联合出版社 北京 1994189—195页.
    3. Mitka M. 1998 Nobel Prize winners are announced: three discoverers of nitric oxide activity. JAMA. 1998, 280(19): 1648.
    4. Wang XD, van Breemen C. Multiple mechanisms of activating Ca~(2+) entry in freshly isolated rabbit aortic endothelial cells. J vas Res. 1997, 34: 196-207.
    5. Nilius B, Viana F, Drogmans G. Ion channel in vascular endothelium. Annu Rev Physiol. 1997, 59: 145-70.
    6. Fransen P, Sys SU. K~+and Clcontribute to resting membrane conductance of cultured porcine endocardial endothelial cells. Am J Physiol. 1997, H1770-H1779.
    7. Atkinson NS, Robertson GA, Ganetzky B. A component of calcium-activated potassium channels encoded by the drosophila slo locus. Science. 1991, 253: 551.
    8. Mccobb DP, Natalie L, Featherstone T, etal. A human calcium-activated potassium channel gene expressed in vascular smooth muscle. Am J Physiol. 269(Heart Circ. Physiol 38): H767-H777, 1995.
    9. Kamouchi M, Trouet D, Greef CD, et al. Functional effects of expression of hslo Ca~(2+) activated K~+ channels in cultured macrovascular endothelial cells. Cell Calcium. 1997, 22(6): 497-506.
    10. Calvo MG, Knaus HG, McManus OB, et al. Purification and reconstitution of the high-conductance calcium-activated potassium channel from tracheal smooth??muscle. J Bio Chem. 1994, 269(1): 676-682.
    11. Guy HR, Durell S. Models of slowpork calcium-activated potassium channel. Biophysiol J. 1993, 64: A288(Abstr).
    12. Bradley JC, Richards WG. Potassium channels: a computer prediction of structure and selectivity. Protein Engineering. 1993, 7(7): 859-862.
    13. Pascual JM, Shieh CC, Kirsch GE, et al. K~+ pore structure revealed by report cysteines at inner and outer surface. Neuron. 1995, 14: 1055-1063.
    14. Toro L, Nacal and Stefani E. Calcium-activated potassium channel from coronary smooth muscle reconstituted in lipid bilayers. Am J Physiol. 1991, 260: H779.
    15. Molina A, Ortega-Saenz P and Lopez-Barneo J. Pore mutation alter closing and opening kinetics in shaker K~+ channels. J Physiol. 1998, 509(2): 327-337.
    16. Knaus HJ, Folander K, Garcia M, etal. Primary sequence and immunological characterization of β-subunit of high conductance Ca~(2+)-activated K~+ channel from smooth muscle. J Bio Chem. 1994, 269(25): 17274-17278.
    17. McManns OB, Helms LMH, Pallanck L, et al. Functional role of the β-subunit of high conductance calcium-activated potassium channels. Neuron. 1995, 14: 645-650.
    18. Hanner M, Vianna-Jorge R, Kamassah A, etal. The β subunit of the high conductance calcium-activated potassium channel. J Bio Chem. 1998, 273 (26): 16289-16296.
    19. Rusko J, Tanaz F, van Breemen C, et al. Calcium-activated potassium channels in native endothelial cells from rabbit aorta: conductance, Ca~(2+) sensitivity and block. J??Physiol. 1992, 455: 601-621.
    20. Latorre R, Oberhanser A, Labarca P, etal. Varieties of calium-activated potassium channels. Annu Rev Physiol. 1989, 51: 385-99.
    21. Baron A, Frieden M, Chabaud E, et al. Ca~(2+)-dependent non-selective cation and potassium channels activated by bradykinin in pig coronary artery endothelial cells. J Physiol. 1996, 493 (3): 691-706.
    22. Vaca L, Schilling WP, Kune DL. G-protein mediated regulation of a Ca~(2+)- dependent K~+ channel in cultured vascular endothelial cells. Pflugers Arch. 1992, 422: 66-74.
    23. van Renterghem C, Vigne P, Frelin C. A charybdotoxin-sensitive Ca~(2+)-activated K~+ channel with inward rectifying properties in brain microvascular endothelial cells: properties and activation by endothelins. J Neurochem. 1995, 65: 1274-1281.
    24. Groschner K, Graier WF, Kukovetz WR. Activation of a small-conductance Ca~(2+)- dependent K~+ channel contributes to bradykinin-induced stimulation of nitric oxide synthesis in pig aortic endothelial cells. Biochem Biophysiol Acta. 1992, 1137: 162-170.
    25. Marchenko SM, Sage SO. Calcium-activated potassium channels in the endothelium of intact rat aorta. J Physiol. 1996, 492(1): 53-60.
    26. Saure R, Chahine M, Trenblay J, et al. Single-channel analysis of the electrical response of bovine aortic endothelial cells to bradykinin stimulation: contribution of a Ca~(2+)-dependent K~+ channel. J Hypertension. 1990, 8(Suppl 7): S193-S201.
    27. Sharma NR, Davis MJ. Mechanism of substance P-induced hyperpolarization of porcine coronary artery endothelial cells. Am J Physiol. 266(Heart??Circ. Physiol. 35): H156-H164, 1994.
    28. Chen GF, Cheung DW. Characterization of acetylcholine induced membrane hyperpolarization in endothelial cells. Circulation Research. 1992, 70: 257-263.
    29. Carter TD, Ogden D. Acetycholine-stimulated changes of membrane potential and intracellular Ca~(2+) concentration recorded in endothelial cells in sire in the isolated rat aorta. Pflugers Arch. 1994, 428: 476-484.
    30. Marchenko SM, Sage SO. Mechanism of acetycholine action on membrane potential of endothelium of intact rat aorta. Am J Physiol. 1994, H2388-H2395.
    31. Himmel HM, Whorton AR, Strauss SC. Intracellular calcium, currents, and stimulus response coupling in endothelial cells. Hypertension. 1993, 21: 112-127.
    32. Anan TB. Parekh, Penner R. Store depletion and calcium influx. Physiol Rev. 1997, 77: 901-930.
    33. Adams DJ, Barakeh J, Laskey R. et al. Ion channels and regulation of intracellular calcium in vascular endothelial cells. FASEB J. 1989, 3: 2389-2400.
    34. Nilius B, Szucs G, Heinke S, et al. Multiple types of chloride channels in bovine pulmonary artery endothelial cells. J Vasc Res. 1997, 34: 220-228.
    35. Nilius B, Prene J, Voets T, et al. Inhibition by inositoltetrakisphosphates of calcium and volume activated Cl~- currents in macrovascular endothelial cells. Pflugers Arch. 1998, 435: 637-644.
    36. Luscher TF. The endothelium and cardiovascular disease-a complex relation. New England J Med. 1994, 330(15): 1081-1083.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700