混合断路器相关理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前我国超高压电力系统短路容量需要开断能力和相应动、热稳定能力达到63kA的断路器,随着1000kV电压等级电网的发展,必将需要更高容量的断路器。开断电流下降率和弧后恢复电压上升率的影响制约了SF。断路器开断能力提高。为保证较好的大电流开断能力需要足够的SF6充气压力带来较高的工艺成本。同时,SF6气体有较强的温室效应且其废气一旦泄露对人体有害。真空介质优异的承受开断电流下降率和弧后恢复电压上升率的能力,使真空断路器(VCB)在配电领域得到广泛应用,且在故障电流超过50kA的电力系统中表现出比SF。断路器更为卓越的开断能力。如综合利用SF6断路器强绝缘和真空断路器强灭弧的特性,将真空灭弧室与SF。灭弧室串联组成混合断路器(HCB)使其在最大程度上克服各自缺点,可发挥二者的优势开发出经济实用的超高压大容量断路器。此外,针对高海拔地区SF6气体液化温增度高且需保证大开断容量的问题,则可采取降低SF。断路器气体压力而开断容量的损失由串联真空断路器补偿的方法。
     本文综述了HCB的研究现状、技术难点及亟待研究的问题,说明了本文研究的现实意义及主要研究工作;从介质静态绝缘特性和动态绝缘恢复特性两方面对真空和SF。气体进行了理论分析,阐明了进一步研究的可行性;运用Ansoft软件对真空灭弧室与SF6灭弧室的静态电场分布进行了计算,搭建了不同连接方式下的HCB模型,并对其结构进行了三维电场数值模拟分析,对比得出了较为合理的模型结构,为样机的结构设计提供理论依据;基于ATP软件搭建了电磁暂态仿真平台、设定了系统仿真参数,开发了真空断路器与SF6断路器串联的HCB电弧仿真模型,研究了开断过程中真空电弧和SF。电弧的特性及其相互作用,探明了真空断口与SF。断口的分压关系及其在不同协同动作策略下的介质恢复过程,对比了SF6断路器与HCB的开断容量特性,并提出了对HCB样机操动机构控制精度的要求。
     结合上述内容对HCB样机结构设计和操动机构控制精度要求的分析,给出了基于真空断路器与SF。断路器串联的光控模块式混合型断路器的设计构想;研制了真空灭弧室与操动机构等电位连接的真空断路器在上而SF。断路器在下的实验样机;完成了系统协调操动控制系统和永磁机构恒速自适应控制系统设计,并利用光纤控制技术实现了两断路器的光电协调控制;设计了真空断路器操动机构自具能电源并对整个控制系统进行了电磁兼容实验。
     实验研究了HCB串联间隙系统在静态条件下的击穿机理,在改变电压波形、电极距离、SF。充气压力的情况下研究串联间隙系统的电压分布特性、击穿耐压特性及击穿电压增益特性;检验了24kV与40.5kV电压等级HCB样机的操动机构机械特性及自具能电源的性能和电寿命;对实验样机进行了短路电流开断测试,研究了真空断路器与SF。断路器间的相互作用关系,得到了其最佳协同动作区间;最后通过大量实验得到了HCB相对于SF。断路器的开断容量增益特性。
     实验验证了Ansoft软件对HCB的电场分布计算结果;证明了实验样机的高可控性与可靠性,认为其满足HCB的实验研究需要;将开断过程真空电弧与SF6电弧的相互作用关系在动态电弧模型仿真与实验两方面进行了较好对应;为HCB技术的进一步研究奠定了理论与实验基础。同时,本论文的研究工作对真空断路器与气体断路器(非温室效应气体)组合构成低碳化高压大容量断路器的研究具有较强的借鉴价值。
Our country currently need circuit breakers whose breaking capacity, dynamic stability and thermal stability reach63kA in the EHV power system. With the grid development of1000kV voltage level, it needs larger capacity circuit breakers. The rate of decline of interruption current and rise rate of recovery voltage after current zero restricted the breaking capacity of SF6circuit breaker. In order to ensure good high-current interruption capacity, it needs sufficient pressure of SF6and takes higher process cost. Meanwhile, SF6gas has a strong greenhouse effect and its exhaust leak is harmful. Vacuum circuit breakers are widely used in the distribution field because vacuum has excellent ability to withstand rate of decline of interruption current and rate of rise of recovery voltage. It shows more superior breaking capacity than SF6circuit breaker in the power system above50kA fault current. We can combine the strong insulation characteristics of SF6circuit breakers and good interruption characteristics of vacuum circuit breaker to develop the economic and practical ultra-high voltage large-capacity circuit breaker. Hybrid circuit breaker (HCB) based on vacuum interrupter and SF6interrupter in series can overcome their shortcomings in the maximum extent. In addition, we can reduce the pressure of SF6circuit breaker and compensate its breaking capacity loss by series vacuum circuit breaker to solve the problems of SF6gas liquefaction temperature increase in high altitude and the need of breaking capacity.
     This paper reviews the research status of HCB, technical difficulties and problems need to be studied; illustrates its practical significance to study and mainly research works; theoretically analyzes the static insulating properties and dynamic insulation recovery characteristics of vacuum and SF6gas; clarifies the feasibility of further research; calculates the properties of static electric field distribution of the vacuum interrupter and SF6interrupter by using Ansoft software; sets up sevel HCB models under different connection models; analyzes its structure in a three-dimensional electric field numerical simulation; contrasts the more reasonable model structures of HCB models; provides a theoretical basis for the structural design of the prototype; builds the electromagnetic transient simulation platform by ATP software and sets the parameters of the system simulation; developes a HCB arc model based on vacuum circuit breaker and SF6circuit breaker in series; studies the characteristics of vacuum arc and SF6arc and their interactions in the interruption process; proves up voltage distribution relationship between current interruption and dielectric recovery process under different collaborative action strategies; contrasts the breaking capacity properties between SF6circuit breaker and HCB, and proposes the control accuracy requirements of actuator of HCB prototype.
     Combined with the above analysis of prototype structure design and actuator control accuracy requirements, the design concept of fiber-controlled HCB module based on vacuum circuit breakers and SF6circuit breakers in series is given; the experimental prototype is designed in a form of vacuum circuit breaker placing on the top of SF6circuit breaker. The interrupter and actuator of vacuum circuit breaker are equipotential connection; a coordination actuator control system and a constant speed adaptive control system of permanent magnetic actuator are completed; fiber optic control technology is used to achieve the action coordinated control between two circuit breakers; an actuator self-energy power supply of the vacuum circuit breaker is design; the entire control system is conducted EMC test.
     The breakdown mechanism of HCB series gap is studied under static conditions; the external voltage waveform, electrode polarity, electrodes distance and SF6inflation pressure are changed in experiment to get change law of static dielectric strength; the actuator mechanical properties and the performance and electrical life of self-energy power supply are tested in HCB prototypes (24kV and40.5kV); the interaction between vacuum circuit breaker and SF6circuit breaker during short-circuit current interruption is studied, and its optimal coordinated action interval is obtained; finally, a breaking capacity gain characteristics between HCB and SF6circuit breaker is obtained by a plenty of experiments.
     The experimental results verify the calculation results of electric field distribution by Ansoft software; proves the high controllability and reliability of the experimental prototype, that meet the experimental research needs of HCB; the interaction between vacuum dynamic arc and SF6dynamic arc is correspond well in both of simulation and experimentation. It establishes the theoretical and experimental foundation for further study of HCB technology. Meanwhile, research work has a strong reference value for the research of low-carbon high-voltage large-capacity circuit breaker which is constituted by vacuum circuit breaker and gas circuit breaker (non greenhouse gas).
引文
[1]政府间气候变化专门委员会.IPCC第四次评估报告:气候变化[R].比利时:IPCC,2007.
    [2]E. Cook. Why climate policy-makers can't afford to overlook fully-fluorinated compounds [R]. Lifetime Commitments,1995.
    [3]钱家骊.减少SF6气体开关设备的温室效应的对策综述[J].电气应用,2009,28(13):2024.
    [4]李建基.减少SF6气体在开关设备中的用量分析[J].江苏电器,2006,5:1-5.
    [5]蓝增珏.我国252-550kV高压开关设备技术参数与电网需求的差距[J],电力设备,2006,7(12):1-3.
    [6]李建基.真空断路器技术的进步[J],电器工业,2001,7(7):1415.
    [7]Betz T, Koenig D. Simulation of reignition processes of vacuum circuit breakers in series [J]. IEEE Trans. on Dielectrics and Electrical Insulation,1997,4(4):370-373.
    [8]廖敏夫,段雄英,邹积岩.双断口真空开关的动态介质恢复特性分析[J].真空科学与技术学报2007,27(3):190194.
    [9]廖敏夫,段雄英,邹积岩等.多断口真空开关的动态介质恢复及统计特性分析[J].中国电机工程学报,2003,23(2):83-87.
    [10]廖敏夫,邹积岩,段雄英.双断口真空断路器开断能力的探讨[J].高压电器,2002,38(3):34-36.
    [11]修士新,王季梅.发展高电压等级真空断路器的技术问题探讨[J].真空电子技术,1997(3):17.
    [12]D. Dufournet, C. Lindner. Hybrid chamber with vacuum and gas interrupters for high-voltage circuit breakers [C]. CIGRE Conference, paper nr. A3-101,2004.
    [13]K. Natsui, Y.Kurosawa, Y. Hakamata, H. Hirasawa, and Y. Yoshioka. Voltage distribution characteristics of series connected SFC6 gas and vacuum interrupters immediately after a large AC current interruption [J]. IEEE Trans. Power Del. 1988,3(1):241-247.
    [14]T. Sato et al. Interrupting characteristics of series connection of thermal puffer gas circuit breaker and vacuum circuit breaker [J]. Trans. IEE Jpn.,1993,12:113-B.
    [15]李正瀛,刘文浩.低温SF6和SF6/N2中正针板的放电特性[J].高电压技术1990(4):5-8.
    [16]邹积岩,王瑛,董恩源.电子操动的概念与实践[J].高压电器,2000,36(5):2931.
    [17]游一民,陈德桂,候建新,等.永磁操动机构的发展与应用[J].高压电器,2003,39(6):54-56.
    [18]王季梅.真空开关技术与应用[M].北京:机械工业出版社,2007.
    [19]徐国政,张节容,钱家骊,等.高压断路器原理和应用[M].北京:清华大学出版社,2000.
    [20]Slade P G, Voshall R E, Wayland P O, et al. The development of a vacuum interrupt-er retrofit for the upgrading and life extension of 121 kV-145 kV oil circuit breaker [J]. IEEE Tran. on Power Delivery,1991,6(3):1124-1130.
    [21]修士新,王季梅.发展高电压等级真空断路器的技术问题探讨[J].真空电子技术,1997,(3):1-7.
    [22]刘志远,张颖瑶,林建飞等.高电压真空灭弧室触头间长真空间隙静态绝缘特性研究[J].高压电器,2010,46(1):9-12.
    [23]陈轩恕,尹婷,潘垣,等.基于单元化真空断路器串并联结构的大容量高压断路器设计方案[J].高电压技术,2011,37(12):3157-3163.
    [24]L G. Christophorou, R. J. Van Brunt. SF6/N2 Mixtures basic and HV insulation properties[J]. IEEE Tran. on Dielectrics and Electrical Insulation,1995,2(5):952.
    [25]林立生.高压SF6断路器综述[J].华北电力技术,1997,5:4549.
    [26]M.S.奈杜,V.N.墨尔勒.SF6和真空中高压绝缘及电弧开断的进展[M].北京:水利电力出版社,1986.
    [27]段志强,王宝石,唐学东.我国高压SF6断路器的现状及发展趋势[J].沈阳工程学院学报,2011,(1):5052.
    [28]李建基.SF6气体在高压开关设备中的用量在减少[J].电气应用,2009,28(20):18.
    [29]Yamamoto.O, Takuma. T, and Hamada. S. Applying a gas mixture containing c-C4F(?) as an insulation medium [J]. IEEE Tran.on Dielectrics and Electrical Insulation,2001, 8(6):1075-1081.
    [30]BianTao Wu, DengMing Xiao, ZhangSheng Liu. Analysis of insulation characteristics of C-C4F(?) and N2 gas mixtures by the Monte Carlo method [J].Journal of Physics D-Applied Physics,2006,39(19):4204-4207.
    [31]H. Okubo, T.Yamada, and K. Hatta. Partial discharge and breakdown mechanisms in ultra-dilute SF6 and PFC gases mixed with N2 gas [J]. Journal of Physics D-Applied Physics,2002,35(21):2760-2765.
    [32]Toshioki. Rokunohe, Yoshitaka. Yagihashi, Fumihiro. Endo. Fundamental insulation characteristics of air, N2, CO2, N2, O2, and SF6, N2 mixed [J]. Electrical Engineering in Japan,2006,155(3):9-17.
    [33]Toshioki. Rokunohe, Yoshitaka. Yagihashi, Fumihiro.Endo. Development of 72kV High-Pressure Air-Insulated GIS with Vacuum Circuit Breaker [J]. Electrical engineering in Japan,2006,157(4):1270-1278.
    [34]J. de Urquijo. Is CF3I a good gaseous dielectric? A comparative swarm study of CF3I and SF6 [J]. Radicals and Non-Equilibrium Processes in Low-Temperature Plasmas, 2007,86:12008.
    [35]Larin. A. V, Meurice.N, Gentils. F. The thoretical and experimental analyses of the synergism in the dielectric strength for C3F8/C2HF5mixtures [J]. Journal Of Applied Physics,2007,101(8):083306.
    [36]Hikita. M, Ohtsuka. S, Okabe. S. Breakdown Mechanism in C3F8/CO2 Gas Mixture under Non-uniform Field on the Basis of Partial Discharge Properties [J].2009,16(5),:1413 1419.
    [37]Pennsylvania salt company. Sulphurhexafluoride [J]. U.S. A:manual SF-1,1948.
    [38]K. Natsui, Y.Kurosawa, Y. Hakamata, H. Hirasawa, and Y. Yoshioka. Voltage distribut-ion characteristics of series connected SF6 gas and vacuum interrupters immediately after a large AC current interruption [J]. IEEE Trans. Power Del. 1988,3(1):241-247.
    [39]Saito. H. Development of 72/84 kV dry air insulated dead tank type VCB [J]. Tran. of the Institute of Electrical Engineers of Japan,2009,129:353-360.
    [40]Mitchell. G. R. HigCurrentVacuumArcs [J]. PIEE,1970,117:2375-2326.
    [41]S.Kameyama, T. Ohkura. Circuit interrupter:US,3244842[P].1966,4,5.
    [42]C. H. Flurscheim. Series connected switches of different types:US,3303309[P].1967, 2,7.
    [43]R.T. Harrold. Hybrid circuit breaker:US,3814882[P].1974,6,4.
    [44]Joseph. W. Porter, Media. Pa. High-voltage electric circuit breaker comprising series-connected vacuum interrupter and fluid blast interrupter:US,3982088[P]. 1976,9,21.
    [45]G.A. Votta. Novel Concepts of Interruption for Distribution and Transmission Circuit Breakers [C]. Symposium Proceedings New Concepts in Fault Current Limiters and Power Circuit Breakers, EPRI Special Report EL-276-SR, Section 8,1977.
    [46]I-T-E Imperial Corporation. Development of Distribution and Subtransmission SF6 Circuit Breaker and Hybrid Transmission Interrupter[C]. EPRI Report EL-810,1978.
    [47]Weston Donald E, Lansdale. Hybrid power circuit breaker:US,4 087664[P].1978,5,2.
    [48]R. Dethlefsen. Hybrid circuit breaker with varistor in parallel with vacuum interrupter:US,4204101 [P].1980,5.20.
    [49]S. Yanabu. Hybrid-type interrupting apparatus:US,4434332[P].1984,2,28.
    [50]T.Senda, T. Tamagawa, K. Higuchi, T. Horiuchi, and S. Yanabu. Development of HVDC circuit breaker based on hybrid interruption scheme[J].IEEE Trans. Power App. Syst.,1984, PAS-103(3):545-552.
    [51]H. Tadashi, M. Ken. Hybrid circuit breaker:US,4458119[P].1984,7,3.
    [52]Sato. T, Arita. H, Tsukushi.M., Kurosawa.Y. Interrupting characteristics of series connection of thermal puffer gas circuit breaker and vacuum circuit breaker[J]. Tran. of the Institute of Electrical Engineers of Japan,1993,113-B(12):1439-45.
    [53]Van. Doap. P. Hybrid circuit breaker for high voltage DC currents comprises compressed air circuit breaker in parallel with sulphur hexafluoride unit:US,5 296 661 [P]. 1994,3,22.
    [54]G.Bernard, S. Egreve, P. Chevrier. High voltage hybrid circuit-breaker:US, 5905 242 [P]. 1999,5, 18.
    [55]M. Perret, D. Dufournet. High-voltage interrupter device having combined vacuum and gas interrupt ion:US, 6593538[P].2003, 7,15.
    [56]Pohle. M, Kriegel. M, Kriger. M. Polyphase electrical power distribution network has hybrid circuit breaker with vacuum switching chamber that is designed to cope with comparatively high initial gradients of returning voltage:US, 0 173 831 [P]. 2003, 9, 18.
    [57]R. P. P. Smeets, V. Kertesz, D. Dufournet. Interaction of a vacuum arc with an SF6 arc in a hybrid circuit breaker during high-current interruption [J]. IEEE Trans. on Plasma Science, 2007, 35:933-938.
    [58]L.Cranberg. The Initiation of Electrical Breakdown in Vacuum [J]. J. Appl. Phys, 1952, (23) :518.
    [59]王季梅,吴纬忠,魏一钧等.真空开关[M].北京:机械工业出版社,1976.
    [60]岩源皓.真空开关器具有通用的实际应用[M].株式会社,电气书院,1975.
    [61]A.H.波耳捷夫.高压SF开关设备的设计与计算[M].北京:机械工业出版社,1978.
    [62]S. E. Childs, A. N.Greenwood, and J. S. Sullivan. Events Associated with Zero Current Passage During Rapid Commutation of a Vacuum Arc [J]. IEEE Trans. Plasma Sci. , 1983, PS-11(3):181-188.
    [63]M. T. Glinkowski, A Greenwood.Some interruption criteria for short high frequency vacuum arc [J]. IEEE Tran. Plasma Sci., 1989,PS-17(5):741-743.
    [64]邹积岩,程礼椿,伍小生.扩散型真空电弧的弧后电流[J].华中理工大学学报,1993,21(6):6871.
    [65]邹积岩,程礼椿,秦红三.真空开关介质强度恢复的研究[J].华中理工大学学报.1990,18(4):914.
    [66]M. T. Glinkowski. Behavior of vacuum switching devices for short gaps [D] Troy, NY:Rensselaer Polytechnic Institute,1989.
    [67]王季梅,范舜.大容量真空开关理论与其产品开发[M].西安西安交通大学出版社2001.
    [68]K.F.Sander. Theory of thick positive-ion sheath [J]. J. Plasma Physics, 1969,3: 353-370.
    [69]J.G.Andrews, R. H.Varey. Sheath growth in a low pressure plasma [J]. Phys. Fluid, 1971,14:339-343.
    [70]R. H. Varey, K.F.Sander. Dynamic sheath growth in mercury plasma [J]. J. Phys. D. 1969, 2(2):541-550.
    [71]M. T. Glinkowski, A. Greenwood. Computer simulation of post-arc plasma behavior at short contact separation in vacuum [J].IEEE Trans. Plasma Sci,1989,17:45-50.
    [72]A. G. Jack, K. F. Sander, R. H. Varey. Theory and numerical solutions for sheath growth in low pressure plasma [J].J. Plasma Phys..1971,5(2):211-224.
    [73]J.G.Andrews. The sheath criterion for a growing sheath [J].J. Plasma Phy..1970, 4(3):603-606.
    [74]王其平.电器电弧理论[M].北京:机械工业出版社,1991.
    [75]K.Nakanishi (Editor). Switching phenomena in high voltage circuit breakers [M]. NY:Marcel Dekker,1991.
    [76]C. H. Flurscheim. Power circuit breaker theory and design [M], revised edition. The institution of electrical engineers,1982.
    [77]T.E.Browne. Circuit interrupt ion:theory and technics [M].NY:Marcel Dekker,1984.
    [78]Lionel. R. Orama. Numerical modeling of high voltage circuit breaker arcs and their interaction with the power system [D]. NY:Rensselaer polytechnic institute troy, 1997.
    [79]J. Stechbarth. Modeling of SF6 switchgear in hybrids by scale black box models parameters [R]. Private Communication,1993.
    [80]M. T. Glinkowski, A.Greenwood, P. Stoving. Numerical simulation of high current vacuum arc [C].16th Inter. Symposium on discharges and electrical insulation in vacuum. Moscow, Russia.1994,153-159.
    [81]M. Lindmayer, E. D. wilkening. Breakdown of short vacuum gaps after current zero of high frequency arcs [C].14th Inter. Symposium on discharges and electrical insulation in vacuum. Santa Fe, New Mexico, USA,1990,17-20.
    [82]J. M. Lafferty. Vacuum Arcs:Theory and Application [M]. New York:John wiley & Sons, 1980.
    [83]赵博,张洪亮Ansoft.12在工程电磁场中的应用[M].北京:中国水利水电出版社,2010.
    [84]廖敏夫,段雄英,邹积岩,等.基于JPCG算法的真空灭弧室三维电场有限元计算[J].中国电机工程学报,2004,24(4):108-111.
    [85]林莘,刘志刚.ICCG算法在SF6罐式高压断路器三维电场有限元计算中的应用[J].中国电机工程学报,2001,21(2):21-24.
    [86]徐建源,任春为,司秉娥,等.40.5kV SF6充气式开关柜三维电场分析[J].中国电机工程学报,2008,28(15):136-140.
    [87]刘春,李震彪,张铁等.悬浮电位的二维有限元计算[J].高压电器,2001,37(5):1113.
    [88]Tennant. A, and Ide. J. P. Modelling a planar phase switched structure in Ansoft HFSS (high frequency structure simulator)[C]. ICAP 2003,257-261.
    [89]Sun Jing, Cao Yundong, and Liu Xiaoming. Design and Analyses on Permanent Magnet Actuator for Mining Vacuum Circuit Breaker [C].22th International Symposium on Discharges and Electrical Insulation in Vacuum, 2006, 512-515.
    [90]国家质量监督检验检疫总局.GB1984-2003高压交流断路器[s],北京:国家技术标准出版社,2003.
    [91]ATPDraw用户手册.http://wendang.baidu.com/view/cl3a80610blc59eef8c7b41f.html.
    [92]黄绍平,杨青,李靖.基于MATLAB的电弧模型仿真[J].电力系统及其自动化学报,2005,17(5):64-66.
    [93]王章启,郑振坤,彭玲.电弧黑盒模型的应用成就与存在问题[J].高压电器,1995,5:38-43.
    [94]Lionel. R. Orama. Exclusa. Numerical arc model parameter extraction for SF6 circuit breaker simulations [C]. 2003 International Conference on Power Systems Transients, 2003, 1-5.
    [95]丁富华,真空开关的选相控制及其应用研究[D].大连:大连理工大学,2006.
    [96]陈明帆,段雄英,黄智慧.真空开关动作时间的自适应控制[J].中国电机工程学报,2010,30(36):22-26.
    [97]段雄英,黄智慧,廖敏夫.基于多元线性回归法的相控开关操作时间的补偿与预测[J].2009,29(7):7275.
    [98]段雄英,黄智慧,李蕊.两种故障电流相控开断电流零点预测算法对比[J].高压电器,2011,47(1):59.
    [99]N.A.Pilling. Low power optical current measurement system employing a hybrid transmitter [J].IEE Proc. Sci. Meas. Techno. , 1994, 141(2):129-134.
    [100]彭吉虎,吴伯瑜.光纤技术及应用[M].北京:北京理工大学出版社,1995.
    [101]杨经国,冉瑞江等.光电子技术[M].四川:四川大学出版社,1990.
    [102]陈乔夫,李湘生.互感器电抗器的理论与计算[M].武汉华中理工大学出版社,1992.
    [103]吴华杰.电流互感器的设计选择[J].唐山师范学院学报,2004,26(2):61-63.
    [104]王学义,马隽.电流互感器次边开路电压分析[J].中国铁道科学,1999,20(2):109-113.
    [105]莫白术.电流互感器二次侧开路分析[J].电气时代,2001,3:4142.
    [106]马岩.真空断路器永磁操动机构电源系统的设计[D].大连:大连理工大学,2009.
    [107]施吉林,张宏伟,金光日,等.计算机科学计算[M],北京:高等教育出版社,2005.
    [108]Abraham. I. Switching power supply design [M]. USA: McGraw-Hill Professional, 1997.
    [109]刘胜利.现代高频开关电源实用技术[M].北京:电子工业出版社,2001.
    [110]张东辉,严萍.高压电容器充电电源的研究[J].高电压技术.2008,34(7):1450-1455.
    [111]杜贵平,黄石生,工振民.大功率逆变电源峰值电流控制模式的研究[J].电力电子技术,2006(2):19-22.
    [112]刑岩,蔡宣三.高频功率开关转换技术[M].北京:机械工业出版社,2005.
    [113]Unitrode Design Note. Modelling,Analysis and compensation of the current-mode converter[R].3.44-3.48.
    [114]白同云,吕晓得.电磁兼容设计[M].北京:北京邮电大学出版社,2001.
    [115]王博,张秀青.电磁兼容技术及其在开关电源中的应用[J].电源技术应用,2008,11(6):31-34.
    [116]国家质量技术监督局.GB/T17626.2-1998电磁兼容试验与测量技术[S].北京:国家技术标准出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700