内蒙古东部大石寨组火山岩锆石U-Pb年代学及其地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内容(?)本文以内蒙古自治区东部大石寨组火山岩作为研究对象,通过对流纹岩和流
     纹质晶屑凝灰岩进行锆石LA-ICP MS U-Pb年代学研究,准确测定了大石寨组
     山岩的形成时代,并讨论了古亚洲洋闭合时限的问题;通过对火山岩的主量、微
     量元素以及锆石Hf同位素的地球化学研究,讨论了研究区内大石寨组火山岩
     岩石化学组成特征、岩浆源区性质和岩石成因,并阐明火山岩形成的构造环境。
     结合区域地质资料,讨论了研究区晚古生代区域构造演化历史。研究区火山岩锆石U-Pb定年结果表明,大石寨组火山岩的形成年龄介于
     276Ma-298Ma,统计的峰值年龄为288Ma,为早二叠世的萨克马尔阶,结合地层
     学和古生物学资料,认为大石寨组火山岩形成于早二叠世。通过野外观察与室内薄片鉴定,对大石寨组火山岩进行了详细的岩相学研
     究,其岩石类型主要为流纹岩、英安岩、安山岩、玄武安山岩和玄武岩,根据大
     石寨组火山岩的地球化学,具有富集轻稀土元素和大离子亲石元素,亏损重稀土
     元素和高场强元素,稀土配分图中具有“右倾”趋势,在εHf(t)-t图解中,投
     点落在球粒陨石演化线与亏损地幔之间等特征,认为大石寨玄武岩应是俯冲洋壳
     板片交代的亏损岩石圈地幔发生部分熔融产物,而大石寨流纹岩是由新增生的下
     地壳物质部分熔融的产物。结合大石寨组火山岩的岩石组合与地球化学特征,该
     火山岩应当形成于活动大陆边缘的俯冲环境,而并非是前人所认为的裂谷或裂陷
     槽环境。
This paper selects the Dashizhai formation in eastern Inner Mongolia asthe research object, through the system of petrology, geochronology,geochemistry, Hf isotopic studies and regional geological data, determine thevolcano rock formation era, explores the magma source and properties,clarifies the volcano rock tectonic environment.
     1, Dashizhai formation in volcano rock distribution characteristics
     Dashizhai formation in volcano rocks are widely distributed in InnerMongolia, East, West, East, Nenjiang. On the space, from the west to the Eastrock assemblage differences exist, the West in Sonid Zuoqi, by ANN hill hightuff with andesite and small amounts of basaltic lava transition to andesite,dacite, rhyolite rock intermediate-acid extrusive rocks; in the middle of yellowhillock region of beam and the Linxi region, consists of a lower angle porphyry-quartz keratophyre-rhyolite combination transition to middle Pillow Basaltspilite-as well as the combination of the upper part of the basalt and andesitemainly in basic lava; in the eastern Ulanhot area, mainly for the rhyolite anddacite rock and other acidic lava and a few basic lava composition of thevolcano rock combination, Dashizhai formation in volcano rock rockassemblage is mainly rhyolite dacite rock with continuous basalt basalticandesite, evolution trend.
     2, Dashizhai formation in volcano rock formation age
     The Dashizhai area of the Dashizhai formation in volcano rockconstruction group profiles of actual measurement and detailed petrographicaland chronology of the show,17pieces dating sample zircon cathodeluminescence (CL) image display zircon is automorphic crystal, and theinternal development of oscillatory zoning, Th/U ratio was high, display formagmatic zircon, LA-ICP MS U-Pb zircon dating results of276-298Ma,indicating Dashizhai formation in volcano rock belongs to the early Permianmagma eruption products; another deformation granite porphyry in samples ofzircon dating results for148Ma, the formed during late Jurassic, and graniteporphyry and part of Dashizhai formation in volcano rock occurred thedeformation effects, suggesting that the tectonic deformation effects shouldoccur in the late Jurassic after.
     3, Dashizhai area Dashizhai formation in volcano rock geochemistry
     SiO_2content ranged from49.68%to88.43%, Dashizhai formation rocksvolcano rocks with high Al_2O_3, TiO_2, MgO, CaO, total alkali content, and lowK_2O feature; neutral rocks with high Al_2O_3content, K_2O, CaO, Na_2O, MgOcontent changes in the larger, lower TiO_2content characteristics of acid rocks;with higher SiO_2, Al_2O_3, Na2O content, MgO, lower TiO_2content, K_2O and CaOcontent change. Through the TAS projection diagram and Zr/TiO_2-Nb/Yprojection map, Dashizhai formation in volcano rock assemblages of rhyolite,dacite,andesite,basalt and basaltic andesite. In the FAM diagram, showingcalcium alkaline evolution trend, in the SiO_2-K_2O map volcano rock bodybelongs to high potassium calc alkaline series and potassium calc-alkalineseries.
     REE diagrams show enrichment of light rare earth elements, loss of heavyrare earth elements, showing a" rightist" trend. Trace element spider diagram,each volcano rock generally with the enrichment of Rb, Ba, Th, and other largeion lithophile elements (LILE) and light rare earth element (LREE), Nb, Ta, Ti,loss of high strength element (HSFE). Dashizhai formation in volcano rockREE and trace element diagrams and typical Andean arc volcano rock geochemical diagrams similar to. Rare earth element abundance than basalt,rhyolite rare earth element abundance, show rhyolite and not by basalticmagma evolution.
     4, Dashizhai formation in volcano rock magma source properties and magmaevolution characteristics
     The basalt in REE diagrams, basaltic rocks rich in LREEs, and the loss ofHREEs; in the trace element spider diagram, loss of Nb, Ta, Ti high strengthelement, and the enrichment of large ion lithophile elements, and basalt Zr(139.3ppm-230.3ppm) and Y(20.51ppm-27ppm) content is higher, may saidbasalt originated in the loss of the lithospheric mantle. Low Th/La (0.04-0.08)and Th/Nb ratio (0.09-0.16), and Guo Feng presented in the first group ofbasalt, basaltic magma source area should be long-term loss of mantle sourceregion, according to the Dashizhai formation in volcano rock tectonicenvironment, think of Dashizhai basalts should be subducted oceanic slab.Loss of lithosphere mantle formed by partial melting.
     Acidic rocks with high silicon (SiO_2=68.70%~88.43%), the content ofMgO subjects ranged from0.05%-0.34%, peraluminous (A/CNK=1.06-2.05),but also has a very low Ni, Sr, Rb, Cr, Th content. The distribution patterns ofrare earth elements with minor Eu abnormalities and the trace element spiderdiagrams marked Sr abnormalities are described the source region for thestable region of plagioclase. Rhyolite and enrichment of light rare earthelements and Rb, Th, Ba, K and other large ionic elements, loss of heavy rareearth elements and Nb, Ta, Eu, Ti and other elements of the character, so theDashizhai formation in rhyolite is likely to be the products of partial melting ofcrustal material. Isotope analysis results show that, with the Hf(t)=+3.90~+12.87, TDM1=407Ma~796Ma, TDM_2=473Ma~1295Ma, and the predecessorto the Central Asian orogenic belt in granite results are similar, suggesting theDashizhai formation in rhyolite originated in the new students in lower crustpartial melting.
     In this paper the main calcium alkaline rhyolite for aluminum, A/CNK index>1.1, but due to the fluid or melt function, the height difference of I typegranite A/CNK index also would be greater than1.1. Dashizhai formation inrhyolite originated in the new students in lower crust partial melting, and I typegranite of the same origin, and the Dashizhai formation in rhyolite overall lossof Nb, Ta high strength element, but Rb, Th, high content of U, Ba, Sr, Eu withdifferent degrees of negative anomaly and CaO content most of low(0.03-0.78), so the Dashizhai formation in rhyolite and differentiation of higherdegree of I type granite similar.
     5, Dashizhai formation in volcano rock tectonic background
     Dashizhai area Dashizhai formation in volcano rocks combination ofrhyolite andesite basalt continuous evolution calcium alkaline rock series, andactive continental margin in the rock assemblage features similar;geochemistry enrichment of light rare earth elements and Rb, Ba, Th and otherlarge ionic elements, whereas the loss of heavy rare earth elements and Nb,Ta, Ti high strength element, similar to the active continental margin volcanorocks. Rhyolite in tectonic discrimination diagrams. In arc volcano rock area, atthe same time basalt in the tectonic discrimination diagrams into calciumalkaline region. From the rock assemblage features and geochemicalproperties, combined with previous petrology, geochemistry, paleontologicaldata, suggesting the Dashizhai formation in volcano rocks formed in the activecontinental margin arc subduction environment, rather than previous thoughtrift environment or aulacogen environment.
引文
Anderson T. Correction of common lead in U-Pb analyses that do not report204Pb[J].. ChemicalGeology2002,192:59-79
    Ballard JR,Palin JM,Williams IS,et al.Two ages of porphyry intrusion resolved for the super-giantChuquicamata copper deposit of northern Chile by ELA-ICP-MS andSHRIMP[J].Geology,2001,29:383-386
    Bowden,P.et al., Plutonic rock types series: discrimination of various granitoid series and relatedrocks[J].,vocaology,1982
    Cherniak DJ.Watson,E.B.Pb diffusion in zircon[J].Chemical Geology,2000,172:5-24
    Chen B,Jahn BM. Wilde,et al. Two contrasting Paleozoic magmatic belts in northern InnerMongolia,China:petrogenesisi and tectonic implications[J].Tectonophysics,2000,328:157-182
    Dorjnamjaa,D.,Badarch,G.,Orolmma,D.,The geodynamic evolution of the mobile fold belts of theterritory of Mongolia,In:Coleman,R.G.,Reconstruction of the Paleo-Asian Ocean:PaperPresented at the29thInt.Geol.Cong.,Kyoto,Japan.VSP International SciencePublisher,Utrecht,Netherlands,1993,pp.63-76
    Fedorovskii VS,Khain EE,Vladimirov AG,et al.Tectonics,metamorphism,and magmatism ofcollisional zones of the Central Asian Caledonides[J].Geotectonics,1995,29:193-212
    Francalanci L,Taylor SR,McCulloch MY,et al.Geochemical and isotopic variations in thecalc-alkaline rocks of Aeolian arc,southern Tyrrhenian sea,Italy:Constraints on magmagenesis[J].Contributions to Mineralogy and Petrology,1993,113:300-313
    F Gutierrez.The Hudson Volcano and surrounding monogenetic centres (Chilean Patagonia)Anexample of volcanism associated with ridge-trench collision environment[J] Journal ofVolcanologyand Geothermal Research2005145207233
    Gill JB,Early geochemical evolution of an oceanic island arc and back arc:Fiji and the south Fijibasin[J].Journal of Petrology,1987,95589-615
    Hong DW,Huang H,Xiao Y et al.,Permian alkaline granites in central Inner Mongolia and theirgeodynamic significance[J].Acta Geologica Sinica8,1995,27-39
    Hsu KJ,Wang QC,Li L.Geological evolution of the Neimonides:a workinghypotheis[J].Eclogae.Geol.Helv.1991,84:1-31
    Jahn BM,Wu FY,Chen B.Massive granitoid generation in central Asia:Nd isotopic evidence andimplication for continental growth in the Phanerozoic[J].Episodes,2000,23:82-92
    Koschek G. Origin and significance of the SEM cathodoluminescence from zircon.[J] Journal ofMicroscopy1993171:223-232
    Lanyon R,Black RP,Seitz HM.U-Pb zircon dating of mafic dykes and its application to theProterozoic geological history of the Vestford Hills,East Antarctica[J].Contributions toMineralogy and Petrology,1993,115:84-203
    Lee J,Williams I,Ellis D.Pb,U and Th diffusion in nature Zircon[J].Nature,1997,390:159-162
    Li J Y Permian geddynamic setting of Northeast China and adjacent regions:closure of thePaleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J] Journal of Asian EarthSciences200626207-224
    Maniar PD,Piccoli PM.Tectonic discrimination of granitoids[J].Bulletin of the Geological Societyof America,1989,101(5):635-643
    Miyashiro A.Tectonic and petrologic aspects of Asia.Memoir.Geological Society ofChina[J],Taipei,1981,(4)
    Miao L C Fan W M Liu D Y et al.Geochronology and geochemistry of the Hegenshan Ophioliticcomplex:implications for late-stage tectonic evolution of the Inner Mongolia-Daxing anlingOrogenic Belt China[J].J Asian Earth Sci,200832348-370
    Pearce JA,Statistical analysisi of major element patterns in basalts[J], Petro,1974,15-43
    Pearce JA et al. Trace element discrimination diagrams for the tectonic interpretation of graniticrocks[J].J.Petrol,1984,(25):956-983
    Pitcher,WS,Granite type and tectonic environment[J],Mauntain building Processes,1983,19-40
    Tang KD.Tectonic development of Palezoic foldbelts at the north margin of the Sino-Koreancraton[J].Tectonic,1990,(9):249-260
    Toshio Nozaka and Yan Liu.Petrology of the Hegenshan ophiolite and its implication for thetectonic evolution of the northern China[J].EPSL2002202:89-104
    Ruzhentsev SV,Badarche G,Voznesenskaya TA,Tectonics of the Trand-Altai zone ofMongolia[J].Geotectonis,1985,19,276-284
    Sengor AMC,Natal in BA.Paleotectonics of Asia:Fragments of a synthesis[M]//Yin A.HarrisonM.The Tectonic Evolution of Asia.Cambridge University Press,Cambridge,1996:486-640
    Sengor AMC,Natal in BA,Burtman VS.Evolution of the Altaid tectonic collage and Paleozoiccrustal growth in Eurasia[J].1993,364:209-307
    Tang KD.Tectonic development of Paleozoic foldbelts at the north margin of the Sino-Koreancraton[J].Tectonic,1990,(9):249-260
    Taylor S.R, and McLennan S.M,.The continental crust:Its composition and33[J]Evolution.Blackwell,1985:312
    Veevers J.J.,Saeed A,Belousova E.A.et al.U-Pb ages and source composition by Hf isotope andtrace element analysis of detrial zircons in Permian sandstone and modern sand fromsouthwestern Australia and a review of the palegeographical and denudational history of theYilgarn craton[J].Earth Science,2005,68:245-279
    Wilson W.Igneous petrogenesis[M].Unwin Hyman,London,1989:327-373
    Winchester JA and Floyd PA.Geochemical discrimination of different magma series and theirdifferentiation products using immobile elements[J].Chemical Geology,1977,20:325-343
    Windley BF,Allen MB,Zhang C,et al.Paleozoic accretion and Cenozoic re-degormation of theChinese Tiern Shan range,Central Asia[J].Geology,1990,18:128-131
    Wu FY,Sun SY,Li HM,et al.A-type granites in northeastern China:age and geochemical constraintson their petrogenesis[J].Chemical Geology,2002,187:143-173
    Wu FY,Yang YH,Xie LW.Hf isotopic compositions of standard zircons and baddeleyites used inU-Pb geochronology[J].Chemical Geology,2006,231:105-126
    Wenjiao Xiao,Brian F,Windley et al.Accretion leading to collision and the Permian Solonkersuture,Inner Mongolia,China:Termination of the central Asian orogenic belt[J].Tectonic2003,2268-1-8-20
    Xiao WJ,Zhang LC,Qin KZ,et al.Paleozoic accretionary and collisional tectonics of the easternTienshan(China):implications for the continental growth of Central Asia[J].American Journalof Science,2004304:370-395
    Yakubchuk A.The Baik alide-Altaid,Transbaikal-Mongolian and North Pacific Orogeniccollage:similaritics and diversity of structural pattern and metallogeniczoning[J].Geological Society,Lonton,Special Publications,2002,204:273-297
    Yakubchuk A.Architecture and mineral deposit settings of the Altaid orogenic collage:arevisedmodel[J].Journal of asian Earth Sciences,200423:761-779Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J].Geostandards and Geoanalytical Research,2004,28::33-370Yue YJ,Liou JG,Graham SA,Tectonic correlation of Beishan and Inner Mongolia orogens and its implications for the palinspastic reconstruction of North China In:Hendrix,MS,Davis,GA,Paleozoic and Mesozoic Tectonic Evolution of Central and Eastern Asia,194.Geological Society of America Memoir,2001,101-116Zhang ZM,Liou JG,Coleman RG,An outline of the plate tectonics of China[J].Geological Society of America Bulletin95,1984,295-312Zhang X H, Zhang H F, Tang Y J, et al. Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China:Implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic belt[J], Chemical Geology,2008,249:262-281Zhu Y F, Sun S H, et al. Permian volcanism in the Mongolian orogenic zone, northeast China: geochemistry, magma sources and petrogenesis[J].Geol Mag,2001a,138:101-115白立兵.内蒙古达尔罕茂明联合旗满都拉地区二叠系大石寨组火山岩特征及其构造意义[D].中国地质大学(北京)硕士学位论文,2005白文吉等,内蒙古锡盟贺根山地区蛇绿岩的岩石矿物学和铬铁矿的研究报告[C],1986包志伟,陈森煌,张桢堂.内蒙古贺根山地区蛇绿岩稀土元素和Sm-Nd同位素研究[J].地球化学,1994,23(4):339-349鲍庆中,张长捷,吴之理等.内蒙古东南部晚古生代裂谷区花岗质岩石锆石SHRIMP U-Pb定年及其地质意义[J].中国地质,2007,34(5):790797曹从周,杨芳林,田昌裂,等.内蒙古贺根山地区蛇绿岩及中朝板块和西伯利亚板块之间的缝合带位置[C]//中国北方板块构造论文集(第一集),北京:地质出版社,1986,64-86曹熹,党增欣,张兴洲,等.佳木斯复合地体[M].长春:吉林科学技术出版社,1992陈道公,李彬贤,夏群科,等.变质岩中锆石U-Pb计时问题评述-兼论大别造山带锆石定年[J].岩石学报,2001,17(1):129-138邓晋福,莫宣学,罗照华,等.火成岩构造组合与壳-幔成矿系统[J].地学前缘,1999,6(2):259-270邓晋福,肖庆辉,苏尚国,等.火成岩组合与构造环境:讨论[J].高校地质学报,2007,13(3):392-402范书义,毛华人,张晓东等.大兴安岭中段二叠系地球化学特征及其成矿意义[J].中国区域地质,1997,16(1):89—97高德臻.内蒙古苏尼特左旗二叠系的重新厘定及大地构造演化分析[J].中国区域地质,1998,17(4):403-411葛文春,吴福元,周长勇等.大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U—Pb年龄及地质意义[J].岩石学报,2005,21(3):749762耿明山.内蒙古中部下二叠统火山岩特征及构造环境意义[J].地质勘探,1998,34(1):13—19郭锋,范蔚茗,李超文等.早古生代古亚洲洋俯冲作用:来自内蒙古大石寨玄武岩的年代学与地球化学证据[J].中国科学D辑:地球科学,2009,39(5):569—579何国琦,邵济安.内蒙东南部西拉木伦河一带早古生代蛇绿岩建造的确认及其大地构造意义.[C]//中国北方板块构造文集(第一集),辽宁:辽宁科技出版社,1983,243-249洪大卫,黄怀曾,肖宜君等内蒙古中部二叠纪碱性花岗岩及其地球动力学意义[J]地质学报,1994,68(3):219-230洪大卫,王式光,谢锡林,等.兴蒙造山带正;Nd(t)值花岗岩的成因和大陆地壳生长[J].地学前缘,2000,7(2):441-456黄本宏,丁秋红.中国北方安加拉植物群[J].地球学报,1998,19(1):97-104李春昱.中国板块构造的轮廓[J].中国地质科学院学报.1980,2(1):11-22李鹤年,大兴安岭中南部二叠纪地层地球化学特征及其成矿意义[C].见张德谦,赵一鸣主编,大兴安岭及邻区铜多金属矿床论文集,北京:地震出版社,1993,79-86李锦轶.内蒙古东部中朝板块与西伯利亚板块之间古缝合带的初步研究[J],科学通报,1986,14:1093-1096李锦轶.中国东北及邻区若干地质构造问题的新认识[J].地质论评,1998,44:339347李锦轶,高立明,孙桂华,等内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J],岩石学报,,2007,23(3):565-582.李朋武,高锐,管烨等内蒙古中部索伦-林西缝合带封闭时代的古地磁分析[J]吉林大学学报(地球科学版),2006,36(5):744-758李双林,欧阳自远兴蒙造山带及邻区的构造格局与构造演化[J]海洋地质与第四纪地质,1998,18(3):45-54李述靖,张维杰,耿明山蒙古弧地质构造特征及形成演化概述[J]北京:地质出版社1998李献华,李武显,李正祥.再论南岭燕山早期花岗岩的成因类型与构造意义[J],科学通报,??2007,52(9):981-991李益龙,周汉文,钟增球等华北与西伯利亚板块的对接过程:来自西拉木伦缝合带变形花岗岩锆石LA-ICP-MS U-Pb年龄证据[J]地球科学-中国地质大学学报,2009,34(6):931-938梁日暄.内蒙古中段蛇绿岩特征及地质意义[J].中国区域地质,1994,(1):37-45刘建峰.内蒙古林西-东乌旗地区晚古生代岩浆作用及其对区域构造演化的制约[D].吉林大学博士学位论文,2009柳小明.华北克拉通中生代壳幔交换作用的地球化学研究[D].西北大学博士学位论文,2004吕志成,段国正,郝立波等.大兴安岭中段二叠系大石寨组细碧岩的岩石学地球化学特征及其成因探讨[J].岩石学报,2002,18(2):212—222吕志成,郝立波,段国正等.大兴安岭南段早二叠世两类火山岩岩石地球化学特征及其构造意义[J].地球化学,2002,31(7):338—346马文璞,李锦轶,李江海,等.造山带概念的演变及它在现今大陆构造研究中面临的问题[J].地质论评,200248(2):153-159内蒙古地质矿产局.内蒙古自治区区域地质志[M]北京:地质出版社,1991内蒙古自治区地质矿产局.全国地层多重划分对比研究[M](15)内蒙古自治区岩石地层.武汉:中国地质大学出版社.1996彭玉鲸,纪春华,辛玉莲.中俄朝毗邻地区古吉黑造山带岩石及年代记录[J].地质与资源.2002,11(2):65-75任纪舜,陈延愚,牛宝贵,等.中国东部及邻区岩石圈的构造演化与成矿[M].北京:科技出版社,1990任纪舜,牛宝贵,刘志刚.软碰撞、叠覆造山和多旋回缝合作用[J].地学前缘,1999,6(3):85-93任纪舜论中国大陆岩石圈构造的基本特征[J].中国区域地质,1991,4:289—293尚庆华北方造山带内蒙古中、东部地区二叠纪放射虫的发现及意义[J]科学通报,2004,49(24):2574-2579邵济安.中朝板块北缘中段地壳演化[M].北京:北京大学出版社,1991邵济安,牟保磊,何国琦,等华北北部在古亚洲域与太平洋域构造叠加过程中的地质作用[J]中国科学,1997,27:390~394施光海,苗来成,张福勤,等.内蒙古锡林浩特“A”型花岗岩的时代及区域构造意义[J].科??学通报,200449(4):384-389宋彪,牛宝贵,李锦轶,等.牡丹江-鸡西花岗岩类地质同位素年代学研究[J].岩石矿物学杂志.1994,13(2):204-2131994)宋彪,张玉海,万渝生等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质论评,2002,48(增刊):2630苏养正.中国东北区二叠纪和早三叠世地层[J].吉林地质.1996,15(3,4):55-65孙德有,吴福元,张艳斌等西拉木伦河-长春-延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据[J]吉林大学学报(地球科学版),2004,34(2):174-181唐克东中朝陆台北侧褶皱带构造发展的几个问题现代地质,1989,3(2):195-204陶继雄,白立兵,宝音乌力吉等.内蒙古满都拉地区二叠纪俯冲造山过程的岩石记录[J].地质调查与研究,2003,26(4):241-249童英,洪大卫,王涛,等.中蒙边境中段花岗岩时空分布特征及构造和找矿意义[J],地球学报,2010,,3(3):395-412王道永,王成善,杜思清,等.内蒙古东北部及周边地区前中生代构造发展演化史[J],成都理工学院学报,1998,25(4):529-536汪润洁.大兴安岭南段下二叠统大石寨组K—Ar法同位素年龄的讨论[J].岩石学报,1987,2:8-91王荃内蒙古中部中朝与西伯利亚古板块间缝合线的确定[J]地质学报,1986,1:31-43王荃,刘雪亚,李锦轶.中国华夏与安加拉古陆间的板块构造[M].北京:北京大学出版社,1991a王荃,刘雪亚,李锦轶.中国内蒙古中部的古板块构造[J].中国地质科学院学报,1991b,22:1-15王晓蕊.辽西早白垩世四合屯组火山岩地球化学研究[D].西北大学硕士学位论文,2005王友勤,苏养正,刘尔义.东北区区域地层[M].武汉:中国地质大学出版社,1997王玉净樊志勇内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义[J]古生物学报,1997,36(1):58-69吴福元,曹林.东北亚地区的若干重要基础地质问题[J].世界地质,1999,18(2):1—13吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题[J],岩石学报,2007,23(6):1217-1238吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,200449(16):1589-1604肖庆辉,李晓波,贾跃明,等.当代造山带研究中值得重视的若干前沿问题[J].地学前缘,1995,??(1-2):43-50谢鸣谦.拼贴板块构造及其驱动机理:中国东北及邻区的大地构造演化[M].北京:科学出版社,2000徐备,J.Charvet,张福勤.内蒙古北部苏尼特左旗蓝片岩岩石学和年代学研究[J],地质科学,2001,36(4):424-434杨国富.内蒙古大兴安岭南段二叠系的地质建造与控矿作用[J].矿床与地质,10(52):120—125杨现力.扎兰屯浅变质岩系地质特征及碎屑锆石年代学研究[D].吉林大学硕士学位论文.长春:吉林大学地球科学学院.2007袁洪林,吴福元,高山,柳小明等东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48(14):1511-1520张国伟,董云鹏,姚平安.造山带与造山作用及其研究的新起点[J].西北地质,2001,34(1):1-9张梅生,彭向东,孙晓猛.中国东北地区古生代构造古地理格局[J].辽宁地质,1998,2:91-96张晓晖,翟明国.华北北部古生代大陆地壳增生过程中的岩浆作用与成矿效应[J].岩石学报,2010,26(5):1329-1341张兴洲.黑龙江岩系-古佳木斯地块加里东缝合带的证据[J].长春地质学院学报,1992,22(增刊):94-101张贻侠,孙运生,张兴洲,等.中国满洲里-绥芬河地学断面1:1000000说明书[M].北京:地质出版社,1998赵芝.内蒙古大石寨地区早二叠世大石寨组火山岩的地球化学特征及其构造环境[D].硕士学位论文长春:吉林大学地球科学学院2008赵一鸣,王大畏,张德全,等.内蒙古东南部铜多金属成矿地质条件及找矿模式[M].北京:地震出版社.1994:1-86赵国龙,杨桂林,王忠,等.大兴安岭中南部中生代火山岩[M].北京:科学技术出版社,1989赵英利.大兴安岭中南部二叠纪砂岩物源分析对晚古生代区域构造演化的制约[D].吉林大学博士学位论文.长春:吉林大学地球科学学院.2010曾维顺,周建波,张兴洲,邱海峻.内蒙古科右前旗大石寨组火山岩锆石LA-ICP-MS U-Pb年龄及其形成背景[J].地质通报,2011,30(2-3):270-277

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700