基于电容耦合式非接触电导检测的气液两相流参数测量新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气液两相流系统在石油、化工、能源、制药以及电力等工业领域中广泛存在,其流型和相含率的在线测量对两相流系统的运行监控、过程控制及安全保证等具有十分重要的意义。由于两相流动的复杂性和随机性,气液两相流的流型辨识和相含率测量一直以来是科学研究和工业应用领域中长期未能得以很好解决的测量难题。电容耦合式非接触电导检测(Capacitively Coupled Contactless Conductivity Detection,简写为C4D)是一种新型的电导检测技术,有望为气液两相流参数测量提供一条新的解决途径。本学位论文拟研究C4D技术应用于气液两相流流型辨识和相含率测量的可行性,并基于C4D技术,结合现代信息处理技术,提出气液两相流流型辨识和相含率测量的新方法。
     本学位论文的主要创新点和贡献如下:
     1、基于串联谐振的原理,研发了一种适用于气液两相流参数测量的新型C4D传感器。研究结果表明,所研发的的基于串联谐振的单屏蔽C4D传感器是成功的。基于串联谐振的原理消除了耦合电容对电导测量的不利影响,改善了传统C4D传感器的电导测量范围和分辨率,将C4D的管径适用范围从毛细管尺寸扩展至毫米级尺寸(本文所研制的新型C4D传感器内径尺寸最大已达7.8mm)。研究结果同时表明,所研发的新型C4D传感器在较大管径下的电导率测量精度令人满意。在内径分别为1.8mm、3.3mm、5.5mm、7.8mm四种管径下,电导率测量的最大相对误差均小于3.5%。所研发的新型C4D传感器具有测量范围广,分辨率好,结构简单,稳定性和抗干扰性能佳等优点,为基于C4D的气液两相流参数测量奠定了有效的技术基础。
     2、利用C4D传感器获得的电导信号,结合现代信息处理技术,研究了气液两相流流型辨识问题。根据特征提取方法的不同,分别提出并对比了两种流型辨识新方法:1)采用统计分析和傅里叶分析方法对所获得的电导信号进行特征提取,然后将提取的特征输入到由SVM建立的流型分类器中实现流型辨识;2)采用统计分析和小波分析方法对所获得的电导信号进行特征提取,然后将提取的特征输入到由SVM建立的流型分类器中实现流型辨识。研究结果表明,C4D技术应用于气液两相流流型辨识是可行的,所提出的两种流型辨识新方法均是有效的。在内径分别为1.8mm、2.8mm、4.0mm、6.1mm和7.8mm水平管下,层状流、波状流、泡状流、段塞流和环状流的辨识结果令人满意。其中,采用统计分析、小波分析和SVM相结合的流型辨识新方法的辨识准确度更好(采用统计分析、小波分析与SVM相结合的流型辨识准确率均高于91%,采用统计分析、傅里叶分析与SVM相结合的流型辨识准确率均高于87%)。研究结果同时表明,将特征提取和SVM分类技术相结合进行气液两相流流型辨识是有效的。所提取的均值、标准差和能量分布特征可有效反映流型的信息,采用SVM分类技术能够成功实现多种流型的分类问题。
     3、利用C4D传感器所获电导信号,并结合SVM回归技术,提出了气液两相流相含率测量新方法。该方法为克服流型对测量结果的影响,需根据气液两相流的不同典型流型分别建立相含率测量模型。在相含率测量过程中,预先利用SVM回归技术建立各典型流型下的测量模型。实际测量时,首先利用所研发的新型C4D传感器获取气液两相流电导信号,然后进行流型辨识并获得当前流型,最后根据流型辨识结果选择相应的相含率测量模型计算相含率值。研究结果表明,C4D技术应用于气液两相流相含率测量是可行的,所提出的相含率测量新方法是有效的。在内径为7.0mm水平管下,层(波)状流、泡状流、段塞流和环状流典型流型下的气相含率测量的最大绝对误差均不高于7.0%。研究结果同时表明,利用特征提取和SVM回归技术建立的气液两相流相含率测量模型是成功的。所提取的气液两相流电导均值和标准差两个特征参数能有效反映相含率的信息,采用SVM回归技术能有效克服电导信号与相含率之间的非线性关系,成功建立了气液两相流的相含率测量模型。
     本学位论文的研究证实了C4D技术可为两相流的参数测量提供一种新的解决途径,同时也为C4D这一新技术在工程应用领域的进一步拓展提供了有益的借鉴。
Gas-liquid two-phase flow widely exists in many industries, such as chemical, pharmaceutical, petroleum, energy and power engineering, etc. Online measurement of flow pattern and void fraction are very important for operation monitoring, process controlling and safety assurance of gas-liquid two phase flow system. Due to the complexity of two-phase flow, flow pattern identification and void fraction measurement are two difficult problems which have not been well solved both in scientific research field and industrial application. Capacitively Coupled Contactless Conductivity Detection (C4D) is a new conductivity detection technique, which may provide a promising way for parameter measurement of gas-liquid two-phase flow. This dissertation aims to study the feasibility of applying C4D to flow pattern identification and void fraction measurement of gas-liquid two-phase flow, and then based on C4D and combine with modern information processing technique, to propose new methods for flow pattern identification and void fraction measurement of gas-liquid two-phase flow.
     The main innovation points and contributions of this dissertation are listed as follows:
     1. Based on series resonance principle, a new C4D sensor which is suitable for parameter measurement of gas-liquid two-phase flow is developed. Research results show that:based on series resonance principle, the new C4D sensor overcome the unfavourable influence of the coupled capacitances on conductivity detection, improves the detection range and resolution, and expands the application of C4D to conductivity detection in millimeter-scale pipes (the maximum inner diameter of the new C4D sensor is7.8mm, while conventional C4D technique are mainly used in capillaries). Research results also show that the conductivity detection accuracies of the new C4D sensor in larger pipes are satisfactory. In four pipes (the inner diameters are1.8mm,3.3mm.5.5mm and7.8mm, respectively), the maximum relative errors of conductivity detection are all less than3.5%. The new C4D sensor has the advantages of wide detection range, high resolution, simple construction, good stability and anti-interference ability, and provides an effective mean for parameter measurement of gas-liquid two-phase flow.
     2. Based on the conductivity signals obtained by the new C4D sensor, flow pattern identification of gas-liquid two-phase flow are studied combining with the modern information processing technique. According to different feature extraction methods, two new flow pattern identification methods are proposed and compared:1) use statistical analysis and Fourier analysis methods to extract the features of conductivity signals, then input the extracted features to the flow pattern classifier (which is built by SVM technique) for classification, finally the flow patterns are obtained.2) use statistical analysis and Wavelet analysis methods to extract the features of conductivity signals, then input the extracted features to the flow pattern classifier (which is built by SVM technique) for classification, finally the flow patterns are obtained. Research results show that applying C4D to flow pattern identification of gas-liquid two-phase flow is feasible, and the proposed two flow pattern identification methods are both effective. In five pipes with the inner diameters of1.8mm,2.8mm,4.0mm,6.1mm and7.8mm, respectively, the identification results for five typical flow patterns are all satisfactory. The flow patten identification method based on the combination of statistical analysis, Wavelet analysis and SVM techniques are better (The identification results using the combination of statistical analysis. Wavelet analysis and SVM techniques are all above91%, while the identification results using the combination of statistical analysis, Fourier analysis and SVM techniques are only above87%.). Research results also show that combining the feature extraction and the SVM technique is effective for flow pattern identification. The extracted features can effectively reflect the information of flow pattern, and SVM technique can succeffully implement the multi-classification of flow patterns.
     3. Based on the conductivity signals obtained by the new C4D sensor, a new method for void fraction measurement of gas-liquid two-phase flow is proposed combine with the SVM regression technique. This method develops the void fraction measurement model for each typical flow pattern on the basis of SVM regression technique. In practical measurement process, firstly, the conductivity signals of gas-liquid two-phase flow are obtained by the developed C4D sensor, then, the flow pattern of gas-liquid two-phase flow are identified, finally, according to the identification results, the suitable void fraction measurement model is selected to calculate the void fraction value. Research results show that applying C4D to void fraction measurement of gas-liquid two-phase flow is feasible, and the proposed void fraction measurement method is effective. In the pipe with the inner diameter of7.0mm, the void fraction measurement results are satisfactory. For stratified flow (wavy flow), bubble flow, slug flow and annular flow, the maximum measurement errors are all less than7.0%. Research results also show that using the combination of feature extraction and SVM regression technique to develop the void fraction measurement model is successful. The extracted features (the mean value and the standard deviation) of conductivity signals can effectively reflect the information of void fraction, and the SVM regression technique can overcome the nonlinearity between the conductivity signals and the void fraction, and can successfully develop the void fraction measurement models.
引文
[1]Crowe C T. Multiphase flow handbook[M]. Boca Raton:CRC Press, Taylor & Francis Group,2006.
    [2]Hetsroni G. Handbook of multiphase systems[M]. Washington:Hemisphere Publishing Corporation,1982.
    [3]林宗虎.气液两相流和沸腾传热[M].西安:西安交通大学出版社,2004.
    [4]车得福,李会雄.多相流及其应用[M].西安:西安交通大学出版社,2007.
    [5]陈甘棠,王樟茂.多相流反应工程[M].杭州:浙江大学出版社,1996.
    [6]陈甘棠,王樟茂.流态化技术的理论和应用[M].北京:中国石化出版社,1996.
    [7]王文琪.两相流动[M].北京:水利电力出版社,1989.
    [8]连桂森.多相流动基础[M].杭州:浙江大学出版社,1989.
    [9]鲁钟琪.两相流与沸腾传热[M].北京:清华大学出版社,2002.
    [10]郭烈锦.两相与多相流动力学[M].西安:西安交通大学出版社,2002.
    [11]陈家琅.石油气液两相管流[M].北京:石油工业出版社,1989.
    [12]陈之航,曹柏林,赵在三.气液双相流动和传热[M].北京:机械工业出版社,1983.
    [13]Hewitt G F. Measurement of two phase flow parameters[M]. London:Academic Press, 1978.
    [14]Baker R C. Flow measurement handbook:industrial designs, operating principles, performance, and applications[M]. Cambridge:Cambridge University Press,2000.
    [15]李海青.两相流参数检测及其应用[M].杭州:浙江大学出版社,1991.
    [16]李海青,乔贺堂.多相流测试技术现状及趋势[M].北京:石油工业出版社,1996.
    [17]林宗虎.气液固多相流测量[M].北京:中国计量出版社,1988.
    [18]Rajan V S V, Rafa K G. Multiphase flow measurement techniques-a review[J]. Journal of Energy Resources Technology,1993,115(3):151-161.
    [19]Gary O, Pearson J R A. Flow-rate measurement in two-phase flow[J]. Annual Review of Fluid Mechanics,2004,36:149-172.
    [20]陈学俊.迅速发展中的一门新兴交叉学科-多相流热物理的进展[J].西安交通大学学报,1996,30(4):7-17.
    [21]徐益谦,王式民.多相流测试技术需进一步攻关[J].国际学术动态,1996,1:95-96.
    [22]董峰.多相流测量技术发展概况[J].国际学术动态,2002,5:13-14.
    [23]李海青,黄志尧.特种检测技术及应用[M].杭州:浙江大学出版社,2000.
    [24]李海青,黄志尧.软测量技术原理及应用[M].北京:化学工业出版社,2000.
    [25]Jane W,金英,陈家琅.多相计量研究的现状[J].国外油田工程,1997,6:39-42.
    [26]刘强,郑莹娜.多相流多参数动态测量技术发展与应用[J].工业仪表与自动化装置,2000,6:52-54.
    [27]郝丽,仇性启.两相流流动测试技术方法综述[J].通用机械,2006(11):66-68,81.
    [28]顾春来,董守平.石油工业多相流测试技术进展[J].石油规划设计,1998,4:5-8.
    [29]曹学文,林宗虎,耿艳峰,等.在线多相流量计测量技术研究[J].中国海上油气(工程),2002,14(2):37-40.
    [30]吕宇玲,何利民.多相流计量技术综述[J].天然气与石油,2004,22(4):52-54.
    [31]林宗虎,王栋,王树众,等.多相流的近期工程应用趋向[J].西安交通大学学报,2001,35(9):886-890.
    [32]Cheng L X, Ribatski G, Thome J R. Two-phase flow patterns and flow-pattern maps: fundamentals and applications[J]. Applied Mechanics Reviews,2008,61(5): 050802-1~050802-28.
    [33]Rouhani S Z, Sohal M S. Two-phase flow patterns:a review of research results[J]. Progress in Nuclear Energy,1983,11(3):219-259.
    [34]白博峰,郭烈锦,赵亮.汽(气)液两相流流型在线识别的研究进展[J].力学进展,2001,31(3):437-446.
    [35]梁法春,曹学文,冠杰等.多相流流型检测与识别技术[J].油气储运,2001,20(11):1-4.
    [36]Baker O C. Simultaneous flow of oil and gas[J]. Oil and Gas Journal,1954,53: 185-195.
    [37]Scott D S. Properties of co-current gas-liquid flow[J]. Advances in Chemical Engineering,1963,4:199-277.
    [38]Weisman J. Effects of fluid properties and pipes diameter on two phase flow patterns in horizontal lines[J]. International Journal of Multiphase Flow,1979,5:437-462.
    [39]Weisman J, Kang S Y. Flow pattern transitions in vertical and upwardly inclining line[J]. International Journal of Multiphase Flow,1981,7:271-291.
    [40]Gregory G A, Mandhane J M, Aziz K. Some design considerations for two phase flow in pipes[J]. Journal of Canadian Petroleum Technology,1975,14(1):65-71.
    [41]Taitel Y, Dukler A E. A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow[J]. AIChE Journal,1976,22(1):47-54.
    [42]Wojtan L, Ursenbacher T, Thome J R. Investigation of flow boiling in horizontal tubes: Part I—A new diabatic two-phase flow pattern map[J]. International Journal of Heat and Mass Transfer,2005,48(14):2955-2969.
    [43]Ghajar A J, Tang C C. Heat transfer measurements, flow pattern maps, and flow visualization for non-boiling two-phase flow in horizontal and slightly inclined pipe[J]. Heat Transfer Engineering,2007,28(6):525-540.
    [44]Choe W G, Wemberg L, Weisman J. Observation and collection of flow pattern transition in horizontal concurrent gas-liquid flow[J]. Two Phase Transport and Reactor Safety,1978,1357-1375.
    [45]Jassim E W, Newell T A, Chato J C. Probabilistic determination of two-phase flow regimes in horizontal tubes utilizing an automated image recognition technique[J]. Experiments in Fluids,2007,42(4):563-573.
    [46]周云龙,陈飞,刘川.基于图像处理和Elman神经网络的气液两相流流型识别[J].中国电机工程学报,2007,27(29):108-112.
    [47]Vince M A, Lahey R T. On the development of an objective flow regime Indicator[J]. International Journal of Multiphase Flow,1982,8:93-124.
    [48]Abro E, Khoryakov V A, Johansen G A, et al. Determination of void fraction and flow regime using a neural network trained on simulated data based on gamma-ray densitometry[J]. Measurement Science and Technology,1999,10(7):619-630.
    [49]Jones O C, Zuber N. The interrelation between void fraction fluctuations and flow patterns in two-phase flow[J]. International Journal of Multiphase Flow,1975,2: 273-306.
    [50]Elperin T, Klochko M. Flow regime identification in a two-phase flow using wavelet transform[J]. Experiments in Fluids,2002,32(6):674-682.
    [51]孙斌,张宏建,岳伟挺.HHT与神经网络在油气两相流流型识别中的应用[J].化工学报,2004,55(10):1723-1727.
    [52]丁浩.新型信息处理技术在气液两相流流型辨识中的应用研究[博士学位论文].杭州:浙江大学,2005.
    [53]Lee J Y, Kim N S, Ishii M. Flow regime identification using chaotic characteristics of two-phase flow[J]. Nuclear Engineering and Design,2008,238(4):945-957.
    [54]顾春来,董守平.气液两相流流型信号的分形特征分析[J].油气储运,2001,20(7):25-27.
    [55]任杰,朱衡君.时间序列分析和参数识别方法确定两相流流态[J].北方交通大学学报,1998,22(4):83-86.
    [56]Elkow K J, Rezkallah K S. Void fraction measurements in gas-liquid flows using capacitance sensors[J]. Measurement Science and Technology,1996,7:1153-1163.
    [57]Caniere H, Joen C, Willockx A. Capacitance signal analysis of horizontal two-phase flow in a small diameter tube[J]. Experimental Thermal and Fliud Science,2008,32: 892-904
    [58]Caniere H, Joen C, Willockx A. Horizontal two-phase flow characterization for small diameter tubes with a capacitance sensor[J]. Measurement Science and Technology, 2008,18:2898-2906.
    [59]Ahmed W H. Capacitance sensors for void fraction measurement and flow pattern identification in air-oil two-phase flow[J]. IEEE Sensors Journal,2006,6(5): 1153-1163.
    [60]Keska J K, Williams B E. Experimental comparison of flow pattern detection techniques for air-water mixture flow[J]. Experimental Thermal and Fliud Science, 1999,19:1-12.
    [61]Lowe D C. Rezkallah K S. Flow regime identification in microgravity two-phase flows using void fraction signals[J], International Journal of Multiphase Flow,1999,25: 433-457.
    [62]Xie C G, Plaskowski A, Beck M S. Design of capacitance electrodes for concentration measurement of two-phase flow[J]. Measurement Science and Technology,1990,1: 65-78.
    [63]Nassos G P, Bankoff S G. Local resistivity probe for study of point properties of gas-liquid flow[J]. Canadian Journal of Chemical Engineering,1967,45(5):271-274.
    [64]Postaire J G, Fitremann J M. A digital special-purpose signal processor for two-phase flow real-time analysis[J]. IEEE Transactions on Instrumentation and Measurement. 1977,26:254-257.
    [65]Merilo M, Dechene R L. Cichowlas W M. Void fraction measurements with a rotating electric field conductance guage[J], Journal of Heat Transfer,1977,99:330-332.
    [66]Coney M W E. The theory and application of conductance probes for the measurement of liquid film thickness in two-phase flow[J], Journal of Physics E:Scientific Instruments,1973.6:903-910.
    [67]Andreussi P, Donfrancesco A D, Messia M. An impedance method for the measurement of liquid hold-up in two phase flow[J], International Journal of Multiphase Flow.1988,14:777-785.
    [68]Tsochatzidis N A, Karapantios T D, Kostoglou M V, et al. A conductance method for measuring liquid fraction in pipes and packed beds[J]. International Journal of Multiphase Flow.1992,5:653-667.
    [69]Fossa M. Design and performace of a conductance probe for measuring the liquid fraction in two-phase gas-liquid flows[J], Flow Measurement and Instrumentation, 1998,9:103-109.
    [70]Devia F, Fossa M. Design and optimisation of impedance probes for void fraction measurement[J], Flow Measurement and Instrumentation,2003,14:139-149.
    [71]Liu X B, Qiang X F, Qiao H T, et al. A theoretical model for a capacitance tool and its application to production logging[J]. Flow Measurement and Instrumentation,1998,9: 249-257.
    [72]Jin N D, Xin Z, Wang J, et al. Design and geometry optimization of a conductivity probe with a vertical multiple electrode array for measuring volume fraction and axial velocity of two-phase flow[J]. Measurement Science and Technology.2008,19: 045403.
    [73]Du M, Jin N D, Gao Z K, et al. Flow pattern and water holdup measurements of vertical upward oil-water two-phase flow in small diameter pipes[J]. International Journal of Multiphase Flow.2012,41:91-105.
    [74]Barnea D, Shoham O, Taitel Y. Flow pattern characterization in two phase flow by electrical conductance probe[J]. International Journal of Multiphase Flow,1980,6: 387-397.
    [75]Hernandez L, Julia J E, Chiva S, et al. Two-phase flow regime identification combining conductivity probe signals and artificial neural network[C]. in:Proceedings of the 5th International Symposium on Measurement Techniques for Multiphase, Macao, China, Dec 10-13,2006:307-312.
    [76]刘磊,周芳德.u型光导纤维探针对油-气两相流的测试[J].石油炼制与化工1994,25(3):52-55.
    [77]孙奇,赵华,杨瑞昌,等.双探头光学探针识别受热工况两相流流型的基本方法研究[J].核动力工程,2003,24(4):344-349.
    [78]Xie D L, Huang Z Y, Ji H F, et al. An online flow pattern identification system for gas-oil two-phase flow using electrical capacitance tomography[J]. IEEE Transactions on Instrumentation and Measurement,2006,55(5):1833-1838.
    [79]Jeanmeure L F C, Dyakowski T, Zimmerman W B J, et al. Direct flow-pattern identification using electrical capacitance tomography[J]. Experimental Thermal and Fluid Science,2002,26(6-7):763-773.
    [80]Dong F, Liu X P, Deng X, et al. Identification of two-phase flow regimes in horizontal, inclined and vertical pipes[J]. Measurement Science and Technology,2001,12(8): 1069-1075.
    [81]Xu L J, Xu L A. Gas/liquid two-phase flow regime identification by ultrasonic tomography [J]. Flow Measurement and Instrumentation,1997,8(3-4):145-155.
    [82]张玉平,金锋,张岩,等.两相流相浓度检测技术的研究[J].北京理工大学学报,2002,22(3):383-386.
    [83]吕宇玲,陈振瑜,崔彬澎,等.多相流相分率测量技术研究进展[J].管道技术与设备,2002,5:10-12.
    [84]李玉星,谭宁.多相流流速和相分率测试技术研究进展[J].管道技术与设备,1999,3:4-7.
    [85]姚海元,宫敬,宋磊.多相流相分率的模型预测与检测方法[J].油气储运,2004,23(7):9-13.
    [86]Bankoff S G. A variable density single-fluid model for two-phase with particular reference to steam-water flow[J]. Journal of Heat Transfer (U. S.),1960,82:265-272.
    [87]Zuber N, Findlay J A. Average volumetric concentration in two-phase flow systems[J]. Transactions ASME Series C,1965,87(4):453-468.
    [88]Smith S L, Mimeche C. Void fractions in two-phase flow:a correlation based upon an equal velocity head model[J]. Instrumentation of Mechanical Engineers,1969,184(36): 647-664.
    [89]Ribatski G, Thome J R. Two-phase flow and heat transfer across horizontal tube bundles-A review[J]. Heat Transfer Engineering,2007,28(6):508-524.
    [90]Kendoush A A. A comparative study of the various nuclear radiations used for void fraction measurement[J]. Nuclear Engineering and Design,1992,147:249-257.
    [91]Abdullah A K, Zareh A S. Void fraction measurement by X-ray absorption[J]. Experimental Thermal and Fluid Science,2002,25(8):615-621.
    [92]Abro E, Johansen G A. Improved void fraction determination by means of multibeam gamma-ray attenuation measurements[J]. Flow Measurement and Instrumentation, 1999,10(2):99-108.
    [93]郝魁红,王化祥,潘勇.射线法两相流测量的动态误差研究[J].核电子学与探测技术,2004,24(6):594-597.
    [94]Leppinen D M, Dalziel S B. A light attenuation technique for void fraction measurement of microbubbles[J]. Experiments in Fluids,2001,30(2):214-220.
    [95]Barrau E, Riviere N, Poupot C, et al. Single and double optical probes in air-water two-phase flows:real time signal processing and sensor performance[J]. International Journal of Multiphase Flow,1999,25(2):229-256.
    [96]Shen X, Mishima K, Nakamura H. Error reduction, evaluation and correction for the intrusive optical four-sensor probe measurement in multi-dimensional two-phase flow[J]. International Journal of Heat and Mass Transfer,2008,51(3-4):882-895.
    [97]Maxwell J C. A Treatise on Electricity and Magnetism[M]. Oxford:Clarendon Press,1882.
    [98]Bruggeman D J G. Calculation of different physical constants of heterogeneous substances [J]. Ann. Phys.1935,24:636-679,
    [99]Huang Z Y, Wang B L, Li H Q. Application of electrical capacitance tomography to the void fraction measurement of two-phase flow[J]. IEEE Transactions on Instrumentation and Measurement,2003,52(1):7-12.
    [100]Adam M S, Yang W Q, Watson R A. Capacitance tomographic system for the measurement of void fraction in transient cavitation[J]. Journal of Hydraulic Research, 1998,36(4):707-719.
    [101]王化祥,曹章.电阻抗层析成像系统“软场”非线性特性——基于统计的方法[J].天津大学学报,2006,39(5):543-547.
    [102]Gas B, Demjanenko M, Vacik J. High-frequency contactless conductivity detection in isotachophoresis[J]. Journal of Chromatography,1980,192:253-257.
    [103]Zemann A J, Schnell E, Volgger D, et al, Contactless conductivity detection for capillary electrophoresis[J]. Analatical Chemistry,1998,70(3):563-567.
    [104]Da Silva J A F, Do Lago C L. An oscillometric detector for capillary electrophoresis[J]. Analatical Chemistry,1998,70:4339-4343.
    [105]Kuban P, Hauser P C. A review of the recent achievements in capacitively coupled contactless conductivity detection[J]. Analatica Chimica Acta,2008,607:15-29.
    [106]Pumera M. Contactless conductivity detection for microfluidics:Designs and applications[J]. Talanta,2007,74:358-364.
    [107]Kuban P, Hauser P C. Capacitively coupled contactless conductivity detection for microseparation techniques-recent developments[J]. Electrophoresis,2011,32:30-42.
    [108]Kuban P, Hauser P C. Contactless conductivity detection for analytical techniques: Developments from 2010 to 2012[J]. Electrophoresis,2013,34:55-69.
    [109]谭峰,关亚风.毛细管电泳-电容耦合非接触电导检测方法[J].色谱,2005,23(2):152-157.
    [110]张水锋,王立世,党志等.方波激发非接触式电导检测器信噪比的影响因素研究[J].分析实验室,2008,27(2):10-14.
    [111]Tuma P, Opekar F, Stulik K. A contactless conductivity detector for capillary electrophoresis:Effects of the detection cell geometry on the detector performance[J]. Electrophoresis,2002,23(21):3718-3724.
    [112]Laugere F, Lubking G W, Bastemeijer J, et al. Design of an electronic interface for capacitively coupled four-electrode conductivity detection in capillary electrophoresis microchip[J]. Sensors and Actuators B,2002,83,104-108.
    [113]Huang Z Y, Jiang W W, Zhou X M, et al. A new method of capacitively coupled contactless conductivity detection based on series resonance[J], Sensors and Actuators B,2009,143:239-245.
    [114]Shih C Y, Li W, Zheng S Y, et al. A resonance-induced resolution enhancement method for conductivity sensors[C]. in:Proceedings of 5th IEEE Conference on Sensors, EXCO, Daegu, Korea, October 22-25,2006:271-274.
    [115]Gillespie E, Connolly D, Macka M, et al. Development of a contactless conductivity detector cell for 1.6 mm o.d. (1/16th inch) HPLC tubing and micro-bore columns with on-column detection[J]. Analyst,2008,133:1104-1110.
    [116]张贤达.现代信号处理[M].北京:清华大学出版社,1995.
    [117]沈民奋,孙丽莎.现代随机信号与系统分析[M].北京:科学出版社,1998.
    [118]秦树人,季忠,尹爱军等.工程信号处理[M].北京:高等教育出版社,2008.
    [119]刘贵忠,邸双亮.小波分析及其应用[M].西安:西安电子科技大学出版社,1992.
    [120]秦前清,杨宗凯.实用小波分析[M].西安:西安电子科技大学出版社,1994.
    [121]杨福生.小波变换的工程分析与应用[M].北京:科学出版社,1999.
    [122]许佩霞,孙功宪.小波分析与应用实例[M].合肥:中国科学技术大学出版社,1996.
    [123]Daubechies. Orthonormal basis of compactly supported wavelets[J]. Communications on Pure and Applied Mathematics,1988,41:909-996
    [124]Daubechies. The wavelet transform, time-frequency localization and signal analysis[J]. IEEE Transactions on Information theory,1990,36(5):961-1005.
    [125]Tan C, Dong F, Wu M M. Identification of gas/liquid two-phase flow regime through ERT-based measurement and feature extraction[J]. Flow Measurement and Instrumentation,2007,18:255-261.
    [126]贺贞贞.基于电容法的小通道气液两相流参数检测系统研究[硕士学位论文].杭州:浙江大学,2010.
    [127]冀海峰.小波分析技术在两相流检测中的应用研究[博士学位论文].杭州:浙江大学,2002.
    [128]孙斌.基于小波和混沌理论的气液两相流流型智能识别方法[博士学位论文].河北:华北电力大学,2005.
    [129]冀海峰,黄志尧,吴贤国,王保良,李海青.小波分析技术在多相流系统中的应用[J].石油化工,2001,30(2):126-130.
    [130]Coifman R, Wickerhauser M V. Entropy-based algorithms for best basis selection[J]. IEEE Transactions on Information theory.1992,38(2):713-718.
    [131]Sun Z, Chang C C, Asce M. Structural damage assessment based on wavelet packet transform[J]. Journal of Structural Engineering,2002,128:1354-1361.
    [132]Vapnik V N. An overview of statistical learning theory [J]. IEEE Transactions on Neural Networks,1999,10(5):988-999.
    [133]Vapnik V N.统计学习理论[M].北京:电子工业出版社,2004,许建民,张学工译.
    [134]Shmilovici A. Support Vector Machines in Data Mining and Knowledge Discovery Handbook[M]. US:Springer,2010.
    [135]邓乃杨,田英杰.数据挖掘中的新方法—支持向量机[M].北京:科学出版社,2004.
    [136]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,6(1):32-42.
    [137]白鹏,张喜斌,张斌.支持向量机理论及工程应用实例[M].西安:西安电子科技大学出版社,2008.
    [138]Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery,1998,2(2):121-167.
    [139]Suykens J A K. Nonlinear modelling and support vector machines[C]. in proceedings of 18th IEEE Instrumentation and Measurement Technology Conference, Budapest, Hungary. May 21-23,2001,1:287-294.
    [140]Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines[J]. IEEE Transactions on Neural Networks,2002,13(2):415-425.
    [141]Jain A K, Duin R P W, Mao J C., Statistical pattern recognition:a review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(1):4-37.
    [142]冼广铭,曾碧卿,冼广淋.支持向量机在分类和回归中的应用研究[J].计算机工程与应用,2008,44(27):134-136.
    [143]Foody G M, Mathur A. The use of small training sets containing mixed pixels for accurate hard image classification:training on mixed spectral responses for classification by a SVM [J]. Remote Sensors and Environment,2006,103:179-189.
    [144]Sidenbladh H. Detecting human motion with support vector machines[C]. in: Proceeding of 17th IEEE Pattern Recognition Conference, Cambridge, UK, August, 2004.
    [145]Trafalis T B, Oladunni O, Papavassiliou D V. Two-phase flow regime identification with a multiclassification support vector machine (SVM) model[J]. Industrial & Engineering Chemistry Research,2005,44(12):4414-4426.
    [146]胡宗定,王一平.工程电导测试技术[M].天津:天津大学出版社,1990.
    [147]刘铁军.工程电导测试技术及应用研究[博士学位论文].杭州:浙江大学,2006.
    [148]朱建平.微弱电容/电导检测技术在过程工业中的应用[硕士学位论文].杭州:浙江大学,2006.
    [149]周鑫淼.基于串联谐振的电容耦合式非接触电导测量系统设计[硕士学位论文].杭州:浙江大学,2011.
    [150]李霞.基于数据挖掘的两相流参数测量新方法研究[博士学位论文].杭州:浙江大学,2009.
    [151]孟振振.气水两相流流量测量新方法研究[博士学位论文].杭州:浙江大学,2011.
    [152]Platt J C, Cristianini N, Taylor J S. Large margin DAGs for multiclass classification[J]. Advanced in Neural Information Processing Systems,2000,12: 547-553,.
    [153]倪光正,杨仕友,钱秀英,邱捷.工程电磁场数值计算方法[M].北京:机械工业出版社,2004.
    [154]倪光正.工程电磁场原理[M].北京:高等教育出版社,2009.
    [155]王泽忠,金玉生,卢斌先.工程电磁场[M].北京:清华大学出版社,2004.
    [156]冯慈璋,马西奎.工程电磁场导论[M].北京:高等教育出版社,2000.
    [157]中仿科技公司.COMSOL Multiphysics有限元法多物理场建模及分析[M].北京:人民交通出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700