大管电泳和一步法酶分析技术研究初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛细管电泳技术(一般采用内径50-100μm的石英毛细管)在人类基因组研究中扮演了举足轻重的角色,使整个人类基因组计划的完成大大提前,但是,伴随着科学技术的飞速发展,对目标产品进行更加深入的研究成为大势所趋。因此,毛细管电泳技术样品用量小的显著特性却限制了自身的应用范围,于是增大毛细管电泳的载样量成为拓宽其应用领域的技术瓶颈。
     为了保持毛细管电泳技术分离效率高的优点,又能弥补其载样量小、检测灵敏度低等不足,本论文将壳管换热器结构引入到大管电泳系统中,借此强化电泳系统的散热能力,使得在毫米级的分离管路中进行电泳成为可能。本文采用不同规格的内部制冷管对大管电泳系统进行内部降温处理,使电泳过程中产生的焦耳热能及时地被制冷毛细管中的冷却液带走。实验结果表明,内部制冷的存在确实起到了很好的制冷功效,使得大管电泳的电流-电压关系在较大范围内符合欧姆曲线;分别选择酸性、碱性物质为模型化合物测试了带有内部制冷的大管电泳系统的分离效果,部分化合物的分离效率达到了60, 000 plates/m以上;实验中采用的大管电泳能够承载1.0μL左右的样品,这样大的载样能力使得其能够作为半制备或制备电泳系统。
     高的载样能力预示着大管电泳可以实现多维操作,于是目标组分的转移也就成为进一步开发大管电泳的任务之一。因此,采用丽春红为探针化合物测试了系统的电转移性能,证实了在该装置上进行有效组分转移的可行性。
     建立大管电泳系统的目的之一就是搭建高通量药物筛选平台,而酶分析技术是药物筛选中的一项关键技术,因此,本文结合电泳介导酶分析方法,开发了一步法快速酶分析技术,并用该方法成功测定了碱性磷酸酶的反应动力学参数。实验结果表明,快速酶分析技术可以通过一次实验计算得出酶的反应动力学参数,而且计算结果准确、生物样品用量小、人为因素少,值得深入研究和推广。基于此理念,将一步酶分析技术与大管电泳体系相结合并实现多维、高通量筛选平台的初步设想是值得探索和深入研究的。
With the rapid development of science and technology, the trend for in-depth research on object compounds has been finality in the post-genome era. Capillary electrophoresis (CE), which played an important role in Human Genome Project, exposed its limitations in dealing with large volume of samples. Therefore, the tiny sample loading capacity becomes the major obstacle to extending the application scope of CE.
     In order to increase the sample loading capacity while maintaining the high separation efficiency in column electrophoresis, a new system called wide-bore electrophoresis (WE) was adopted in the thesis based on the principle of shell and tube heat exchanger. The Joule heat generated during the electrophoresis process could be removed in situ in real time thoroughly by the inner cooling water. The experimental data indicated that the heat sink was effective and could make the function of the applied potential and current in the WE system matches Ohm plots well. Some acidic or alkaline model compounds were selected to evaluate the separation efficiency of the novel system and a separation efficiency as high as over 60, 000 plates/m was achieved for some compounds. The biggest advantage of this WE system is its potential as a preparative or semi-preparative electrophoretic separation technique due to the maximum sample loading capacity of 1.0μL or more.
     The larger sample loading capacity entitled the WE system for multi-dimensional operations. Thus, the delivery properties of object compounds were tested by using ponceau 4R as the model. The feasibility of the compound’s delivery was validated by the experiment.
     In future work, one intention of establishing WE system is to develop a multi-dimensional high-throughput medical screening platform. Because enzyme analysis is a vital unit in this medical screening, a one-step enzyme microanalysis technique was developed on the basis of Electrophoretically Mediated Microanalysis (EMMA) method. Furthermore, the enzyme kinetics constant of alkaline phosphatase (ALP) was determined using the traditional method and the one-step method. The experimental results demonstrated that the one-step determination method for enzyme kinetics constant was accurate and sample saving. Therefore, the one-step enzyme analysis method proposed in this thesis combined with WE system to perform multi-dimensional screening is worth of in-depth research and further development.
引文
[1] Jorgenson J W,Lukacs K D,Free-zone electrophoresis in glass capillaries,Clinical Chemistry,1981,27 (9) :1551-1553
    [2] Terabe S, Otsuka K, Ichikawa K. Electrokenetic separations with micellar solutions and open-tubular capillaries, Anal Chem, 1984, 56 (1): 111-113
    [3] Hijerten S, Zhu M D, Adaptation of the equipment for high-proformance electrophoresis to isoelectric focusing, J Chromatogr, 1985,346:265-270
    [4] Cohen A S , Karger B L , High-performance sodium dodecyl sulfate polyacrylamide gel capillary electrophoresis of peptides and proteins,Journal of Chromatography,1987,397: 409-417
    [5] Timerbaev A R,Recent advances and trends in capillary electrophoresis of inorganic ions,Electrophoresis,2002,23 (22-23) :3884-3906
    [6] Cifuentes A,Recent advances in the application of capillary electromigration methods for food analysis,Electrophoresis,2006,27 (1) :283-303
    [7] Cooper J W,Wang Y,Lee C S,Recent advances in capillary separations for proteomics,Electrophoresis,2004,25 (23-24) :3913-3926
    [8] Guijt-van Duijn R M,Frank J,van Dedem G W, et al,Recent advances in affinity capillary electrophoresis , Electrophoresis , 2000 , 21 (18) :3905-3918
    [9] He X,Ding Y,Li D, et al,Recent advances in the study of biomolecular interactions by capillary electrophoresis,Electrophoresis,2004,25 (4-5) :697-711
    [10] Kasicka V , Recent advances in capillary electrophoresis and capillary electrochromatography of peptides,Electrophoresis,2003,24 (22-23) :4013-4046
    [11] Schou C , Heegaard N H , Recent applications of affinity interactions in capillary electrophoresis,Electrophoresis,2006,27 (1) :44-59
    [12] Pico Y, Rodr?g R, Manes J, Capillary electrophoresis for the determination ofpesticide residues, Trends in Analytical Chemistry, 2003, 22 (3): 133-151
    [13] Cantwell F F, Puon S, Mechanism of chromatographic retention of organic ions on a nonionic adsorbent, Anal Chem, 1979, 51 (6): 623-632
    [14] Jorgenson J W, Lukacs K D, Zone electrophoresis in open-tubular glass-capillaries, Anal Chem, 1981, 53 (8): 1298-1302
    [15] Sandoval J E, Chen S, Method for the accelerated measurement of electroosmosis in chemically modified tubes for capillary electrophoresis, Anal Chem, 1996, 68 (17): 2771-2775
    [16] Ermakov S V, Capelli L, Righetti P G, Method for measuring very weak, residual electroosmotic flow in coated capillaries, J. Chromatogr. A, 1996, 744: 55-61
    [17] Williams B A, Vigh G, Fast, Accurate mobility determination method for capillary electrophoresis, Anal Chem, 1996, 68 (7): 1174-1180
    [18] Kuhn R, Hoffstter-Kuhn S, Capillary Electrophoresis: Principles and Practice, Springer-Verlag, Berlin, 1993, 30-36
    [19] Maurer H R,A modified microcombustion method for the determination of tritium in organic material , Hoppe-Seyler's Zeitschrift Fur Physiologische Chemie,1968,349 (1) :115-117
    [20] 刘学良,王进防,王俊德等, 毛细管电泳中获得稳定电渗流的毛细管预处理方法, 分析化学,2000,28(9):1110-1113
    [21] Righetti P G, Gelfi C, Verzola B, The state of the art of dynamic coatings, Electrophoresis, 2001, 22: 603-611
    [22] 李红旗,沈忠耀,高效毛细管电泳中介质 pH 对电渗速度影响的研究, 清华大学学报, 1996,36(6):83-87
    [23] Altria K D, Simpson C F, High voltage capillary zone electrophoresis operation parameters effects on electroendosmotic flows and electrophoresis mobilities, Chromatographia, 1987, 24:527-532
    [24] Lukacs K D, Jorgenson J W, Capillary zone electrophoresis: Effect of physical parameters on separation efficiency and quantitation, J High Resolut. Chromatogr. 1985, 8: 407-411
    [25] Lambert W J, Middleton D C, pH Hysteresis effect with silica capillaries in capillary zone electrophoresis, Anal Chem, 1990, 62: 1585-1587
    [26] Schwer C, Kenndler E, Electrophoresis in fused-silica capillaries: The influence of organic solvents on the electroosmotic velocity and the potential, Anal Chem, 1991, 63: 1801-1807
    [27] Dong Y, Capillary electrophoresis in food analysis, Trends in Food Science & Technology, 1999, 10: 87-93
    [28] Tagliaro F, Manetto G, Crivellente F, et al, A brief introduction to capillary electrophoresis, Forensic Science International, 1998, 92: 75-88
    [29] 林炳承, 毛细管电泳导论, 北京:科学出版社,1996,5-6
    [30] Rodriguez I, Li S F Y, Surface deactivation in protein and peptide analysis by capillary electrophoresis, Analytica Chimica Acta, 1999, 383: 1-26
    [31] Hayes M A, Kheterpal T, Ewing A G, Eeffects of buffer pH on electroocsmotic flow control by an applied redial voltage for capillary zone electrophoresis, Anal Chem, 1993, 65: 27-31
    [32] Atamna I Z, Metral C J, Muschik G M, et al, Factors that influence mobility, resolution and selectivity in capillary zone electrophoresis, II, The role of the buffers cation, J Liq Chromatogr 1990, 13: 2517-2527
    [33] Petersen J R, Okorodudu A O, Mohammad A, et al, Capillary electrophoresis and its application in the clinical laboratory. Clinica Chimina Acta, 2003, 330: 1-30
    [34] Cifuentes A, Rodríguez M A, García-Montelongo F J. Separation of basic proteins in free solution capillary electrophoresis: effect of additive, temperature and voltage, J Chromatogr A, 1996, 742: 257-266
    [35] Baryla N E, Melanson J E, McDermott M T, et al, Characterization of surfactant coatings in capillary electrophoresis by atomic force microscopy, Anal Chem, 2001, 73 (19): 4558-4565
    [36] Emmer ?, Roeraade J, Wall deactivation with fluorosurfactants for capillary electrophoretic analysis of biomolecules, Electrophoresis, 2001, 22: 660-665
    [37] Emmer A, Jansson M, Roeraade J, Improved capillary zone electrophoreticseparation of basic protein using a fluorosurfactant buffer additive, J Chromatogr 1991, 547: 544-550
    [38] Knaeta T, Tanaka S, Yoshida H, Improvement of resolution in capillary electrophoretic separation of catecholamines by complex formation with boric acid and control of ekletroosmosis with a cationic surfactant, J Chromatogr, 1991, 538 (2): 385-391
    [39] Baryla N E, Lucy C A, Simultaneous separation of cationic and anionic proteins using zwitterionic surfactants in capillary electrophoresis, Anal Chem, 2000, 72 (10): 2280-2284
    [40] Emmer ?, Roeraade J. Wall deactivation with fluorosurfactants for capillary electrophoretic analysis of biomolecules, Electrophoresis, 2001, 22: 660-665
    [41] Horvath J, Dolník V, Polymer wall coatings for capillary electrophoresis, Electrophoresis, 2001, 22: 644-655
    [42] Rodriguez I, Li S F Y, Surface deactivation in protein and peptide analysis by capillary electrophoresis, Analytica Chimica Acta, 1999, 383: 1-26
    [43] Doherty E A S, Meagher R J, Albarghouthi M N, et al, Microchannel wall coatings for protein separations by capillary and chip electrophoresis, Electrophoresis, 2003, 24: 34-54
    [44] Hjerten S, High-performance electrophoresis elimination of electroendoosmosis and solute adsorption, J Chromatogr, 1985, 347 (2): 191-198
    [45] Cobb K A, Dolnik V, Novotny M, Electrophoretic separations of proteins in capillaries with hydrolytically stable surface-structures, Anal Chem, 1990, 62 (22): 2478-2483
    [46] Horvath J, Dolník V, Polymer wall coatings for capillalry electrophoresis, Electrophoresis, 2001, 22: 644-655
    [47] Lee C S, Blanchard W C, Wu C T, Direct control of the electroosmosis in capillary zone electrophoresis by using and external electric field, Anal Chem, 1990, 62: 1550-1552
    [48] Hayer M A, Ewing A G, Electroosmotic flow control and monitoring with anapplied radial voltage for capillary zone electrophoresis, Anal Chem, 1992, 64: 512-516
    [49] 朱英,陈义,用于电渗控制的新型毛细管电泳装置, 分析化学,1998,26(4): 373-377
    [50] 朱英,陈义,径向电场调制毛细管电泳法用于蛋白质分离, 高等学校化学学报,1999,20(10): 1533-1537
    [51] Rathore A S, Joule heating and determination of temperature in capillary electrophoresis and capillary electrochromatography columns, J Chromatogr A, 2004, 1037 (1-2): 431-443
    [52] Swinney K, Bornhop D J, Quantification and evaluation of Joule heating in on-chip capillary electrophoresis, Electrophoresis, 2002, 23 (4): 613-620
    [53] Ross D, Gaitan M, Locascio L E, Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye, Anal Chem, 2001, 73 (17): 4117-4123
    [54] 范国荣,张正行,陈伟,等, 高效毛细管电泳分离中焦耳热现象的考察,中国药科大学学报,1996,27(2):87-90
    [55] 韩凤梅,程智勇,常俊丽,等,添加剂在高效毛细管电泳技术中的应用,分析科学学报,2000,16(3):242-247
    [56] Porras S P, Jussila M, Sinervo K, et al, Alcohols and wide-bore capillaries in nonaqueous capillary electrophoresis, Electrophoresis, 1999, 20: 2510-2518
    [57] Steiner F, Hassel M. Nonaqueous capillary electrophoresis: a versatile completion of electrophoretic separation techniques, Electrophoresis, 2000, 21 (18): 3994-4016
    [58] Yin H F, Keely-Templin C A, McManjigill D, Preparative capillary electrophoresis with wide-bore capillaries, J Chromatogr A, 1996, 744 (1): 45-54
    [59] Yin H F, McManigill D, Keely-Templin C A, et al, Preparative capillary electrophoresis with wide-bore capillary, USP: 5,658,446, 1997
    [60] Jorgenson J W, Lukacs K D, High-resolution separations based on electrophoresis and electroosmosis, J Chromatogr A, 1981, 218: 209-216
    [61] Yan C, Schaufelberger D, Erni F, Electrochromatography and micro high-performance liquid chromatography with 320 μm I.D. packed columns, J Chromatogr A, 1994, 670 (1-2): 15-23
    [62] Chen J R, Zare R N, Peters E C, et al, Semipreparative Capillary Electrochromatography, Anal Chem, 2001, 73 (9): 1987-992.
    [63] Qu Q S, He Y Z, Gan W E, et al, Electrochromatography with a 2.7 mm inner diameter monolithic column, J Chromatogr A, 2003, 983 (1-2): 255-262
    [64] Qu Q S, Qu R J, Xu Q, et al, Reduced-bore monolithic silica column modified with C8-TEOS for reversed-phase electrochromatography, Journal of Separation Science, 2004, 27 (9): 725-728
    [65] Valkó I E, Porras S P, Riekkola, M L, Capillary electrophoresis with wide-bore capillaries and non-aqueous media, J Chromalogr A, 1998, 813 (1): 179-186
    [66] Takao T, Jonathan V S, Richard N Z, Rectangular capillaries for capillary zone electrophoresis, Anal Chem, 1990, 62 (19): 2149-2152
    [67] Guzman N A, Hernandez L, Techniques in Protein Chemistry, New York: Academic Press, 1989: 456
    [68] Weinberger S R, Hoppe T W, Remote optical path for capillary electrophoresis instrument, USP: 5,021,646, 1991
    [69] Christianson J A, Transverse forced gas cooling for capillary zone electrophoresis, USP: 5122253, 1992
    [70] Burolla V P, Glasgow I K, Capillary cartridge for electrophoresis, USP: 5198091, 1993
    [71] Dill R, Burd S, HPE capillary cartridge with exposed retractable capillary ends, USP: 5164064, 1992
    [72] Penaluna W A, Ragsdale C W, Circulating chiller for electrified solutions, USP: 5183101, 1993
    [73] Li X C, Thilly W G, Use of wide-bore capillaries in constant denaturant capillary electrophoresis, Electrophoresis, 1996, 17 (12): 1884-1889
    [74] Karger B L, Paulus A, Cohen A S, et al, Integrated temperature control/alignmentsystem for high performance capillary electrophoretic apparatus, USP: 4898658, 1990
    [75] Karger B L, Nelson R J, Integrated temperature control/alignment system for high performance capillary electrophoretic apparatus, USP: 5085757, 1992
    [76] Morris M D, Rapp T L, Heat sink for capillary electrophoresis, USP: 6103081, 2000
    [77] 雷政登,强阴离子交换毛细管电色谱和毛细管金属螯合酶反应器,大连:中国科学院大连化学物理研究所,2001:55-57
    [78] Jose A O, Nhung T N, Clement R Y, et al, On-line mass spectrometric detection for capillary zone electrophoresis, Anal Chem, 1987, 59 (8): 1230-1232
    [79] Britz-McKibbin P, Nishioka T, Terabe S, On-line Preconcentration Strategies for Trace Analysis of Metabolites by Capillary Electrophoresis, J Chromatogr A, 2003, 1000: 917-934
    [80] Zhang Z X, He Y Z, On-line cation-exchange preconcentration and capillary electrophoresis coupled by tee joint interface, J Chromatogr A, 2005, 1066: 211-218
    [81] Yeung K K C, Kiceniuk A C, Li L, Capillary electrophoresis using a surfactant-treated capillary coupled with offline matrix-assisted laser desorption ionization mass spectrometry for high efficiency and sensitivity detection of proteins, J Chromatogr A, 2001, 931: 153-162
    [82] Liu C C, Jong R, Covey T, Coupling of a large-size capillary column with an electrospray mass spectrometer: A reliable and sensitive sheath flow capillary electrophoresis–mass spectrometry interface, J Chromatogr A, 2003, 1013 (1-2): 9-18
    [83] Kaiser T, Hermann A, Kielstein J T, Capillary electrophoresis coupled to mass spectrometry to establish polypeptide patterns in dialysis fluids, J Chromatogr A, 2003, 1013 (1-2): 157-171
    [84] Sharma M, Jain R, Ionescu E, Slocum H K, Capillary electrophoretic separation and laser-induced fluorescence detection of the major DNA adducts of cisplatin and carboplatin, Anal Biochem, 1995, 228: 307-311
    [85] Somsen G W, Welten H T, Mulder F P, Swart C W, Capillary electrophoresis with laser-induced fluorescence detection for fast and reliable apolipoprotein E genotyping, J Chromatogr B, 2002, 775: 17-26
    [86] Ren J C, Huang X Y, Sensitive and Universal Indirect Chemiluminescence Detection for Capillary Electrophoresis of Cations Using Cobalt (II) as a Probe Ion, Anal Chem, 2001, 73 (11): 2663-2668
    [87] Yang W P, Zhang Z J, Deng W, A capillary electrophoresis detection scheme for underivatized amino acids based on luminol-BrO-chemiluminescence system, Talanta, 2003, 59 (5): 951-958
    [88] Hideki K, Satoshi T, Takashi A, Capillary array electrophoresis system, USP: 5730850, 1998
    [89] Yeung E S, Chang H T, Fung E N, et al, Multiplexed capillary electrophoresis system, USP: 5582705, 1996
    [90] Karger B L, Paulus A, Cohen A S, et al, Integrated temperature control/alignment system for high performance capillary electrophoretic apparatus, USP: 4898658, 1990
    [91] Holman J P, Heat Transfer, 9th Edition, McGraw-Hill Companies, Inc: New York, 2002
    [92] Kreith F, Boehm R F, Raithby G D, et al, Heat and Mass Transfer, CRC Press LLC: Boca Raton, 1999
    [93] Klinkenberg A, Gas Chromatography, Butterworths Scientific Publications: London, 1960
    [94] Porras S P, Marziali E, Gas B, Kenndler E, Influence of solvent on temperature and thermal peak broadening in capillary zone electrophoresis, Electrophoresis, 2003, 24 (10), 1553-1564
    [95] Petersen N J, Nikolajsen R P, Mogensen K B, Kutter J P, Effect of Joule heating on efficiency and performance for microchip-based and capillary-based electrophoretic separation systems: a closer look, Electrophoresis, 2004, 25 (2), 253-269
    [96] Xuan X C, Li D Q, heating effects on peak broadening in capillary zone electrophoresis, J Micromech Microeng, 2004, 14, 1171-1180
    [97] Smejkal G B, Lazarev A, Separation Methods in Proteomics, CRC Press, 2005.12
    [98] Sahotar R S, Khaledim G, Nonaqueous capillary electrophoresis, Anal Chem, 1994, 66 (7): 1141-1146
    [99] Mechref Y, Ostrander G K, El Rassia Z, Capillary electrophoresis of carboxylated carbohydrates, IV, Adjusting the separation selectivity of derivatized carboxylated carbohydrates by controlling the electrolyte ionic strength at subambient temperature and in the absence of electroosmotic flow, J Chromatogr A, 1997, 792 (1-2), 75-82.
    [100] Chen W H, Liu C Y, Macrocyclic polyamine as a selective modifier in a bonded-phase capillary column for the electrophoretic separation of aromatic acids, J Chromatogr A, 1999, 848 (1-2), 401-416
    [101] El Rassi Z, Postlewait J, Mechref Y, Ostrander G K, Capillary electrophoresis of carboxylated carbohydrates, III, Selective precolumn derivatization of glycosaminoglycan disaccharides with 7-aminonaphthalene-1, 3-disulfonic acid fluorescing tag for ultrasensitive laser-induced fluorescence detection, Anal Biochem, 1997, 244 (2), 283-290
    [102] Rose D J, Jorgenson J W, Fraction Collector for Capillary Zone Electrophoresis, J Chromatogr, 1988, 438:23-34
    [103] Guzman, N A, Trebilcock, M A, Advis, J A, Capillary electrophoresis for the analytical separation and semi-preparative collection of monoclonal antibodies, Anal Chim Acta, 1991, 249: 247-255
    [104] Burggraf N, Manz A, Verpoorte E, Effenhauser C S, Widmer H M, A novel approach to ion separations in solution: synchronized cyclic capillary electrophoresis (SCCE), Sens Actuators B, 1994, 20 (2-3): 103-110
    [105] Manz A, Verpoorte E, Effenhauser C S, Burggraf N, Raymond D, Widmer H M, Planar chip technology for capillary electrophoresis, Foresennius J Anal Chem, 1994, 348: 567-571
    [106] Effenhauser C S, Manz A, Widmer H M, Manipulation of Sample Fractions on a Capillary Electrophoresis Chip, Anal Chem, 1995, 67 (13): 2284-2287
    [107] Harmon B J, Patterson D H, Regnier F E, Mathematical treatment of electrophoretically mediated microanalysis, Anal Chem, 1993, 65 (19): 2655-2662
    [108] Li S F Y, Capillayr Electrophoresis-Principles, Practice and Application, Elsevier: Amsterdam, 1992
    [109] Heiger D, High Performance Capillary Electrophoresis-An Introduction, Agilent Technologies: Waldbronn, 2000
    [110] Zhang J, Hoogmartens J, Schepdael A V, Advances in capillary electrophoretically mediated microanalysis: An update, Electrophoresis, 2006, 27 (1): 35-43
    [111] Anderson J R, Cherniavskaya O, Gitlin I, et al, Analysis by capillary electrophoresis of the kinetics of charge ladder formation for bovine carbonic anhydrase, Anal Chem, 2002, 74 (8): 1870-1878
    [112] Zhang R Z, Xu X H, Chen T B, An assay for angiotensin-converting enzyme using capillary zone electrophoresis, Anal Biochem, 2000, 280: 286-290
    [113] Sigrid V D, Schepdael A V, Hoogmartens J, Kinetic study of γ -glutamyltransferase activity by electrophoretically mediated microanalysis combined with micellar electrokinetic capillary chromatography, Electrophoresis, 2002, 23 (17): 2854-2859
    [114] Kulp M, Kaljurand M, On-line monitoring of enzymatic conversion of adenosine triphosphate to adenosine diphosphate by micellar electrokinetic chromatography, J Chromatogr A, 2004, 1032: 305-312
    [115] Kulp M, Kaljurand M, Kaambre T, et al, In situ monitoring of kinetics of metabolic conversion of ATP to ADP catalyzed by MgATPases of muscle Gastrocnemius skinned fibers using micellar electrokinetic chromatography, Electrophoresis, 2004, 25 (17): 2996-3002
    [116] Choi S, Lee Y S, Na D S, et al, Determination of enzymatic activity andproperties of secretory phospholipase A2 by capillary electrophoresis, J Chromatogr A, 1999, 853: 285-293
    [117] Soňa N, Sigrid V D, Zdenek G, et al, Study of enzyme kinetics of phenol sulfotransferase by electrophoretically mediated microanalysis, J Chromatogr A, 2004, 1032 (1-2): 319-326
    [118] Soňa N, Sigrid V D, Schepdael V, et al, Electrophoretically mediated microanalysis, J Chromatogr A, 2004, 1032 (1-2): 173-184
    [119] Regnier F E, Patterson D H, Harmon B J, Electrophoretically-mediated microanalysis (EMMA), Trends Anal Chem, 1995, 14 (4): 177-181
    [120] Bao J, Regnier F E, Ultramicro enzyme assays in a capillary electrophoretic system, J Chromatogar A, 1992, 608 (1-2): 217-224
    [121] Wu D, Regnier F E, Native protein separations and enzyme microassays by capillary zone and gel electrophoresis, Anal Chem, 1993, 65 (15): 2029-2035
    [122] Miller K J, Leesong I, Bao J, Regnier F E, Lytle F E, Electrophoretically mediated microanalysis of leucine aminopeptidase in complex matrixes using time-resolved laser-induced fluorescence detection, Anal Chem, 1993, 65 (22): 3267-3270
    [123] Harmon B J, Leesong I, Regnier F E, Selectivity in Electrophoretically Mediated Microanalysis by Control of Product Detection Time, Anal Chem, 1994, 66 (21): 3797-3805
    [124] Wu D, Regnier F E, Linhares M C, Ion-exchange—immunoaffinity purification of a recombinant baculovirus Plasmodium falciparum apical membrane antigen, PF83/AMA-1, J Chromatogr B, 1994, 657 (2): 357-363
    [125] Xue Q, Yeung E S, Determination of lactate dehydrogenase isoenzymes in single lymphocytes from normal and leukemia cell lines, J Chromatogr B, 1996, 677 (2): 233-240
    [126] Xue Q, Yeung E S, Anal Chem, Variability of Intracellular Lactate Dehydrogenase Isoenzymes in Single Human Erythrocytes 1994, 66 (7): 1175-1178
    [127] Avila L Z, Whitesides G M, Catalytic activity of native enzymes during capillary electrophoresis: an enzymic microreactor, J Org Chem, 1993, 58 (20): 5508-5512
    [128] Dyck S V, Kaale E, Novakova S, Advances in capillary electrophoretically mediated microanalysis, Electrophoresis, 2003, 24 (22-23): 3868-3878
    [129] 陈石根,周润琦,酶学,上海:复旦大学出版社,2001,174-178
    [130] 罗贵民,酶工程,北京:化学工业出版社,2003,22-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700