电泳法筛选酶及其抑制剂和大管电泳研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
药物筛选是当今医药领域新兴的课题,这一课题具有极高的临床价值和深远的社会意义,因此,这一研究领域的更新和发展一直倍受瞩目。近年来,诸多研究的目光投向筛选方法的改进与更新上以提高筛选的效率和准确性,进而应对数目迅猛增多的候选药用化合物。毛细管电泳技术以其高效、低耗、快速和易自动化等诸多特点,自一出现就引起人们的高度重视,至今在许多领域依然发挥着不可替代的作用。特别是毛细管电泳技术的高效分离机制,可以弥补传统药物筛选中的一些不足,因此,在一定程度上提高了结果的准确性,增加了可信度。另一方面,酶作为具有生物活性的催化剂与人类机体的健康息息相关,近年来,通过选用相关酶的抑制剂对某些疾病进行治疗的方法十分有效,这也为新药的发现和筛选提供了一条新思路。本论文以毛细管电泳技术为基础、结合高效的激光诱导荧光检测方法,选用酪氨酸蛋白激酶、信号肽酶为探针酶,分别系统地对其活性及其抑制剂的效果进行了考察,结果证明毛细管电泳法在该领域的可操作性及独具的优势。
     在利用和发挥传统毛细管电泳技术优势的同时,不可避免的会受到其载样量较低的缺点的限制,尤其是在应用于多维分析中时,过低载样量带来不可逾越的困难。本文在传统毛细管电泳结构的基础上引入内制冷体系,借此增加有效分离通道的空间实现载样量的提升。在前期实验证实该装置的初步可操作性后,本文引入以电喷雾法自制的氨丙基纳米硅球作为电泳缓冲液添加剂,以一组芳香酸为模型化合物,实现对该装置效率提高的目的,进而证实该装置在药物研究领域可发挥的潜在作用。
     通过本文系统的论证,传统毛细管电泳法在药物筛选领域具有很强的可操作性,能够为药物筛选及高通量筛选方法的更新和改进做出相应的贡献;同时本文对新型大管电泳装置的优化,为广义的电泳技术提供了更为广博的适用空间,为电泳技术的发展提供了基础的理论论据。
As being a developing project, drug screening has been attracted increased attention since coming into being due to its both clinic value and social significance. In recent years, more interests are focusing on the improvement of efficiency and accuracy of screening methods to deal with the plenty of potential drug candidates. Capillary electrophoresis (CE) is widely perceived as a fast, economical, and efficient separation technique and especially, when used in combination with laser-induced fluorescence (LIF) detection, has high sensitivity. This separation-based technique can compensate the shortage of some traditional drug screening methods. On the other hand, the study of novel candidates which specially target the special enzyme is an important aspect in the pharmaceutical industry. Herein, we present a robust CE/LIF method, using tyrosine kinase and signal peptides as probe enzymes, and systematically proved the feasibility of CE method performing the characterization and inhibitor screen.
     Meanwhile, some recent improvements have been reported for enhancing the loading capacity of CE-based methods, however, loading capacity is still a critical issue if CE approaches are to be employed in multi-dimensional separation approaches. Based on previous reports, a novel wide-bore (WE) electrophoresis method employing nanoparticles as a pseudostationary phase was evaluated for improving separation efficiency using a model mixture of six aromatic acids. The nanoparticles used in this work were prepared in-house by an electrospray method. The results indicted that the sample loading capacity and resolution were both significantly increased by utilizing the novel WE approach in conjunction with aminopropyl modified nanoparticles as an additive in running buffer.
     In summary, traditional CE methods is an operational method which may contribute to the improvement of drug screen and high throughput screen methods. And the exploration and optimization of novel wide-bore electrophoresis enhanced the practicability and widen the field of electrophoresis techinique.
引文
[1]王瑜,李鹏,齐帜,高通量筛选与药物创新,上海医药,2004,25(2):67-69
    [2]杜冠华,胡娟娟,夏丽娟,药物筛选的发展与现状,药学学报,1998,33(1):867-879
    [3] Doyle P M, Combinatorial chemistry in the discovery and development of drugs, J. Chem. Technol. Biotechnol.,1995,64 (4): 317-324
    [4] Grabley S, Thiericke R, Adv. Biochem. Eng. Biotechnol., Springer Berlin: Heidelberg, 1999, 64 (1): 101-154
    [5] Masimjrembwa C M, Thompscax R, Andeasson T B, In vitro high throughput screening of compounds for favorable metabolic properties in drug discovery, J. Comb. Chem. High Throughput Screen, 2001, 4 (3): 245-263
    [6] Crameri R, High throughput screening: a rapid way to recombinant allergens, J. Allergy, 2001, 56 (suppl. 67): S30-S34
    [7] Numann R, Negulescu P A, High-throughput screening strategies for cardiac ion channels, J. Trends Cardiovasc Med., 2001, 11 (2): 54-59
    [8] Ozaki H, Imaizumi Y, Oishi K, et al, High throughput pharmacology for drug discovery, J. Nippon Yakurigaku Zzasshi, 2001, 118 (3): 187-196
    [9]杜冠华,高通量药物筛选技术进展与新药开发策略,中国新药杂志,2002,11(1):31-36
    [10] Williamson A R, Gene patents: are they socially acceptable monopolies, essential for drug discovery, J. Drug Discov. Today, 2001, 6 (21): 1092-1093
    [11] Lee V H, Sporty J L, Fandy T E, Pharmacogenomics of drug transporters: the next drug delivery challenge, J. Adv. Drug Deliv. Rer., 2001, 50 (Suppl 1): S33-S40
    [12] Ward S J, Impact of genomics in drug discovery, J. Biotechniques, 2001, 31 (3): 626–630
    [13] Copper C S, Applications of microarry technology in breast cancer research, J. Breast Cancer Res., 2001, 3 (3): 158-175
    [14] Frantz G D, Pham T Q, Peale F V, et al, Detection of novel gene expression in paraffin-embedded tissues by isotopic in situ hybridization in tissue micorarrays, J. Pathol., 2001, 195 (1): 87-96
    [15] Trias J, The role of combinchem in antibrotic discovery, J. Curr. Opin. Microbiol., 2001, 4 (5): 520-525
    [16] Hall D G, Manku S, Wang F, Solution and solid-phase strategies for the design, synthesis and screening of libraries based on natural product templates: a comprehensive survey, J. Comb. Chem., 2001, 3 (2): 125-150
    [17] Poughon, Dussap C G, Gros J B, Energy model and metabolic flux analysis for autotrophic nitrifiers, J. Biotechnol. Bioeng., 2001, 72 (4): 416-433
    [18] Xue Y, Shememan D H, Biosynthesis and combinatorial biosynthesis of pikromycin related macrolides in Streptomyces venezuelae, J. Metab. Eng., 2001, 3 (1): 15-26
    [19] Staunton J, Wilkinson B, Combinatorial biosynthesis of polyketides and nonribosomal peptides, J. Curr. Opin. Chem. Biol., 2001, 5 (2): 159-164
    [20]胡娟娟,杜冠华,药物筛选模型研究进展,Basic Medical Science and Clinics, 2001, 21(4):302-305
    [21]梁乾德,王升启,药物高通量筛选分析技术,Foreign Medical Science on Pharmacy,2000,29(1):22-27
    [22] Wodnicka M, Guarino R D, Hemperly J J, et al, Novel fluorescent technology platform for high throughput cytotoxicity and proliferation assays, J. Biomol. Screen, 2000, 5 (3): 141-152
    [23]任德成,胡娟娟,杜冠华,内皮细胞损伤筛选模型,药学学报,2000,35(增刊):44-47
    [24]张明旭,傅德贤,胡娟娟等,胰岛细胞损伤筛选模型的制备海洋生物活性物质的作用,药学学报,2000,35(增刊):35-38
    [25]陈永红,杜冠华,筛选抗脑缺血药物的神经细胞模型,药学学报,2000,35 (增刊):21-24
    [26] Rees S A, Bioanalytical strategies to support a discovery research programme, J. Pharm. Biomed. Anal., 1996, 14 (8-10): 1185-1190
    [27] Gillmor S A, Cohen F E, New strategies for pharmaceutical design, Receptor, 1993, 3 (3): 155-163
    [28]黄家学,胡娟娟,杜冠华,5-Ill'受体结合物的高通量筛选,药学学报,2000,(增刊):53-56
    [29]尚念勇,胡娟娟,杜冠华,腺苷A1受体结合物的高通量筛选,药学学报,2000,35(增刊):47-49
    [30] Game S M, Rajapurohit P K, Scintillation proximity assay for E-, P-,and L- selecting utilizing polyarylamide-based neglyco-conjugates as ligands, Anal. Biochem., 1998, 258 (1): 127-135
    [31] Sittamplalam G, Kahl S, Janzen W, et al, High-throughput screening: advances in assay technologies, Curr. Opin. Chem. Biol., 1997, 1 (3): 384-391
    [32] McDonald O B, Chen W J, Ellis B, et al, A scintillation proximity-assay for the Raf/MEK/ERK kinase cascade: High- throughput screening and identification of selective enzyme inhibitors, Anal. Biochem., 1999, 268 (2): 318-329
    [33] Park Y W, Cummings R T, Wu L, et al, Homogeneous proximity tyrosine kinase assay: scintillation proximity assay versus homogeneous time-resolved fluorescence, Anal. Biochem., 1999, 269 (1): 94-104
    [34] Nare B, Allocco J J, Kuningas R, et al, Development of a scintillation proximity assay for histone deacetylase using a biotinylated peptide derived from histone, Anal. Biochem., 1999, 267 (2): 390-396
    [35] Kahl S D, Hubbard F R, Sittampalam G S, et al, Validation of a high throughput scintillation proximity assay for 5-hydroxytryptamine (1E) receptor binding activity, J. Biomol. Screen, 1997, 2 (1): 33- 40
    [36] Graziani F, Aldegheri L, Terstappen G C, et al, High throughput scintillation proximity assay for the identification of FKBP-12 liglands, J. Biomol. Screen, 1999, 4 (1): 3-7
    [37] Oldenburg K R, Zhang J H, Chen T, et al, Assay miniaturization for ultra-high throughput screening of combination and discrete compound libraries: a 9600-well (0.2 microliter) assay system, J. Biomol. Screen, 1998, 3 (1): 55-62
    [38] Stryer L, Fluorescence energy transfer as a spectroscopic ruler, Annu. Rev. Biochem., 1978, 47 (7): 819-846
    [39] Abriola L, Chin M, Fuerst P, et al, Digital imaging as a detection method for a fluorescence assay protease assay in 96-well and miniaturized assay plate formats, J. Biomol. Screening, 1994, 4 (3): 121-128
    [40] Kakiuchi N, Nishikawa S, Hattori M, et al, A high throughput assay of the hepatitis C virus nonstructural protein 3 serine proteinase, J. Virol. Methods, 1999, 80 (1): 77-84
    [41] Jameson D M, Sawyer W H, Fluorescence anisotropy applied to biomolecular interactions, Methods Enzymol., 1995, 246 (12): 283-300
    [42] Nasir M, Jolly M, Fluorescence polarization: an analytical tool for immunoassay and drug discovery, Comb. Chem. High Throughput Screen, 1999, 2 (4): 177-190
    [43] Bolger R, Wiese T E, Ervin K, et al, Rapid screening of environment chemicals for estrogen receptor bingding capacity, Environ. Health Perspect, 1998, 106 (9): 551-557
    [44] Seethala R, Menzel R, A fluorescence polarization competition immunoassay for tyrosine kinase, Anal. Biochem., 1998, 255 (2): 257-262
    [45] Mathis G, Probing molecular interactions with homogeneous techniques based on rare earth cryptates and fluorescence energy transfer, Clin. Chem., 1995, 41 (9): 1391-1397
    [46] Kolb A, Kaplita P, Hayes D, et al, Tyrosine kinase assay adapted to homogeneous time resolves fluorescence, Drug Discov Today, 1998, 3 (7): 333-342
    [47] Moore K, Turconi S, Miles-Williams A, et al, A homogeneous 384 gel high throughput screen for novel tumor necrosis factor receptor: ligand interactions using time resolves energy transfer, J. Biomol. Screening, 1999, 4 (4): 205-214
    [48] Auer M, Moore K, Meyer-Almes et al, Fluorescence correlation spectroscopy: lead discovery by miniaturized HTS, Drug Discov Today, 1998, 3 (10): 457-465
    [49] Tiselius A, A new apparatus for electrophoretic analysis of colloidal mixture, Trans. Faraday Soc., 1937, 33: 524-531
    [50] Consden R, Gordon A H, Martin A J P, Ionophoresis in silica jelly: A method for the separation of amino-acids and peptides, Biochem. J., 1946, 40 (1): 33-41
    [51] Smithies O, Zone electrophoresis in starch gel: Group variations in the serum proteins of normal human adults, Biochem. J., 1955, 61 (4): 629-641
    [52] Grabar P and Williams C A, Methode permittant l’etude conjugee des proprietes electrophoretiques et immunichimiques d’un mélanges de proteines: application au serum sanguin, Biochem. Biophys. Acta, 1953, 10 (1): 193-194
    [53] Hjerten S, Agarose as an anticonvection agent in zone electrophoresis, Biochem. Biophys. Acta, 1961, 53 (11): 514-517
    [54] Brishammar S, Hjerten, S, Hofsten B V, Immunological preicipitations in agarose gel, Biochem. Biophys. Acta, 1961, 53 (11): 518-521
    [55] Raymond S, Weintraub L, Acrylamide gel as supporting medium for zone electrophoresis, Science, 1959, 130 (3377): 711
    [56] Ornstein L, Ann N Y, Disc electrophoresis-I. Background and theory, Acad. Sci., 1964, 121 (1): 321-349
    [57] Davis B, Ann N Y, Disc electrophoresis-II. Method and application to human serum proteins, Acad. Sci., 1964, 121 (2): 404-427
    [58] Laemmli U K, Cleavage of structural proteins during the assemble of the head of the bacteriophage T4, Nature (London), 1970, 227 (8): 680-685
    [59] Michaelis L, Electric transport of ferments. (I) Invertin, Biochem. Z. 1909, 16: 81
    [60] Kolin A, Separation and concentration of proteins in a pH field combined with an electric field, J. Chem. Phys., 1954, 22 (9): 1628-1629
    [61] Kolin A, Separation and concentration of proteins in a pH field combined with an electric field, Correction, J. Chem. Phys.,1954, 22 (12): 2099
    [62] Vesterberg O, Synthesis and isoelectric fractionation of carrier ampholytes, Acta Chem. Scand., 1969, 23: 2653-2666
    [63] Dale G, Latner A L, Isoelectric focusing of serum protein in an acrylamide gels followed by electrophoresis, Clin. Chem. Acta, 1969, 24 (1): 61-68
    [64] Macko V, Stegemann H., Mapping of potato proteins by combined electro-focusing and electrophoresis, Identification of varieties, Hoppe-Seyler’s Z. Physiol. Chem. 1969, 350 (7): 917-919
    [65] Stegemann H, Protein mapping in polyacrylamide and its application to genetic analysis in plants, Angew. Chem. (Internat Ed.), 1970, 9 (8): 643-643
    [66] O’Farrell P H, High resolution two-dimensional electrophoresis of proteins, J. Biol. Chem. 1975, 250 (10): 4007-4021
    [67] Hjerten S, High performance electrophoresis, Chromatogr. Rev. 1967, 9: 122-126
    [68] Virtanen R, Zone electrophoresis in a narrow-tube employing protentiometric detection, Acta Polytechnica Scand, 1974, 1- 67
    [69] Mikkers F E P, Everaerts F M, Verheggen T P E M., High performance zone electrophoresis, J. Chromatogr. 1979, 169 (Suppl.): 11-20
    [70] Jorgenson, J W, Lukacs, K D, Zone electrophoresis in open tubular glass capillaries, Anal. Chem. 1981, 53 (8): 1298-1302
    [71] Hjerten S, High-performance electrophoresis, elimination of electroendoosmosis and solute adsorption, J. Chromatogr. 1985, 347 (2): 191-198
    [72] Mazzeo J R and Krull I S, Coated capillary and additives for the separation of proteins by capillary zone electrophoresis and capillary isoelectric focusing, BioTechniques 1991, 10 (5): 638-645
    [73] Wehr T, Recent advances in capillary electrophoresis columns, LC-GC Mag. 1993, 11 (1): 14-20
    [74] Cohen A S, Karger B L, High performance sodium dodecyl sulfate polyacrylamide gel capillary electrophoresis of peptides and proteins, J. Chromatogr. 1987, 379 (1): 407-417
    [75] Cohen A S, Paulus A, Karger B L, High performance capillary electrophoresis using open tubes and gels, Chromatographia, 1987, 24 (1): 15-24
    [76] Cohen A S, Najarian D R, Paulus A, et al., Rapid separation and purification of oligonucleotides by high-performance capillary gel electrophoresis, Proc. Natl. Acad. Sci. U.S.A. 1988, 85 (24): 9660-9663
    [77] Drossman H, Luckey J A, Kostichka, A, et al, High-speed separations of DNA sequencing reaction by capillary electrophoresis, Anal. Chem. 1990, 62 (9): 900-903
    [78] Bocek, P, Chrambach A, Capillary electrophoresis of DNA in agarose solutions at 40℃, Electrophoresis 1991, 12 (12): 1059-1061
    [79] Terabe S, Otsuka K, Ichikawa K, et al, Electrokinetic separations with micellar solution and open-tubular capillaries, Anal. Chem. 1984, 56 (1): 111-113
    [80] Terabe S, Otsuka K, Ichikawa K, et al, Electrokinetic chromatography with micellar solution and open-tubular capillary, Anal. Chem. 1985, 57 (4): 834-841
    [81] Hjerten S, Zhu M, Adaptation of the equipment for high-performance electrophoresis to isoelectric focusing, J. Chromatogr., 1985, 346: 265-270
    [82] Hjerten S, Liao J L and Yao K, Theoretical and experimental study for high-performance electrophoretic mobilization of isoelectrically focused protein zones, J. Chromatogr., 1987, 387: 127
    [83] Hjerten S, Elenbring K, Kilar F, et al, Carrier free zone electrophoresis, displacement electrophoresis and isoelectric focusing in a high-performance electrophoresis apparatus, J. Chromatogr., 1987, 403: 47-61
    [84] Zhu M, Hansen D L, Burd S, et al, Factors affecting free zone electrophoresis and isoelectric focusing in capillary electrophoresis, J. Chromatogr., 1989, 480: 311-319
    [85] Bruin G J M, Chang J P, Kuhlman R H, et al., Capillary zone electrophoretic separation of proteins in polyethylene glycol-modified capillaries, J. Chromatogr., 1989, 471: 429-436
    [86] Bruin G J M, Huisden R., Kraak, J C, et al, Performance of carbohydrate-modified fused-silica capillaries for the separation of proteins by zone electrophoresis, J. Chromatogr., 1989, 480: 339-349
    [87] Ganzler K, Greve K S, Cohen A S, et al, High performance capillary electrophoresis of SDS-protein complexes using UV-transparent polymer networks, Anal. Chem. 1992, 64 (22): 2665-2671
    [88] Cox H C, Hessels J K C, Teven J M, J. Chromatogr. 1972, 66: 19
    [89] Kiumars G, Foley J P, Gale R J, Micellar electrokinetic capillary chromatography theory based on electrochemical parameters: optimization for three modes of operation, Anal. Chem. 1990, 62 (24): 2714-2721
    [90] Rathore A S, Joule heating and determination of temperature in capillary electrophoresis and capillary electrochromatography columns, J Chromatogr A, 2004, 1037 (1-2): 431-443
    [91] Swinney K, Bornhop D J, Quantification and evaluation of Joule heating in on-chip capillary electrophoresis, Electrophoresis, 2002, 23 (4): 613-620
    [94] Ross D, Gaitan M, Locascio L E, Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye, Anal. Chem., 2001, 73 (17): 4117-4123
    [93]范国荣,张正行,陈伟等,高效毛细管电泳分离中焦耳热现象的考察,中国药科大学学报,1996,27(2):87-90
    [94]韩凤梅,程智勇,常俊丽等,添加剂在高效毛细管电泳技术中的应用,分析科学学报,2000,16(3):242-247
    [95] Heiger D N, High performance capillary electrophoresis introduction, Hewlett-Packard, 1993.
    [96]邓延倬,何金兰,高效毛细管电泳,北京:科学出版社,2000
    [97] Broard of Trustees United States pharmacopoeial, The United States Pharmacopoeia, Philadelphia: National Publishing, 2001, Second Supplement, 2896
    [98] Council of European Pharmacopoeia, European Pharmacopoeia, 2001, supplement, 33
    [99]郭尧君,蛋白质电泳实验技术,北京:科学出版社,1999
    [100]刘晓达,王全立,马立人,毛细管等电聚焦方法及其应用,色谱,1997,15(5): 400-404
    [101]徐木生,王小如,杨芃原等,非水介质毛细管电泳,色谱,1998,16(14):309-310
    [102] Cherkaoui S, Geiser L, Veuthey J L, Rapid separation of basic drugs by nonaqueous capillary electrophoresis, Chromatographia, 2000, 52 (7-8): 403-407
    [103]熊建辉,张维冰,许国旺等,非水毛细管电泳进展,色谱,2000,18 (3):218-223
    [104] Wang F, Khaledi M G, Chiral separation by nonaqueous capillary electrophoresis, Anal. Chem., 1996, 68 (19): 3460-3467
    [105]康经武,陈豪杰,欧庆瑜,交联键合型聚丙烯酰胺毛细管电泳涂层柱的快速制备及评价,色谱,1998,16(1):26-29
    [106] Pedersen-Bjergaard S, Gronhaug-Halvorsen T, Analysis of pharmaceuticals by microemulsion electrokinetic chromatography in a suppressed electroosmotic flow environment, Chromatographia 2000, 52 (9-10): 593-598
    [107]宋立国,欧庆瑜,俞惟乐,毛细管离子电泳,色谱,1996,14(2):98-101
    [108]罗国安,王义明,王如骥,毛细管电泳的原理和应用,色谱,1998,16(1):38-43
    [109]芮建中,邹汉法,毛细管电色谱及其在药物分析中的应用,药物分析杂志,1999,19(1):64-68
    [110]芮建中,邹汉法,施维寺,毛细管电色谱行为的初步考察,中国药科大学学报,1999,30(4):24-28
    [111] Rudrabhatla P, Rajasekharan R, Function characterization of peanut serine / thereonine / tyrosine protein kinase: molecular docking and inhibition kinetics with tyrosine kinase inhibitors, Biochemistry, 2004, 43 (38): 12123-12132
    [112] Hunter T, protein kinases and phosphateses: The Yin and Yang of protein phosphorylation and signaling, Cell, 1995, 80 (2): 225-236
    [113] Ullrich A, Schlessinger J, Signal transduction by receptors with tyrosine kinases activity, Cell, 1990, 61(2): 203-212
    [114] Ross R, The pathogenesis of atherosclerosis: a perspective for the 1990s, Nature, 1993, 362 (6423): 801-819
    [115] Levitzki A, Gazit A, Tyrosine kinase inhibition: an approach to drug development, Science, 1995, 267 (3): 1782-1788
    [116] Seethala R and Menzel R, A Homogeneous, fluorescence polarization assay for Src-Family tyrosine kinases, Analytical Biochemistry, 1997, 253 (2): 210-218
    [117] Pawson T, Protein modules and signalling networks, Nature, 1995,373 (6515): 573-580
    [118] Heldin, C-H, Dimerization of cell surface receptors in signal transduction, Cell, 1995, 80 (1): 213-223
    [119] Marshall, C J, Specificity of receptor tyrosine kinase signaling: Transient versus sustained extracellular signal-regulated kinase activation, Cell, 1995, 80 (2): 179-185
    [120] Bishop, J M, The molecular genetics of cancer, Science,1987, 235 (4786): 305-311
    [121] Casnellie, J E, Assay of protein kinases using peptides with basic residues for phosphocellulose binding, Methods Enzymol., 1991, 200: 115-120
    [122] Witt, J J, Roskoski, R, Rapid protein kinase assay using phospho-cellulose-paper absorption, Anal. Biochem., 1975, 66 (1): 253-258
    [123] Cleaveland, J S, Kiener, P A, Hammomd, D J, et al, A microtiter-based assay for the detection of protein tyrosine kinase activity, Anal. Biochem., 1990, 190 (2): 249-253
    [124] Boge, A, Roth, R A, A nonradioactive assay for the insulin receptor tyrosine kinase: use in monitoring receptor kinase activity after activation of overexpressed protein kinase C alpha and high glucose treatment, Anal. Biochem., 1995, 231 (2): 323-332
    [125] Seethala R, Menzel R, A homogeneous, fluorescence polarization assay for src-family tyrosine kinases, Anal. Biochem., 1997, 253 (2): 210-218
    [126] Seethala R, Menzel R, A fluorescence polarization competition immunoassay for tyrosine kinases, Anal. Biochem., 1998, 255 (2): 257-262
    [127]周意明,孙黎光,酪氨酸激酶抑制剂的研究进展,解剖科学进展2000, 6 (3),214-217
    [128] Ward, N E, and O’Brian, C A, Kinetic analysis of protein kinase C inhibition by staurosporine: evidence that inhibition entails inhibitor binding at a conserved region of catalytic domain but not competition with substrates, Mol. Pharmacol., 1992, 41 (2): 387-392
    [129] Tamaoki, T, Nomoto, H, Takahashi, I, Kato, Y, Morimoto, M., and Tomita, F., (1986) Staurosporine, a protein inhibitor of phospholipids/Ca++ dependent protein kinase, Biochem. Biophys. Res. Commun., 135 (2): 397-402
    [130] Ruegg, U T, and Burgess, G M, Staurosporine, K-252 and UCN-01: potent but nonspecific inhibitors of protein kinases, Trends Pharmacol. Sci., 1989, 10 (6): 218-220
    [131]邱立华,姜之馨,朱晓代,酪氨酸激酶抑制剂在抗肿瘤领域的研究进展,中国肿瘤生物治疗杂志, 2003,10 (3): 219-221
    [132] Dricssen A J M, Fekkes P, and Van der Wolk J P W, The Sec system, Curr. Opin. Microbiol., 1998, 1 (2): 216-222
    [133] Economou A, Bacterial preprotein translocase: mechanism and conformational dynamics of a processive enzyme, Mol. Microbiol., 1998, 27 (3): 511-518
    [134] Wickner W, Dricssen A J M, and Hartl F U, The enzymology of protein translocation across the Escherichia coli plasma membrane, Annu. Rev. Biochem., 1991, 60: 101-124
    [135] Paetzel M, Dalbey R E, Strynadka N C J, Crystal Structure of a Bacterial Signal Peptidase Apoenzyme, J. Biol. Chem., 2002, 277 (11): 9512-9519
    [136] Ma, L J, Gong X Y, and Yeung E S, Anal. Chem., 2000, 72 (14): 3383-3387
    [137] Levine L M, Michener M L, Toth M V, et al, Measurement of specific protease activity utilizing fluorescence polarization, Anal. Biochem., 1997, 247 (1), 83-88
    [138] Dey I K, Ray P H, Novak P, Minimum substrate sequence for signal peptidase I of Escherichia coli, J Biol Chem., 1990, 265(33): 20069-20072
    [139] Jorgenson, J W,Lukac, K D,Free-zone electrophoresis in glass capillaries, Clin. Chem., 1981, 27 (9): 1551-1553
    [140] Cobb, K A, Novotny, M, High-sensitive peptide mapping by capillary zone electrophoresis and microcolumn liquid chromatography, using immobilized trypsin for protein digestion, Anal. Chem. 1989, 61 (20): 2226-2231
    [141] McCormick, R M, Capillary zone electrophoretic separation of peptides and proteins using low pH buffer in modified silica capillaries, Anal. Chem., 1988, 60 (21): 2322-2328.
    [142] Bao, J W, Regnier, F E, Ultramicro enzyme assay in a capillary electrophoretic system, J. Chromatogr. 1992, 602 (1-2): 217-224
    [143] Al-Hakim, A, Linhardt, R J, Capillary electrophoresis for the analysis of chondroitin sulfate- and dermatan sulfate-derived disaccharides, Anal. Biochem., 1991, 195 (1): 68-73
    [144] Cohen, A S, Najarian, D R, Smith, J A, et al, Rapid separation of DNA restriction fragments using capillary electrophoresis, J. Chromatogr., 1988, 458 (12): 323-333
    [145] Colyer, C L, Tang, T, Chiem, N, et al, Clinical potential of microchip capillary electrophoresis systems, Electrophoresis, 1997, 18, (10): 1733-1741
    [146] Chen, Y H, Wang, W C, Young, K C, et al, Plastic microchip electrophoresis for analysis of PCR products of hepatitis C virus, Clin. Chem., 1999, 45 (11): 1938-1943.
    [147] Hofgartner, W T, Huhmer, A F R, Landers, J P, et al., Rapid Diagnosis of Herpes Simplex Encephalitis Using Microchip Electrophoresis of PCR Products, Clin. Chem, 1999, 45 (12): 2120-2128
    [148] Munro, N J, Snow, K, Kant, J A, Molecular Diagnostics on Microfabricated Electrophoretic Devices: From Slab Gel- to Capillary- to Microchip-based Assays for T- and B-Cell Lymphoproliferative Disorders, Clin. Chem., 1999, 45 (11): 1906-1917
    [149] Bao, J J, Parekh, N J, Shuja, A, Separation and quantitation of azimilide and its putative metabolites by capillary electrophoresis, J. Chromatogr. B, 1998, 720 (1-2): 129-140
    [150] Qiu, Y C, Benet, L Z, Burlingame, A L, Identification of the hepatic protein targets of reactive metabolites of acetaminophen in Vivo in mice using two-dimensional gel electrophoresis and mass spectrometry, J. Biol. Chem., 1998, 273 (28): 17940-17953
    [151] Anderson, N L, Copple, D C, Bendele, R A, et al, J. Appl. Toxicol., 1992, 18, (4): 570-580
    [152] Cunningham, M L, Pippin, L L, Anderson, N L, et al., The hepatocarcinogen methapyrilene but not the analog pyrilamine induces sustained hepatocellular replication and protein alterations in F344 rats in a 13-week feed study, Toxicol. Appl. Pharmacol., 1995, 131 (2): 216-223
    [153] Richardson, F C, Strom, S C, Copple, D M, et al, Comparisons of protein changes in human and rodent hepatocytes induced by the rat-specific carcinogen, methapyrilene, Electrophoresis, 1993, 14 (1-2): 157-161
    [154] Thome, B, Ivory, C F, Continuous fractionation of enantiomer pairs in free solution using an electrophoretic analog of simulated moving bed chromatography, J. Chromatogr. A, 2002, 953 (1-2): 263-277
    [155] Ivory, C F, A brief review of alternative electrofocusing techniques, Separation Science and Technology, 2000, 35 (11): 1777-1793
    [156] Porras, S P, Jussila, M, Sinervo, K, et al, Alcohols and wide-bore capillaries in nonaqueous capillary electrophoresis, Electrophoresis 1999, 20 (12): 2510-2518
    [157] Valko, I E, Porras, S P, Riekkola, M L, Capillary electrophoresis with wide-bore capillaries and non-aqueous media, J. Chromatogr. A, 1998, 813 (1): 179-186
    [158] Riekkola, M L, Jussila, M, Porras, S P, Valko, I E, Non-aqueous capillary electrophoresis, J. Chromatogr. A, 2000, 892 (1-2): 155-170
    [159] Yin, H F, Keely-Templin, C, McManigill, D J, Preparative capillary electrophoresis with wide-bore capillaries, J. Chromatogr. A, 1996, 744 (1-2): 45-54
    [160] Chen, J R, Zare, R N, Peters, E C, et al, Semipreparative capillary electrochromatography, Anal. Chem., 2001, 73 (9): 1987-1922
    [161] Qu, Q S, He, Y Z, Gan, W E, et al, Electrochromatography with a 2.7 mm inner diameter monolithic column, J. Chromatogr. A, 2003, 983 (1-2): 255-262
    [162] Qu, Q S, Qu, R J, Xu, Q, et al, Reduced-bore monolithic silica column modified with C8-TEOS for reversed-phase electrochromatography, J. Sep. Sci., 2004, 27 (9): 725-728
    [163] Guo, Y G, Liu, D N, Wang, H F, et al, Wide-bore electrophoresis system with single channel inner-cooling and UV-detector, Chemistry Letters 2006, 35 (12): 1386-1387
    [164] McCormick, L C, Stater, G W, Electrophoresis, 2006, 27 (9): 1693-1701
    [165] Guihen, E, Glennon, J D, Nanoparticles in separation science-recent developments, Analytical Letters 2003, 36 (15): 3309-3336
    [166] Lopez-Herrera, J M, Barrero, A, Lopez, A, Loscertales, I G, Marquez, M., Coaxial jets generated from electrified taylor cones, Aerosol Science 2003, 34 (5): 535-552
    [167] Loscertales, I G, Barrero, A, Guerrero, I, et al, Micro/nano encapsulation via electrified coaxial liquid jets, Science, 2002, 295 (5560): 1695-1698.
    [168] Loscertales, I G., Barrero, A, Márquez, M, Electrically forced coaxial nano-jets for one-step hollow nanofiber design, J. Am. Chem. Soc. 2004, 126 (17): 5376-5377
    [169]王怀峰,微管电泳技术研究,博士论文,天津大学,2006
    [170] Britz-Mckibbin, P, Chen, D D Y., Anal. Chem., 1998, 70 (5), 907-912
    [171] Stefansson M, Sudor J, Hong M, et al, Aminodextran as a migration moderator in capillary gel electrophoresis of charged polysaccharides, Anal. Chem., 1997, 69(18), 3846-3850
    [172] Ding G S, Da Z L, Bao J J, et al, Reversed-phase and weak anion-exchange mixed-mode silica-based monolithic column for capillary electrochromatography, Electrophoresis, 2006, 27 (17): 3363-3372
    [173] Taylor G I, Disintegration of water drops in an electric field, Proceedings of the Royal Society A., 1964, 280 (1382): 383-397
    [174] Alfonso M, Ganan C, Antonio B, The supercritical nature of electrohydrodynamically driven: capillary microjets emitted in the EHD spraying of liquid, J. Aerosol Sci., 1996, 27 (Suppl. I): 215-216
    [175] Chen D R, Pui D Y H, Kaufman S L, Electrospraying of conducting liquids for monodisperse aerosol generation in the 4nm to 1.8μm diameter range, J. Aerosol Sci., 1995, 26(6): 963-977
    [176] Borra J P, Camelot D, Marijnissen J C M, et al, New aerosol generator based on the mixing of droplets through electrical forces: Production of particles with controlled properties, J. Aerosol Sci., 1996, 27 (Suppl. I): 181-182
    [177] Ceriotti L, de Rooij J F, Verpoorte E, An Integrated Fritless Column for On-Chip Capillary Electrochromatography with Conventional Stationary Phases, Ana1. Chem., 2002, 74 (3):639-647
    [178] Abebaw B, Jemere R D, Oleschuk F, Fajuyigbe O F, Harrison D, An integrated solid-phase extraction system for sub-picomolar detection, Electrophoresis, 2002, 23 (20): 3537-3544

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700