大管电泳及其多维分离系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛细管电泳(CE)作为当前分离效率最高的一种分离技术,在诸多领域得到了广泛的应用。但随着科技的快速发展,常常需要对目标物进一步深入研究,而CE样品用量小的特点便成为拓展其应用的技术瓶颈,正因为如此CE目前仅被局限于分析水平,很难实现各分离组分的进一步转移、收集甚至多维高分辨分析。
     首先,为提高CE载样量,本文以大内径石英管(1.0 mm)为电泳分离通道,并将内制冷机制引入到大管电泳(WBE)中以消除电泳过程中产生的焦耳热。同时,借助中空纤维膜的支撑,将内制冷毛细管准确固定于大管轴向中心,以此强化电泳系统的散热性能,此法显著提高了WBE系统的分离效率。此外,本文还探索了大管电泳进样方式及大管电泳的应用。结果表明,大管电泳电进样是可行的,且WBE双侧压力进样可承载1.6μL左右的样品,如此大的载样量使其具备了作为半制备或制备的能力。
     其次,高载样量预示着WBE可能实现样品转移再分析,为此,我们利用大管及毛细管内外径尺寸的差异,实现了WBE-CE转移系统的零死体积连接。在此基础上,利用场放大效应及独特的三电极模式,实现了大管电泳样品在线转移和再分离。与此同时,随着WBE-CE多维分析系统的搭建以及碱性磷酸酶催化对硝基苯磷酸二钠这一酶反应模型的验证,证明了WBE-CE多维分析系统可集分离、转移、收集、储存、离线及在柱酶反应于一体,该系统为生物样品的快速分离及深入分析搭建了实验平台。
     第三,本文还利用大管电泳独立的进样系统,搭建了二维高效液相色谱(HPLC)-大管电泳系统。HPLC流出物的直接WBE分析预示着此二维分离系统避免了商品化离线HPLC-CE分析仪在样品收集、浓缩、复溶带来样品变质等潜在风险。同时,利用液相手动进样阀实现了HPLC-WBE二维在线联用,并设计了具多根进样毛细管的大管系统,通过延长空间间距缩短了连续WBE进样时间间隔,实现了二维连续分析。
     总之,本文多种多维系统的成功搭建为广义的WBE提供了更为广博的适用空间,为WBE的发展提供了实验基础,为复杂样品的快速分析提供了实验平台。
CE is one of the most efficient separation technologies, which has been extensively accepted and acknowledged in many fields. With the technology development, further study of the target has become a popular trend. However, the small sample loading capacity of the CE has turned to be its technical bottleneck in expanding its application. Consequently, CE has been restricted in analysis level so that it is difficult for CE in further process, such as transfer, collection, and even analysis through multi-dimensional high-resolution system.
     Firstly, for improvement the sample loading capacity, we adopted wide-bore tube with 1.0 mm id as separation channel, and introduced inner cooling mechanism into wide bore electrophoresis (WBE) to eliminate the Joule heat produced during the electrophoresis process. In WBE system, the inner cooling capillary was exactly fixed to the axial center of the wide-bore tube with the help of two hollow fiber membranes to strengthen the radiating efficiency. The result manisfested the method could improve the separation efficiency of the WBE. In addition, the sampling method based on WBE was explored and some samples were analyzed in WBE by hydrodynamic and electrokinetic injection. The results indicated the electrokinetic injection was feasible in WBE and the maximum sample loading amount was about 1.6μL by two-side hydrodynamic injection, which implied the WBE could be used as semi-preparing or preparing CE.
     Secondly, the larger sample loading capacity entitled the wide-bore electrophoresis system could be taken on sample transfer and further analysis operations. Taking advantage of the disparity between the inside diameter of wide-bore tube and the outside diameter of capillary, the two dimensional WBE-CE transfer system was built and zero dead volume connection was realized. Some model compounds certified it was feasible and controlled when the special three electrodes mode was adopted and field amplification was introduced. On the basic of the WBE-TC system, a multi-dimensional WBE-CE analysis platform integrated separation, transferring, collection, storage, offline and online enzyme reaction was built up. The alkaline phosphatase reaction model certified its feasibility. The results established the experimental foundation for the study of the wide-bore microchip. The experimental platform can facilitate the biological samples rapid separation and further analysis.
     Thirdly,another aim on establishing WBE system is to simplify two dimensional systems, especially HPLC-CE. WBE can directly separate and detect the effluent from HPLC, which avoided the sample deterioration during the collection, dried, or reconstitution processes in offline HPLC-CE. With the help of an injection valve, online two dimensional HPLC-WBE systems was built by coupling high performance liquid chromatography and the WBE system with large loadability and independent sampling system an and was called. Furthermore, the many sampling capillaries inWBE system design which can convert the space into time and shorten the interval in continue HPLC-WBE analysis. The current serial WBE analysis systems will broaden the application of electrophoresis technology, supply experimental basement for its development and made it possible for the analysis of complicated biological samples.
引文
[1] Tiselius A, A new apparatus for electrophoretic analysis of colloidal mixture, Trans. Faraday Soc., 1937, 33: 524-531
    [2] Wieland T, Fischer E,über Elektrophorese auf Filtrierpapier, Naturwissenschaften, 1948, 35: 29-30
    [3] Durrum E L, A Microelectrophoretic and Microionophoretic Technique, J. Am. Chem. Soc., 1950, 72: 2943-2948
    [4] Grabar P, Williams C A, Méthode permettant l'étude conjuguée des proprietésélectrophorétiques et immunochimiques d'un mélange de protéines; application au sérum sanguine, Biochem. Biophys. Acta, 1953, 10 (1): 193-194
    [5] Smithies O, Zone electrophoresis in starch gel: Group variations in the serum proteins of normal human adults, Biochem. J., 1955, 61 (4): 629-641
    [6] Hjerten S, Agarose as an anticonvection agent in zone electrophoresis, Biochem. Biophys. Acta, 1961, 53 (11): 514-517
    [7] Wieme R, An improved technique of agar-gel electrophoresis on microscope slides, Clin. Chim. Acta, 1959, 4 (3): 317-321
    [8] Knowles Jr D P, Evermann J F, Shropshire C, et al, Evaluation of agar gel immunodiffusion serology using caprine and ovine lentiviral antigens for detection of antibody to caprine arthritis-encephalitis virus, J. Clin Microbiol., 1994, 32 (1): 243-245
    [9] Pike B L, Robinson W A, Human bone marrow colony growth in agar-gel, J. Cellular Physiology, 2005, 76 (1): 77-84
    [10] Boyer S H, Human organ alkaline phosphatases: discrimination by several means including starch gel electrophoresis of axtienzysie-enzyme supernatant fluids, Ann. N.Y. Acad. Sci., 2006, 103: 938-950
    [11] Zhang B, Tu B, Hu H Y, et al, Screening of Sensitive Antisense Target in ODC mRNA, Chin. J. Lymphol. Oncol., 2006, 5 (2): 71-76
    [12] Raymond S, Weintraub L S, Acrylamide gel as a supportting medium for zone electrophoresis, Science, 1959, 130: 711
    [13] Brishammar S, Hjerten S, Hofsten B V, Immunological preicipitations in agarose gel, Biochem. Biophys. Acta, 1961, 53 (11): 518-521
    [14] Raymond S, Weintraub L, Acrylamide gel as supporting medium for zone electrophoresis, Science, 1959, 130 (3377): 711
    [15] Ornstein L, Ann N Y, Disc electrophoresis-I Background and theory, Acad. Sci., 1964, 121 (1): 321-349
    [16] Davis B, Ann N Y, Disc electrophoresis-II Method and application to human serum proteins, Acad. Sci., 1964, 121 (2): 404-427
    [17] LaemmLi U K, Cleavage of structural proteins during the assemble of the head of the bacteriophage T4, Nature, 1970, 227 (8): 680-685
    [18] Gharahdaghi F, Weinberg C R, Meagher D A, et al, Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: A method for the removal of silver ions to enhance sensitivity, Electrophoresis, 1999, 20: 601-605
    [19] Palva E T, Makela P H, Lipopolysaccharide Heterogeneity in Salmonella typhimurium Analyzed by Sodium Dodecyl Sulfate/Polyacrylamide Gel Electrophoresis, Eur. J. Biochem., 2005, 107 (1): 137-143
    [20] G?rg A, Boguth G, Obermaier C, et al, Two-dimensional polyacrylamide gel electrophoresis with immobilized pH gradients in the first dimensin (IPG-Dalt): The state of the art and the controversy of vertical versus horizontal systems, Electrophoresis, 2005, 16 (1): 1079-1086
    [21] Michaelis L, Electric transport of ferments (I) Inve rtin, Biochem. Z., 1909, 16: 81
    [22] Kolin A, Separation and concentration of proteins in a pH field combined with an electric field, J. Chem. Phys., 1954, 22 (9): 1628-1629
    [23] Kolin A, Separation and concentration of proteins in a pH field combined with an electric field, Correction, J. Chem. Phys., 1954, 22 (12): 2099
    [24] Vesterberg O, Synthesis and isoelectric fractionation of carrier ampholytes, Acta Chem. Scand., 1969, 23: 2653-2666
    [25] Dale G, Latner A L, Isoelectric focusing of serum protein in an acrylamide gels followed by electrophoresis, Clin. Chem. Acta, 1969, 24 (1): 61-68
    [26] Macko V, Stegemann H., Mapping of potato proteins by combined electro-focusing and electrophoresis, Identification of varieties, Hoppe-Seyler’s Z. Physiol. Chem., 1969, 350 (7): 917-919
    [27] Stegemann H, Protein mapping in polyacrylamide and its application to genetic analysis in plants, Angew. Chem., 1970, 9 (8): 643-643
    [28] O’Farrell P H, High resolution two-dimensional electrophoresis of proteins, J. Biol. Chem., 1975, 250 (10): 4007-4021
    [29] Pretorius V, Hopkins B J, Schieke J D, A new concept for high-speed liquid chromatography, J. Chromatogr., 1974, 99: 23-30
    [30] Jorgenson J W, Lukacs K D, Free-zone electrophoresis in glass capillaries,Clin. Chem.,1981, 27 (9): 1551-1553
    [31] Terabe S, Otsuka K, Ichikawa K, et al, Electrokinetic separations with micellar solutions and open-tubular capillaries, Anal. Chem., 1984, 56: 111-113
    [32] Hjerten S, Liao J L, Yao K, Theoretical and experimental study of high-performance electrophoretic mobilization of isoelectrically focused protein zones, J. Chromatogr. A, 1987, 387: 127-138
    [33] Cohen A S, Karger B L, High-performance sodium dodecyl sulfate polyacrylamide gel capillary electrophoresis of peptides and proteins, J. Chromatogr. A, 1987, 397: 409-417
    [34] Cifuentes A, Rodríguez M A, García-Montelongo F J, Separation of basic proteins in free solution capillary electrophoresis: effect of additive, temperature and voltage, J. Chromatogr. A, 1996, 742: 257-266
    [35] Jorgenson J W, Lukacs K D, Zone electrophoresis in open-tubular glass-capillaries, Anal. Chem., 1981, 53 (8): 1298-1302
    [36] Sandoval J E, Chen S, Method for the accelerated measurement of electroosmosis in chemically modified tubes for capillary electrophoresis, Anal. Chem., 1996, 68 (17): 2771-2775
    [37] Ermakov S V, Capelli L, Righetti P G, Method for measuring very weak, residual electroosmotic flow in coated capillaries, J. Chromatogr. A, 1996, 744: 55-61
    [38] Williams B A, Vigh G, Fast, accurate mobility determination method for capillary electrophoresis, Anal. Chem., 1996, 68 (7): 1174-1180
    [39] Werner G K, Edward S Y, Optimization of sensitivity and separation in capillary zone electrophoresis with indirect fluorescence detection, Anal. Chem., 1988, 60: 2642-2646
    [40] Kuhn R, Hoffstter-Kuhn S, Capillary electrophoresis: principles and practice, Springer-Verlag, Heidelberg, Germany, 1993, 30-36
    [41] Cox H C, Hessels J K C, Teven J M G, On the efficiency of gel electrophoresis, J. Chromatogr. A, 1972, 66: 19
    [42] Kiumars G, Foley J P, Gale R J, Micellar electrokinetic capillary chromatography theory based on electrochemical parameters: optimization for three modes of operation, Anal. Chem., 1990, 62 (24): 2714-2721
    [43] Kim Y, Morris MD, Pulsed field capillary electrophoresis of multikilobase length nucleic acids in dilute methyl cellulose solutions, Anal. Chem., 1994, 66 (19): 3081-3085
    [44] Woolley A T, Hadley D, Landre P, et al, Functional Integration of PCR Amplification and Capillary Electrophoresis in a Microfabricated DNA Analysis Device, Anal. Chem., 1996, 68 (23): 4081-4086
    [45] Cheng J, Mitchelson K R, Glycerol-Enhanced Separation of DNA Fragments in Entangled Solution Capillary Electrophoresis, Anal. Chem., 1994, 66 (23): 4210-4214
    [46] Zhu M, Hansen D, Burd S, et al, Factors affecting free zone electrophoresis and isoelectric focusing in capillary electrophoresis, J. Chromatogr. A, 1989, 480: 311-319
    [47] Hjertén S, Zone broadening in electrophoresis with special reference to high-performance electrophoresis in capillaries: interplay between theory and practice, Electrophoresis, 1990, 11: 665-690
    [48] Robert L W, Gyula V, Maximization of separation efficiency in capillary electrophoretic chiral separations by means of mobility-matching background electrolytes, J. Chromatogr. A, 1996, 730: 273-278
    [49] Williams R L, Childs B, Dose E V, Peak Shape Distortions in the Capillary Electrophoretic Separations of Strong Electrolytes When the Background Electrolyte Contains Two Strong Electrolyte Co-Ions, Anal. Chem., 1997, 69 (7): 1347-1354
    [50] Williams R L, Vigh G, N-(Polyethyleneglycol monomethylether)-N- methylmorpholinium- based background electrolytes in capillary electrophoresis, J. Chromatogr. A, 1997, 763: 253-259
    [51] Rose Jr D J, Jorgenson J W, Characterization and automation of sample introduction methods for capillary zone electrophoresis, Anal. Chem., 1988, 60 (7): 642-648
    [52]Kaupp S, Steffen R, W?tzig H, Characterisation of inner surface and adsorption phenomena in fused-silica capillary electrophoresis capillaries, J. Chromatogr. A, 1996, 744: 93-101
    [53] Henk H L, Douglass M, Capillary zone electrophoresis of proteins in untreated fused silica tubing, Anal. Chem., 1986, 58 (1): 166-170
    [54] Xiaohua H, John A L, Manuel J G, Quantitative determination of low molecular weight carboxylic acids by capillary zone electrophoresis/ conductivity detection, Anal. Chem., 1989, 61 (7): 766-770
    [55] Tj?rnelund J, Bazzanella A, Lochmann H, Coelectroosmotic separations of anions in non-aqueous capillary electrophoresis, J. Chromatogr. A, 1998, 811: 211-217
    [56] Kelly A C, Vladislav D, Milos N, Electrophoretic separations of proteins in capillaries with hydrolytically-stable surface structures, Anal. Chem., 1990, 62 (22): 2478-2483
    [57] Burt H, Lewis D M, Tapley K N, Resin coating for capillaries giving a net positive charge and great potential for customised modification of surface properties, J. Chromatogr. A, 1996, 739: 367-371
    [58] Emoto K, Harris J M, Van Alstine J M, Grafting Poly (ethylene glycol) Epoxide to Amino-Derivatized Quartz: Effect of Temperature and pH on Grafting Density, Anal. Chem., 1996, 68 (21): 3751-3757
    [59] Ren X, Shen Y, Lee M J, Poly (ethylene-propylene glycol)-modified fused-silica columns for capillary electrophoresis using epoxy resin as intermediate coating, J. Chromatogr. A, 1996, 741: 115-122
    [60] Marcella C, Norma D O, Arianna G, Synthesis and Characterization of Capillary Columns Coated with Glycoside-Bearing Polymer, Anal. Chem., 1996, 68 (17): 2731-2736
    [61] Wolfgang S, Ernst K, Electrophoresis in synthetic organic polymer capillaries: variation of electroosmotic velocity and zeta potential with pH and solvent composition, Anal. Chem., 1992, 64 (17): 1991-1995
    [62] Schneider P J, Engelhardt H, Novel applications for organic polymer capillaries, J. Chromalogr. A, 1998, 802: 17-22
    [63] Chen G, Determination of rutin and quercetin in plants by capillary electrophoresis with electrochemical detection, Anal. Chim. Acta, 2000, 423 (1): 69-76
    [64] Rathore A S, Joule heating and determination of temperature in capillary electrophoresis and capillary electrochromatography columns, J. Chromatogr A, 2004, 1037 (1-2): 431-443
    [65] Attallah A M, Malak C A A, Elghawalby N A, et al, Identification of a specific marker for hepatitis C virus infection using capillary zone electrophoresis, Clin. Chim. Acta, 2004, 346 (2): 171-179
    [66] Tagliaro F, Smyth W F, Turrina S, et al, Capillary electrophoresis: a new tool in forensic toxicology. Applications and prospects in hair analysis for illicit drugs, Forensic Sci. Int., 1995, 70 (1-3): 93-104
    [67] Pang H M, Kenseth J, Coldiron S, High-throughput multiplexed capillary electrophoresis in drug discovery, Drug Discov. Today, 2004, 9 (24): 1072-1080
    [68] Haginaka J, Enantiomer separation of drugs by capillary electrophoresis using proteins as chiral selectors, J. Chromatogr. A, 2000, 875 (1-2): 235-254
    [69] ValkóI E, Porras S P, Riekkola M L, Capillary electrophoresis with wide-bore capillaries and non-aqueous media, J. Chromalogr. A, 1998, 813: 179-186
    [70] Michael A, Robert W, Edwin S, Fluorescence detection in capillary electrophoresis: evaluation of derivatizing eagents and techniques, Anal. Chem., 1991, 63 (5): 417-422
    [71] Patrick A W, Will K K, Michael D M, Online Raman Spectroscopy of Ribonucleotides Preconcentrated by Capillary Isotachophoresis, Anal. Chem., 1995, 67 (23): 4255-4260
    [72] Christa L C, Keith B O, Artjom V S, Electroosmotically Transported Baseline Perturbations in Capillary Electrophoresis, Anal. Chem., 1995, 67 (18): 3234-3245
    [73] Colyer C L, Oldham K B, Emersion peaks in capillary electrophoresis, J. Chromatogr. A, 1995, 716: 3-15
    [74] Larraín M A, Abugoch L, Quitral V, et al, Capillary zone electrophoresis as a method for identification of golden kinglip (Genypterus blacodes) species during frozen storage, Food Chem., 2002, 76 ( 3): 377-384
    [75] Attallah A M, Malak C A A, Elghawalby N A, et al, Identification of a specific marker for hepatitis C virus infection using capillary zone electrophoresis, Clin. Chim. Acta, 2004, 346 (2): 171-179
    [76] Mato I, Suárez-Luque S, Huidobro J F, Simple determination of main organic acids in grape juice and wine by using capillary zone electrophoresis with direct UV detection, Food Chem., 2007, 102 (1): 104-112
    [77] Terabe S, Otsuka K, Ichikawa K, et al, Electrokinetic separations with micellar solution and open-tubular capillaries, Anal. Chem., 1984, 56 (1): 111-113
    [78] Muijselaar P G H M, Claessens H A, Cramers C A, Determination of structurally related phenothiazines by capillary zone electrophoresis and micellar electrokinetic chromatography, J. Chromatogr. A, 1996, 735 (1-2): 395-402
    [79] Gibson G, Ramstad T, Mills K A, et al, A method for the determination of minoxidil in hair-regrowth formulations by micellar electrokinetic capillary chromatography, Il Farmaco, 2005, 60 (10): 847-853
    [80] Delgado-Zamarre?o M M, González-Maza I, Sánchez-Pérez A, et al, Analysis of synthetic phenolic antioxidants in edible oils by micellar electrokinetic capillary chromatography, Food Chem., 2007, 100 (4): 1722-1727
    [81] Shen J, Zhao S, Enantiomeric separation of naphthalene-2,3- dicarboxaldehyde derivatized dl-3,4-dihydroxyphenylalanine and optical purity analysis of l-3,4-dihydroxyphenylalanine drug by cyclodextrin-modified micellar electrokinetic chromatography, J Chromatogr. A, 2004, 1059 (1-2): 209-214
    [82] Bjergegaard C, Michaelsen S, M?ller P, et al, Separation of desulphoglucosinolates by micellar electrokinetic capillary chromatography based on a bile salt, J. Chromatogr. A, 1995, 717 (1-2): 325-333
    [83] Chen N, Chrambach A, Capillary electrophoresis of DNA fragments in 9 to 20% uncrosslinked polyacrylamide gels: unique separating capacity hypothetically related to maintenance of random-coil DNA conformation independently of gel concentration, J. Biochem. Bioph. Methods, 1997, 3 (3): 175-184
    [84] Jeon S, Lee M J, Park J, et al, Fast molecular diagnostics of canine T-cell lymphoma by PCR and capillary gel electrophoresis with laser-induced fluorescence detector, J. Chromatogr. B, 2007, 854 (1-2): 268-272
    [85] Noll B O, Debelak H, Uhlmann E, Identification and quantification of GC-rich oligodeoxynucleotides in tissue extracts by capillary gel electrophoresis, J. Chromatogr. B, 2007, 847 (2): 153-161
    [86] Laing T D, Mah D C W, Poirier R T, et al, Genomic DNA detection using cycling probe technology and capillary gel electrophoresis with laser-induced fluorescence, Mol. Cell. Probe., 2004, 18 (5): 341-348
    [87] Nedelkov D, Bieber A L, Characterization of the two myotoxin a isomers from the prairie rattlesnake (Crotalus viridis viridis) by capillary zone electrophoresis and fluorescence quenching studies, Toxicon, 1997, 35 (5): 689-698
    [88] Petersen J R, Okorodudu A O, Mohammad A, et al, Capillary electrophoresis and its application in the clinical laboratory, Clin. Chim. Acta, 2003, 330 (1-2): 1-30
    [89] Ahrer K, Jungbauer A, Chromatographic and electrophoretic characterization of protein variants, J. Chromatogr. B, 2006, 841 (1-2): 110-122
    [90] Schmerr M J, Cutlip R C, Jenny A, Capillary isoelectric focusing of the scrapie prion protein, J. Chromatogr. A, 1998, 802 (1): 135-141
    [91] Heegaard N H H, Lorenzi E D, Interactions of charged ligands withβ2-microglobulin conformers in affinity capillary electrophoresis, BBA- Proteins Proteom., 2005, 1753(1): 131-140
    [92] Saux T L, Varenne A, Perreau F, et al, Determination of the binding parameters for antithrombin–heparin fragment systems by affinity and frontal analysis continuous capillary electrophoresis, J. Chromatogr. A, 2006, 1132 (1-2): 289-296
    [93] He X, Li D, Liang A, et al, Interaction between netropsin and double-stranded DNA in capillary zone electrophoresis and affinity capillary electrophoresis, J. Chromatogr. A, 2002, 982 (2): 285-291
    [94] Tanaka Y, Terabe S, Recent advances in enantiomer separations by affinity capillary electrophoresis using proteins and peptides, J. Biochem. Bioph. Methods, 2001, 48 (2): 103-116
    [95] Nakajima K, Kinoshita M, Matsushita N, et al, Capillary affinity electrophoresis using lectins for the analysis of milk oligosaccharide structure and its application to bovine colostrum oligosaccharides, Anal. Biochem., 2006, 348 (1):105-114
    [96] Yunusov D, So M, Shayan S, et al, Kinetic capillary electrophoresis-based affinity screening of aptamer clones, Anal. Chim. Acta, 2009, 631 (1): 102-107
    [97] Fanali S, Catarcini P, Quaglia M G, et al, Separation ofδ-,γ- andα-tocopherols by CEC, J. Pharm. Biomed. Anal., 2002, 29 (6): 973-979
    [98] Fu H, Huang X, Jin W, et al, The separation of biomolecules using capillary electrochromatography, Curr. Opin. Biotechnol., 2003, 14 (1): 96-100
    [99] Gury?a V, Mechref Y, Palm A K, et al, Porous polyacrylamide monoliths in hydrophilic interaction capillary electrochromatography of oligosaccharides, J. Biochem. Bioph. Methods, 2007, 70 (1): 3-13
    [100] K ivánkováL, Bo ek P, Synergism of capillary isotachophoresis and capillary zone electrophoresis, J. Chromatogr. B, 1997, 689 (1): 13-34
    [101] Miku? P, Kuba?ák P, Valá?kováI, et al, Analysis of enantiomers in biological matrices by charged cyclodextrin-mediated capillary zone electrophoresis in column-coupling arrangement with capillary isotachophoresis, Talanta, 2006, 70 (4): 840-846
    [102] Kvasni?ka F, Vold?ich M, Vyhnálek J, Determination of glycyrrhizin in liqueurs by on-line coupled capillary isotachophoresis with capillary zone electrophoresis, J. Chromatogr. A, 1169 (1-2): 239-242
    [103] Pang H M, Pavski V, Yeung E S, DNA sequencing using 96-capillary array electrophoresis, J. Biochem. Bioph. Methods, 1999, 41 (2-3): 121-132
    [104] Hadd A G, Goard M P, Rank D R, et al, Sub-microliter DNA sequencing for capillary array electrophoresis, J. Chromatogr. A, 2000, 894 (1-2): 191-201
    [105] Forest C R, Woodruff B, Buckley D, et al, Assembly and constraint technology for large arrays of capillaries, Prec. Eng., 2009, 33 (3): 275-283
    [106] Zhang L, Yin X F, Field amplified sample stacking coupled with chip-based capillary electrophoresis using negative pressure sample injection technique, J. Chromatogr. A, 2006, 1137 (2): 243-248
    [107] Phillips T M, Wellner E, Measurement of neuropeptides in clinical samples using chip-based immunoaffinity capillary electrophoresis, J. Chromatogr. A, 2006, 1111 (1): 106-111
    [108] Sun Y, Lu M, Yin X F, et al, Intracellular labeling method for chip-based capillary electrophoresis fluorimetric single cell analysis using liposomes, J. Chromatogr. A, 2006, 1135 (1): 109-114
    [109] O’Farrell P H, High resolution two-dimensional electrophoresis of proteins, J. Biol. Chem., 1975, 250 (10): 4007-4021
    [110] Alison A, A post-genomic challenge: learning to read patterns of protein synthesis, Nature, 1999, 402: 715-720
    [111] Lilley K S, Razzaq A, Dupree P, Two-dimensional gel electrophoresis: recent advances in sample preparation, detection and quantitation, Curr. Opin. Chem. Biol., 2002, 6 (1): 46-50
    [112] Seehof K, Kresse M, M?der K, et al, Interactions of nanoparticles with body proteins-improvement of 2D-PAGE-analysis by internal standard, Int. J. Pharm., 2000, 196 (2): 231-234
    [113] Weinkauf M, Hutter G, Zimmermann Y, et al, Combined RNA-expression and 2D-PAGE-screening identifies comprehensive interaction networks affected after bortezomib or enzastaurin exposure of mantle cell lymphoma, Talanta, 2010, 80 (4): 1539-1544
    [114] Issaq H J, Conrads T P, Janini G M, et al, Methods for fractionation, separation and profiling of proteins and peptides, Electrophoresis,2002, 23 (17): 3048-3061
    [115] Issaq H J, The role of separation science in proteomics research, Electrophoresis,2001, 22: 3629-3638
    [116] Lubman D M, Kactmmn M T, Wang H, et al, Two-dimensional liquid separations-mass mapping of proteins from human cancer cell lysates, J. Chromatogr. B, 2002, 782: 183-196
    [117] Rabilloud R S, Blisnick T, Heller M, et al, Analysis of membrane proteins by two-dimensional electrophoresis:comparison of the proteins extracted from normal or Plasmodium falciparum-infected erythrocyte ghosts, Electrophoresis, 1999, 20: 3603-3610
    [118] Wissing J, Heim S, Flohe L, et al, Enrichment of hydrophobic proteins via Triton X-114 phase partitioning and hydroxyapatite column chromatography for mass spectrometry, Electrophoresis, 2000, 21: 2589-2593
    [119] Gygi S P, Corthals G L, Zhang Y, et al, Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology, Proc. Natl. Acad. Sci. USA, 2000, 97: 9390-9395
    [120] Poland J, Bohme A, Schube K, et al, Revisiting electroblotting of immobilized pH gradient gels:a new protocol for studying post-translational modification of proteins, Electrophoresis, 2002, 23: 4067-4071
    [121] Ficarro S B, MeCleland M L, Stukenberg P T, et al, Phosphoproteome Analysis by Mass Spectrometry and Its Application to Saccharomyces cerevisiae,Nat. Biotechnol., 2002, 20: 301-305
    [122] Davis M T, Beierle E T, McGinley J, Automated LC-LC-MS-MS Platform using binary ion-exchange and gradient reversed-phase chromatography for improved proteomic analyses, Chromatogr. B Biomed. Sci. Appl., 2001, 752: 281-291
    [123] Gygi S P, Rist B, Griffin T J, et al, Proteome analysis of low-abundance proetins using multidimensional chromatography and isotope-coded affinity tags, J. Proteome Res., 2002, 1: 47-54
    [124] Champion M M, Campbell C S, Siegele D A, et al, Proteome analysis of Escherichia coli K-12 by two-dimensional native-state chromatography and MALDI-MS, Mole. Microbiol., 2003, 47: 383-396
    [125] Evans C R, Jorgenson J W, Multidimensional LC-LC and LC-CE for high-resolution separations of biological molecules, Anal. Bioanalytical Chem., 2004, 378: 1952-1961
    [126] Issaq H J, Chan K C, Liu C S, et al, Multidimensional high performance liquid chromatography-capillary electrophoresis separation of a protein digest: An update, Electrophoresis, 2001, 22 (6): 1133-1135
    [127] Nielsen R G, Riggin R M, Rickard E C, Capillary zone electrophoresis of peptide fragments from trypsin digestion of biosynthetic human growth hormone, J. Chromatogr.A, 1989, 480: 393-401
    [128] Grossman P D, Colburn J C, Lauer H K, et al, Application of free-solution capillary electrophoresis to the analytical scale separation of proteins and peptides, Anal. Chem., 1989, 61 (11): 1186-1194
    [129] Larmann J P, Lemmo A V, Moore A W, et al, Two-dimensional separations of peptides and proteins by comprehensive liquid chromatography-capillary electrophoresis, Electrophoresis, 1993, 14: 439-447
    [130] Moore A W, Jorgenson J W, Rapid comprehensive two-dimensional separations of peptides via RPLC-Optically gated capillary zone electrophoresis, Anal. Chem., 1995, 67: 3448-3455
    [131] Hooker T F, Jorgenson J W, A transparent flow gating interface for the coupling of microcolumn LC with CZE in a comprehensive two-dimensional system, Anal. Chem., 1997, 69 (20): 4134-4142
    [132] Lemmo A V, Jorgenson J W, Two-dimensional protein separation by microcolumn size-exclusion chromatography-capillary zone electrophoresis, J. Chromatogr. A, 1993, 633 (1-2): 213-220
    [133] Lewis K C, Opiteck G J, Jorgenson J W, et al, Comprehensive on-line RPLC-CZE-MS of peptides, J. Am. Soc. Mass Spectrum, 1997, 8 (5): 495-500
    [134] Chen J Z, Lee C S, Shen Y F, et al, Integration of capillary isoelectric focusing with capillary reversed-phase liquid chromatography for two-dimensional proteomics separation, Electrophoresis, 2002, 23: 3143-3148
    [135] Zhou F, Johnston M V, Protein characterization by on-line capillary isoelectric focusing, reversed-phase liquid chromatography, and mass spectrometry, Anal. Chem., 2004, 76 (10): 2734-2740
    [136] Sheng L, Pawliszyn J, Comprehensive two dimensional separation based on coupling micellar electrokinetic chromatography with capillary isoelectric focusing, Analyst, 2002, 127: 1159-1163
    [137] Mohan D, Lee C S, On-line coupling of capillary isoelectric focusing with transient isotachophoresis-zone electrophoresis: A two-dimensional separation system for proteomics, Electrophoresis, 2002, 23: 3160-3167
    [138] Yang C, Liu H, Yang Q, et al, On-line hyphenation of capillary isoelectric focusing and capillary gel electrophoresis by a dialysis interface, Anal. Chem. 2003, 75 (2): 215-218
    [139] Chen X, Wu H, Mao C, et al, A prototype two-dimensional capillary electrophoresis system fabricated in poly(dimethylsiloxane), Anal. Chem., 2002, 74: 1772-1778
    [140] Ramsey J D, Jacobson S C, Culbertson C T, et al, High-Efficiency, Two-Dimensional Separations of Protein Digests on Microfluidic Devices, Anal. Chem., 2003, 75 (15): 3758-3764
    [141] Chartogne A, Reeuwijk B, Hofte B, et al, Capillary electrophoretic separations of proteins using carrier ampholytes, J. Chromatogr. A, 2002, 959(1-2): 289-298
    [142] Porras S P, Jussila M, Sinervo K, et al, Alcohols and wide-bore capillaries in nonaqueous capillary electrophoresis, Electrophoresis, 1999, 20: 2510-2518
    [143] Yin H F, Keely-Templin C A, McManjigill D, Preparative capillary electrophoresis with wide-bore capillaries, J. Chromatogr. A, 1996, 744 (1): 45-54
    [144] Qu Q S, He Y Z, Gan W E, et al, Electrochromatography with a 2.7 mm inner diameter monolithic column, J. Chromatogr. A, 2003, 983 (1-2): 255-262
    [145] Christianson J A, Transverse forced gas cooling for capillary zone electrophoresis, USP: 5122253, 1992
    [146] Li X C, Thilly W G, Use of wide-bore capillaries in constant denaturant capillary electrophoresis, Electrophoresis, 1996, 17 (12): 1884-1889
    [147] Karger B L, Nelson R J, Integrated temperature control/alignment system for high performance capillary electrophoretic apparatus, USP: 5085757, 1992
    [148] Morris M D, Rapp T L, Heat sink for capillary electrophoresis, USP: 6103081, 2000
    [149] Ross A W, Andrew G E, Capillary zone electrophoresis with electrochemical detection, Anal. Chem., 1987, 59 (14): 1762-1766
    [150] Odilo M, Frantisek F, Barry L K, Design of a high-precision fraction collector for capillary electrophoresis, Anal. Chem., 1995, 67 (17): 2974-2980
    [151] Anastos N, Barnett N W, Lewis S W, Capillary electrophoresis for forensic drug analysis, Talanta, 2005, 67 (2): 269-279
    [152] Gübitz G, Schmid M G, Chiral separation by chromatographic and electromigration techniques, Biopharm. Drug Dispos., 2001, 22 (7): 291-336
    [153] Páez X, Hernández L, Biomedical applications of capillary electrophoresis with laser-induced fluorescence detection, Biopharm. Drug Dispos., 2001, 22 (7): 273-289
    [154] Xiong S, Han H, Zhao R, et al, Capillary electrophoresis of catecholamines with laser-induced fluorescence intensified charge-coupled device detection, Biomed. Chromatogr., 2001, 15 (2): 83-88
    [155]郭玉高,大管电泳和一步法酶分析技术研究初探:[博士学位论文],天津;天津大学,2007
    [156] Guo Y G, Liu D N, Wang H F, et al, Wide-bore electrophoresis system with single channel inner-cooling and UV-detector, Chem. Lett., 2006, 35 (12): 1386-1387
    [157] Ferrance J, Landers J P, Exploiting sensitive laser-induced fluorescence detection on electrophoretic microchips for executing rapid clinical diagnostics, Luminescence, 2001, 16 (2): 79-88
    [158] Currie C A, Shim J S, Lee S H, et al, Comparing polyelectrolyte multilayer-coated PMMA microfluidic devices and glass microchips for electrophoretic separations, Electrophoresis, 2009, 30 (24): 4245-4250
    [159] Peng Y, Pallandre A, Tran N T, et al, Recent innovations in protein separation on microchips by electrophoretic methods, Electrophoresis, 2008, 29 (1): 157-178
    [160] Oguri S, Electromigration methods for amino acids, biogenic amines and aromatic amines, J. Chromatogr. B, 2000, 747 (1-2): 1-19
    [161] Donáth-Nagy G, Buchwald P, Vancea S, et al, The quantitative characterization of free radical sources and traps by electromigration applications, J. Biochem. Bioph. Methods, 2008, 70 (6): 1317-1323
    [162] Okamura N, Miki H, Orii H, et al, Simultaneous high-performance liquid chromatographic determination of puerarin, daidzin, paeoniflorin, liquiritin, cinnamic acid, cinnamaldehyde and glycyrrhizin in Kampo medicines, J. Pharm. Biomed. Anal., 1999, 19 (3-4): 603-612
    [163] Zhang J, Chen M, Ju W, et al, Liquid chromatograph/tandem mass spectrometry assay for the simultaneous determination of chlorogenic acid and cinnamic acid in plasma and its application to a pharmacokinetic study, J. Pharm. Biomed. Anal., 2010, 51 (3): 685-690
    [164] Mwatseteza J F, Torto N, Profiling volatile compounds from Mucuna beans by solid phase microextraction and gas chromatography-high resolution time of flight mass spectrometry, Food Chem., 2010, 119 (1): 386-390
    [165] Techakriengkrai I, Surakarnkul R, Analysis of benzoic acid and sorbic acid in Thai rice wines and distillates by solid-phase sorbent extraction and high-performance liquid chromatography, J. Food Compos. Anal., 2007, 20 (3-4): 220-225
    [166] Míka J, Opekar F, Coufal P, et al, A thin-layer contactless conductivity cell for detection in flowing liquids, Anal. Chim. Acta, 2009, 650 (2): 189-194
    [167] Burggraf N, Manz A, Verpoorte E, et al , A novel approach to ion separations in solution: synchronized cyclic capillary electrophoresis (SCCE), Sens. Actuators B. 1994, 20 (2-3): 103-110
    [168] Manz A, Verpoorte E, Effenhauser C S, et al, Planar chip technology for capillary electrophoresis, Fresenius J. Anal. Chem., 1994, 348: 567-571
    [169] Shi Y, Huang Y, Duan J, et al, Field-amplified on-line sample stacking for separation and determination of cimaterol, clenbuterol and salbutamol using capillary electrophoresis, J. Chromatogr. A, 2006, 1125 (1): 124-128
    [170] Zhang L, Yin X F, Field amplified sample stacking coupled with chip-based capillary electrophoresis using negative pressure sample injection technique, J. Chromatogr. A, 2006, 1137 (2): 243-248
    [171] Galli V, Barbas C, Optimization in sample stacking for the measurement of short chain organic acids in serum of natural rubber latex by capillary electrophoresis, Anal. Chim. Acta, 2003, 482 (1): 37-45
    [172] Zak K. Shihabi, Field amplified injection in the presence of salts for capillary electrophoresis, J. Chromatogr. A, 1999, 853 (1-2): 3-9
    [173] Shihabi Z K, Transient pseudo-isotachophoresis for sample concentration in capillary electrophoresis, Electrophoresis, 2002, 23: 1612-1617
    [174] Latini R, Tognoni G, Maggioni A P, et al, Clinical effects of early angiotensin-converting enzyme inhibitor treatment for acute myocardial infarction are similar in the presence and absence of aspirin : Systematic overview of individual data from 96,712 randomized patients, J. Am. Cardiol., 2000, 35 (7): 1801-1807
    [175] Fernandes S S, Furriel R P M, Petenusci S O, et al, Streptozotocin-induced diabetes: significant changes in the kinetic properties of the soluble form of rat bone alkaline phosphatase, Biochem. Pharmacol., 1999, 58 (5): 841-849
    [176] Chen C C, Tai Y C, Shen S C, et al, Detection of alkaline phosphatase by competitive indirect ELISA using immunoglobulin in yolk (IgY) specific against bovine milk alkaline phosphatase, Food Chem., 2006, 95 (2): 213-220
    [177] Brunner E, Ahrens C H, Mohanty S, et al, A high-quality catalog of the Drosophila melanogaster proteome, Nat. Biotechnol., 2007, 25: 576-583
    [178] Kuruma H, Egawa S, Oh-Ishi M, et al, Proteome analysis of prostate cancer, Prostate Cancer and P. D., 2005, 8: 14-21
    [179] Veenstra T D, Prieto D A, Conrads T P, Proteomic patterns for early cancer detection, Drug Discov. Today, 2004, 9 (20): 889-897
    [180] Cho W C S, Proteomics Technologies and Challenges, Genomics, Proteomics & Bioinformatics, 2007, 5 (2): 77-85
    [181] Licker V, K?vari E, Hochstrasser D F, et al, Proteomics in human Parkinson's disease research, J. Proteomics, 2009, 73 (1): 10-29
    [182] Raikos V, Hansen R, Campbell L, et al, Separation and identification of hen egg protein isoforms using SDS–PAGE and 2D gel electrophoresis with MALDI-TOF mass spectrometry, Food Chem., 2006, 99 (4): 702-710
    [183] Krieg R C, Dong Y, Schwamborn K, et al, Protein quantification and its tolerance for different interfering reagents using the BCA-method with regard to 2D SDS PAGE, J. Biochem. Bioph. Methods, 2005, 65 (1): 13-19
    [184] van der Klift E J C, Vivó-Truyols G, Claassen F W, et al, Comprehensive two-dimensional liquid chromatography with ultraviolet, evaporative light scattering and mass spectrometric detection of triacylglycerols in corn oil, J. Chromatogr. A, 2008, 1178 (1-2): 43-55
    [185] Cao P, Stults J T, Mapping the phosphorylation sites of proteins using on-line immobilized metal affinity chromatography/capillary electrophoresis/ electrospray ionization multiple stage tandem mass spectrometry, Rapid Commun. Mass Spectrom., 2000, 141 (17): 1600-1606
    [186] Issaq H J, Chan K C, Janini G M, et al, A simple two-dimensional high performance liquid chromatography/high performance capillary electrophoresis set-up for the separation of complex mixtures, Electrophoresis, 1999, 20, 1533-1537

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700