基于移动反应界面的电泳中和滴定新原理和新方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,移动反应界面(Moving Reaction Boundary,MRB)的理论与实验研究发展迅速。在分析化学领域中,应用MRB理论,在毛细管电泳(CE)上分离和富集各种两性物质的研究取得了很大的进展,最大可达到对分析物上百万倍的富集,极大地解决了CE中进样量低的问题。同时,由移动中和界面(Moving Neutralization Boundary, MNB)理论推导出的判别式,用来判断界面移动方向并且为等电聚焦动力学的研究提供了新的视角。本论文的研究工作主要提出—种新的酸碱滴定方法—电迁移酸碱滴定(Electromigration Acid-Base Titration,EABT),在MNB理论基础上设计电迁移酸碱滴定的装置及其应用于强酸强碱和强碱弱酸中和滴定测定未知酸碱的浓度。
     具体研究内容如下:
     1、电迁移酸碱中和滴定装置
     在本论文的第二章中,设计了一种用于电迁移酸碱滴定的装置,该装置由连有阳极电泳槽(酸溶液)和阴极电泳槽(碱溶液)的大管施加电压后氢离子、氢氧根离子在电压的作用下分别向负极、正极移动产生电迁移酸碱中和反应。用蠕动泵分别将阳极电泳槽和阴极电泳槽中的酸碱溶液泵入到大管中,大管的两端连有电极从而可以记录下实验中所施加的电压。在大管的正下方有一把带有标准刻度的标尺,并且在大管上方固定CCD相机用来记录移动中和反应界面的移动距离(D),根据D和浓度作出标准曲线,进而计算有关酸或碱浓度。该发明提出一种新的酸碱中和滴定方法用来测定未知酸碱浓度。本发明可应用于强酸强碱滴定/弱酸强碱滴定/蛋白质含氮量的分析。
     2、强酸(HCl)强碱(NaOH)电迁移酸碱滴定
     在本论文的第三章中,应用第二章设计的电迁移酸碱滴定装置,第一次设计用MNB理论进行电迁移酸碱滴定,本章用HCl、NaOH为例来进行强酸强碱电迁移酸碱滴定。实验结果显示:(1)实验中所用的琼脂糖浓度、电压和背景电解质(KCl)浓度对MNB有明显的影响。(2)在固定酸碱浓度条件下,移动反应界面的距离和反应时间成一定线性关系(3)在优化条件下,相同时间和NaOH浓度,移动中和界面的距离和自然对数的不同HCl浓度成线性关系,用线性曲线可以测定未知酸浓度。(4)实验验证了不同酸碱的指示剂对界面移动距离无明显影响从而可以避免了传统酸碱中和滴定中指示剂选择所带来的误差。(5)日内差和日间差分别少于3.76%和1.59%,表示有很好的准确度和稳定性。
     3、弱酸(HAc)强碱(NaOH)电迁移酸碱滴定
     在本论文的第四章中,在第三章HCl(aq)-NaOH(aq)滴定的基础上,进一步进行NaOH(aq)滴定HAc(aq)的电迁移酸碱滴定,实验结果和本文第三章得出的结果相近。(1)实验中所用的琼脂糖浓度、电压和背景电解质(KCl)浓度对MNB有明显的影响,即对EABT也有影响。(2)在固定HAc和NaOH浓度条件下,移动反应界面的距离(D)和反应时间(t)成一定线性关系,充分说明MNB的迁移速度是匀速运动。(3)在优化条件下,迁移时间(t)和NaOH浓度一定的条件下,移动中和界面距离(D)和不同HAc浓度成线性。(4)实验验证了不同酸碱的指示剂对D无明显影响从而可以避免了传统酸碱中和滴定中指示剂选择所带来的误差。(5)日内差和日间差分别少于3.54%和3.81%,表示有很好的准确度和稳定性。
     电迁移酸碱滴定是在一系列已有的酸碱滴定基础上提出的,是一种全新想法的酸碱滴定,在原来已有的酸碱滴定的方法上补充了另外一种可用于酸碱滴定的新方法。
In resent years, Moving Reaction Boundary (MRB) theoretical and experimental study is developing rapidly. The concept of MRB is very useful in the field of electrophoresis. For example, the dynamic theory of isoelectric focusing (IEF) has been well developed from the concept of MNB. Second, the method of MNB has been used for the sample stacking of zwitterions (viz., proteins, or peptides, or amino acids) and drugs in capillary electrophoresis (CE) and condensation of target compound in free-flow electrophoresis (FFE). Third, the concept of MCB has been applied for the illumination on mechanism of EDTA-based sample sweeping of heavy metal ions in CE.
     This paper for the first time shows that the concept of MRB can be used to design a novel acid-base titration of EABT via the MNB formed with H+ and OH-For the purpose of simplicity, we use HC1 and NaOH, HAc and NaOH as the model reactant and reagent, respectively, for the studies. Below are the relevant experiments and advantages of EABT. The main points of this thesis are summarized as follows:
     1. The equipment of the EABT
     In the Chapter 2, The apparatus used for the experiment of EABT is connected a glass tube which connected with the anode electrophoresis slots (acid solution) and cathodic electrophoretic slots (bace solution). Under the electric field, the hydrogen and hydroxyl ions moved in the opposite direction and had an electromigration reaction with each other. The reaction led to the formation of MNB. The tube coupled with a ruler was set on a white light plate, an adjustable digital camera was fixed over the flat plate. The digital camera could be well used to record the boundary movement. The two ends of the glass tube were connected to two three-way-pipes via the two rubber-tubes. The two pipes were further joined with two peristaltic pumps and the two vials of anode and cathode. The two pumps were used for the flows of anolyte and catholyte. A power supply was used to yield the direct electric field for the experiment of EABT.
     2. Equivalence-Point Electromigration strong Acid-strong Base Titration via Moving Neutralization Boundary Electrophoresis
     In the Chapter 3, we developed a novel method of acid-base titration, viz., the electromigration acid-base titration (EABT), via the apparatus of EABT was described in Chapter 2. With HCl and NaOH as the model strong acid and base, respectively, we conducted the experiments on the EABT via the method of MNR for the first time. The experiments revealed that (1) the concentration of agarose gel, the voltage used and the content of background electrolyte (KCl) had evident influence on the boundary movement; (2) the movement length was as a function of the running time under the constant acid and base concentrations; and (3) there was a good linearity between the length and natural logarithmic concentration of HCl under the optimized conditions, and the linearity could be used to detect the concentration of acid. The experiments further manifested that (1) the RSD values of intra-day and inter-day runs were less than 1.59% and 3.76%, respectively, indicating good precision and stability; (2) the indicators with different pKa values had no obvious effect on EABT, distinguishing strong influence on the judgment of equivalence-point titration in the classic one; and (3) the constant equivalence-point titration was always existed in the EABT, rather than the classic volumetric analysis. Additionally, the EABT could be well used for the determination of actual acid concentrations. The experimental results achieved herein showed a new general guidance for the development of classic volumetric analysis and element (e.g., nitrogen) analysis in protein chemistry.
     3. Equivalence-Point Electromigration weak Acid-strong Base Titration via Moving Neutralization Boundary Electrophoresis
     In the Chapter 4, we used HAc and NaOH as the model weak acid and strong base, respectively via the EABT. The experiments revealed that (1) the concentration of agarose gel, the voltage used and the content of background electrolyte (KC1) had evident influence on the boundary movement; (2) the movement length was as a function of the running time under the constant acid and base concentrations; and (3) there was a good linearity between the length and concentration of HAc under the optimized conditions, and the linearity could be used to detect the concentration of acid. (4) the indicators with different pKa values had no obvious effect on EABT, distinguishing strong influence on the judgment of equivalence-point titration in the classic one.
引文
[1]J. Deman. Precipitation during electromigration of ions. Anal. Chem. [J].1970, 42(3):321-322.
    [2]J. Deman, W. Rigole. Chemical reaction during electromigration of ions. J. Phys. Chem. [J].1970,74(5):1122-1126.
    [3]J. Deman. Precipitation during electromigration of ions. Anal. Chem. [J].1970, 42(3):321-324.
    [4]J. Deman. Elutive displacement of precipitate formed during electromigration of ions. Anal. Chem. [J].1970,42(14):1699-1704.
    [5]J. Deman. Separation of rare earth ions by precipitation during electromigration. Anal. Chem. [J].1970,42(9):983-989.
    [6]C. X. Cao. Stationary chemical Reaction Boundary:Theory and Test. Acta Phys.-Chim. Sin. [J].1997,13(9):843-848.
    [7]T. M. Jovin. Multiphasic zone electrophoresis. I. Steady-state moving-boundary systems Formed by different electrolyte combinations. Biochem. [J].1973,12(5): 871-879.
    [8]J. Pospichal, M. Deml, P. Bocek. Electrically controlld electrofocusing of ampholytes between two zones of modified electrolyte with two different values of pH. J Chromatogr. A. [J].1993,638(2):179-186.
    [9]J. Pospichal, E. Glovinova. Analytical aspects of carrier ampholyte-free isoelectric focusing. J. Chromatogr. A. [J].2001,918(1):195-203.
    [10]C. X. Cao. Moving chemical reaction boundary formd by strong reaction electrolytes:Theory. Acta Phys-Chim. Sin. [J].1997,13(9):827-832.
    [11]C. X. Cao, S. L. Zhou, Y. Z. He, etc.. Experimentsl study on moving neutralization reaction boundary created with the strong reactive electrolytes of HC1 and NaOH in agarose gel. J. Chromatogr. A. [J].2000,891(2):337-347.
    [12]周书林,曹成喜,陈文魁等.强酸强碱形成的移动中和反应界面的实验研究.吉首大学学报.[J].2001,22(1):47-50.
    [13]C. X. Cao, S. L. Zhou, Y. T. Qian. Experimental investigation on moving chenical reaction boundary theory for weak-acid-strong-base system with background electrolyte KCI in large concentration. J. Chromatogr. A. [J].2001, 922(1-2):283-292.
    [14]C. X. Cao. Moving chemical reaction boundary formd by weak reaction electrolytes:Theory. Acta. Chem. Scand. [J].1998,52(6):709-713.
    [15]C. X. Cao, S. L. Zhou, Y. Z. Qian. Corrections to moving chemical reaction boundary equation for weak reactictive electrolytes under the existence of background electrolyte KC1 in large concentrations. J. Chromatogr. A. [J].2001, 907(1-2):347-352.
    [16]R. A. Alberty. Moving Boundary Systems Formed by Weak Electrolytes. Theory of Simple Systems Formed by Weak Acids and Bases. J. Am. Chem. Soc. [J]. 1950,72(6):2361-2367.
    [17]C. X. Cao, L. Y. Fan, W. Zhang. Review on the theory of moving reaction boundary, electromigration reaction methods and applications in isoelectric focusing and sample pre-concentration. Analyst. [J].2008,133(1):1139-1157.
    [18]曹成喜.分析生物化学技术[M].化学工业出版社,31-52.
    [19]L. G. Longsworth. A Differential Moving Boundary Method for Transference Numbers. J. Am. Chem. Soc. [J].1943,65(9):1755-1765.
    [20]L. G. Longswoth. Moving Boundary Separation of Salt Mixtures. Nat. Bur. Stand. (U.S.). Circ. [J].1953,524(6):59-63.
    [21]D. A. Macinnes, L. G. Longsworth. Transference Numbers by the Method of Moving Boundaries. Chem. Rev. [J].1932,11(2):171-230.
    [22]L. G. Longsworth. An application of moving boundaries to astudy of aqueous mixtures of hydrogen chloride and potassium chloride. J. AM. Chem. Soc. [J]. 1930,52(5):1897-1910.
    [23]V. P. Dole. A Theory of Moving Boundary Systems Formed by Strong Electrolytes. J. Am. Chen. Soc. [J].1945,67(7):1119-1126.
    [24]D. C. Henry, J. Brittain. Cataphoresis. Part III:A comparison of the results of measurements by the transport and moving boundary methods and a theory of the latter method. Trans. Faraday Soc. [J].1933,29(1):798-815.
    [25]H. Svensson. The behavior of weak electrolytes in moving-boundary systems:I. Moving-boundary equation. Acta Chem. Scand. [J].1948,2(1):841-848.
    [26]H. Svensson. Isoelectric fractionation,analysis and charaterisation of ampholytes in natural pH gradients. I. The differential equation of solute concentrations at a steady state and its solution for simple cases. Acta Chem.Scand. [J].1961,15(1): 325-341.
    [27]R. A. Alberty. Moving Boundary Systems Formed by Weak Electrolytes. Theory of Simple Systems Formed by Weak Acids and Bases. J. Am. Chem. Soc. [J]. 1950,72(6):2361-2367.
    [28]K. Shimao. Mathematical simulation of isotachophoresis boundary between protein and weak acid. Electrophoresis. [J].1986,7(7):297-303.
    [29]N. J. Reinhoud, U. R. Tjaden, J. V. Greef. Automated isotachophpretic analyte focusing for capillary zone electophoresis in a single capillary using hydrodynamic back-pressure programming. J. Chromatogr. [J].1993,641(1-2): 155-162.
    [30]C. X. Cao. Moving chemical reaction boundary and isoelectric focusing:I. Conditionnal equations for Svensson-Tiselius' differential equation of solute concentration distribtion in idealized isoelectric focusing at steady state. J. Chromatogr. A. [J].1998,823(1):153-171.
    [31]C. X. Cao, J. H. Zhu, H. Liu. Judgment expressions for a moving chemical reaction boundary and isoelectric focusing. Acta Chem. Scand. [J].1999,53(11): 955-962.
    [32]S. L. Zhou, C. X. Cao, Y. Z. He, etc.. A Novel and Optimized Method for Electro-focusing and Moving Neutralization Reaction Boundary Formed by 1ICI and NaOH. Chin. Chem. Lett. [J].2001,12(2):179-182.
    [33]C. X. Cao. Moving chemical reaction boundary and isoelectric focusing:III. Comparisons between transference numbers of hydrogen ion in the acids HBr, HC1, HI and hydroxyl ion in the alkali KOH. Prog. Nat. Sci. [J].1999,9(8): 602-609.
    [34]A. Chrambach, P. Doerr, G. D. Finlayson, etc.. Instability of pH gradients formed by isoelectric focusing in polyacrylamide gel. Ann. N. Y. Acad. Sci. [J]. 1973,209(1):44-64.
    [35]G. Baumann, A. Chrambach. Progress in isoelectric focusing and isotachophoresis. [M]. P. G Righetti, NorthHolland Publishing Co., Amsterdam, Oxford,1975,13-23.
    [36]S. Hjerten, K. Elenbring, F. Kilar, etc.. Carrier-free zone electrophoresis, displacement electrophoresis and isoelectric fousing in a high-performance electrophoresis apparatus. J. Chroumatogr. A. [J].1987,403(1):47-61.
    [37]M. Conti, C. Gelfi, P. G. Rightti. Screening of umbilical cord blood hemoglobins by isoelectric focusing in capillaries. Electrophoresis. [J].1995,16(1): 1485-1491.
    [38]K. T. Manabe, A. Miyamoto, A. Iwasaki. Effects of catholytes on the mobilization of proteins after capillary isoelectric focusing. Electroporesis. [J]. 1997,18(1):92-97.
    [39]K. T. Manabe, A. Iwasaki, H. Miyamoto. Separation of human plasma/serum proteins by capillary isoelectric focusing in the absence of denaturing agents. Electrophoresis. [J].1997,18(7):1159-1165.
    [40]W. Thormann, J. Caslavska. R. A. Mosher. Modeling of electroosmotic and electrophortic mobilization in capillization in capillary and microchip isoelectric focusing. J. Chromatogr. A. [J].2007,1155(2):154-163.
    [41]C. X. Cao, S. L. Zhou, Y. T. Qian, etc.. Investigations on factors that influence the moving neutralization reaction boundary method for capillary electrophresis and isoelectric focusing. J. Chromatography. A. [J].2002,952(12):29-38.
    [42]C. X. Cao. Moving chemical reaction boundary and isoelectric focusing:Ⅲ. Comparisons between fluxes (or transference numbers) of hydrogen and hydroxyl ions in stationary electrolysis and Svensson's isoelectric focunsing. J. Chromatogr. A. [J].1998,813(1):173-177.
    [43]C. X. Cao, Y. Z. He, M. Li, etc.. Improving separation efficiency of capillary zone electrophoresis of tryptophan and phenylalanine with the transient moving chemical reaction boundary method, J. Chromatogr. A. [J],2002,952(1-2): 39-46.
    [44]J. P. Quirino, S. Terabe. Exceeding 5000-Fold Concentration of Dilute Analytes in Micellar Electrokinetic Chromatography. Science. [J].1998,282(5388): 465-468.
    [45]A. Tiselius. Study of the electrophoresis of proteins by the moving-boundary method.Nova. Acta Reg. Soc. Sci. Upsal. [J].1930,4(1):7-11.
    [46]D. S. Burgi, R. L. Chien. Optimization in sample stacking for high-perfomance Capillary electrophoresis. Anal. Chem. [J].1991,63(18):2042-2047.
    [47]R. L. Chien, D. S. Burgi. Sample stacking of an extremely large injection volume in High-performance capillary electrophoresis. Anal. Chem. [J].1992, 64(9):1046-1050.
    [48]D. S. Burgi. Large volume stacking of anions in capillary electrophoresis using an Electroosmotic flow modifier as a pump. Anal. Chem. [J].1993,65(24): 3726-3729.
    [49]C. X. Cao, Y. Z. He, M. Li, etc. Stacking Ionizable Analytes in a Sample Matrix with High Salt by a Transient Moving Chemical Reaction Boundary Method in Capillary Zone Electrophoresis. Anal. Chem. [J].2002,74(16):4167-4174.
    [50]C. X. Zhang, W. Thormann. Head-Column Field-Amplified Sample Stacking in Binary Syatem Capillary Electrophoresis:A Robust Approach Provinging over 1000-Fold Sensitivity Enhancement. Anal. Chem. [J].1996,68(15):2523-2532.
    [51]J. P. Quirino, J. B. Kim, S. Terabe. Sweeping:concentration mechanism and applications to high-sensitivity analysis in capillary electrophoresis. J. Chromatogr. A. [J].2002,965(1-2):357-373.
    [52]C. X. Cao, W. Zhang, W. H. Qin, etc.. Quantitative Predictions to Conditions of Zwitterionic Stacking by Transient Moving Chemical Reaction Boundary Created with Weak Electrolyte Buffers in Capillary Electrophoresis. Anal. Chem. [J].2005,77(4):955-963.
    [53]C. B. Michael, A. M. Richard, W. G. Thormann. High-Resolution Computer Simulations of Stacking of Weak Bases Using a Transient pH Boundary in Capillary Electrophoresis.1. Concept and Impact of Sample Ionic Strength. Anal. Chem. [J].2006,78(2):538-546.
    [54]S. Hjerten, J. L. Liao, R. Zhang. New approaches to concentration on a microliter scale of dilute samples,particularly biopolymers with special reference to analysis of peptides and proteins by capillary electrophoresis I. Theory. J. Chromatogr. A. [J].1994,676(2):409-420.
    [55]J. Palmer, N. J. Munro, J. P. Landers. A Universal Concept for Stacking Neutral Analytes in Micellar Capillary electrophoresis. Anal. Chem. [J].1999,71(9): 1679-1687.
    [56]W. H. Qin, C. X. Cao, S. Li, etc.. Quantitative study on selective stacking of zwitterions in large-volume sample matrix by moving reaction boundary in capillary. Electrophoresis. [J].2005,26:3113-3124.
    [57]C. X. Cao, W. K. Chen. Experimental study of the moving chemical reaction boundary formed by CO2+ and OH-. Acta Chem. Scand. [J].1998,52(6): 714-717.
    [58]C. X. Cao, R. Z. Li, S. L. Zhou, etc.. Stable colloid of Co(OH)2 prepared by moving chemical reaction boundary method (MCRBM) in agarose gel. Colloids Surf. A. [J].2001,180(1-2):17-21.
    [59]C. X. Cao, Y. T. Qian, W. E. Gan. Quantitative studies on the preparation of colloidal particles of cobalt hydroxide by the moving chemical reaction boundary method in agarose gel. Colloid Polym. Sci. [J].2004,282(6):1059-1062.
    [60]S. Li, C. X. Cao, Z. X. Lin, etc.. Theoretical study on colloid/or inorganic material preparation by moving reaction boundary method in gel. Collooid Polym. Sci. [J].1970,42(9):983-989.
    [61]L. Y. Fan, C. J. Li, W. Zhang, etc.. Quantitative investigations on moving chelation boundary within a continuous EDTA-based sample sweeping system in capillary electrophoresis. Electrophoresis. [J].2008,29(19):3989-3998.
    [62]D. A. Skoog, D. M. West, F. J. Holler, etc.. Fundamentals of Analytical Chemistry,8th Edition; Thomson Learning Inc:Brooks/Cole; 2004, p:311-449.
    [63]华中师范大学,东北师范大学,陕西师范大学等.分析化学[M].高等教育出版社,第三版,87-140.
    [64]M. Hjelmeland, A. Chrambach. Formation of natural pH gradients in sequential moving boundary systems with solvent counterions. Ⅰ. Theory. Electrophoresis. [J].1983,4(1):20-26.
    [65]B. Molrnstam, K. G. Wahlund, B. Josson. Potentiometric Acid-Base Titration of a Colloidal Solution. Anal. Chem. [J].1997,69(24):5037-5044.
    [66]J. L. Walker. Ion specific liquid ion exchanger microelectrodes. Anal. Chem. [J]. 1971,43(3):89A-93a.
    [67]H. Liang, Y. Chen, L. J. Tian, etc.. Recursion approach for moving neutralization boundary formed on IPG strips Ⅰ. with strong alkali rehydration buffer. Electrophoresis. [J].2009,30:3134-3143.
    [68]K. Carlsson, B. Karlberg. Micro-volume flow titration and screening the dissociation constants (pKa) of weak acids. Analytica Chimica Acta. [J].2001, 434:149-156.
    [69]E. Fuguet, C. Rafols, E. Bosch, etc.. Fast high-throughput method for the determination of acidity constants by capillary electrophoresis Ⅰ. Monoprotic weak acids and bases. J. Chromatography A. [J].2009,1216:3646-3651.
    [70]P. P. Simo. Capillary Zone Electrophoresis of Some Extremely Weak Bases in Acetonitrile. Anal. Chem. [J].2006,78:5061-5067.
    [71]H. W. Manuela, K. E. Scriba. Mathematical Approach by a Selectivity Model for Rationalization of pH- and Selector Concentration-Dependent Reversal of the Enantiomer Migration Order in Capillary Electrophoresis. Anal. Chem. [J].2010, 82(15):6744-6744.
    [72]I. Casella, M. Gatta. Determination of Aliphatic Organic Acids by High-Performance Liquid Chromatography with Pulsed Electrochemical Detection. J. Agric. Food Chem. [J].2002,50:23-28.
    [73]T. Fuse, F. Kusu, K. Takamura. Determination of Acidity of Coffee by Flow Injection Analysis with Electrochemical Detection. J. Agric. Food Chem. [J]. 1997,45:2124-2127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700