节能、减排、低成本目标下发电绩效置换交易优化模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
改革开放以来,我国经济快速发展,取得了举世瞩目的成就,国家GDP总产值已经超越日本,成为仅次于美国的世界第二大国。但伴随经济快速发展的同时,我国能源消耗量也与日俱增,且受到以一次能源为主的能源结构影响,以CO2、S02、NOx及雾霾等为代表的污染排放量也逐年增加,国内环境状况逐渐下降,但作为发展中国家,经济发展仍是主要任务,这导致我国经济、能源与环境置换的矛盾越来越明显。电力产业作为我国的主要能源供给单位,在行业内进行节能减排对于缓解国家整体能源、环境与经济间的矛盾有着重要的意义。分析我国的电源结构可知,火电机组发电占总发电量比重仍然高于80%,这使得电力系统发电能耗和污染物排放对于国家整体能源与减排环境有着决定性的影响,研究如何改善我国电源结构,增加清洁能源发电,降低发电能耗、污染物排放与发电成本有着重要的理论和实践意义。结合国内外研究可知,在发电机组间开展发电置换,能够有效的降低火力发电,增加可再生能源发电,改善电源结构,尤其当水电大规模并网时,在降低系统发电能耗、污染物排放量的同时,还能够降低系统整体的发电成本。因此,为了解决我国经济、能源与污染物排放量间的发展窘境,在未来,更加深入的开展机组间发电置换有着重要的意义。但传统的机组发电置换往往不能兼顾发电置换节能、减排和低成本的要求,这就需要改变现有发电置换模型,引入一种新的发电置换匹配依据,撮合机组参与发电置换交易,本文把能耗、排放、发电成本统一在一个等效当量成本,即发电绩效成本上面,然后以发电绩效成本作为主要的发电置换依据,构建各类型发电置换交易模型,本文主要的研究工作有以下几个方面:
     (1)总结了国内外学者在机组间发电置换交易研究方面的相关成果,介绍了我国当前发电置换的基本理论、基本模式、经济补偿机制,对比分析了不同发电模式的经济与环境效益,为下文的研究奠定了理论基础。
     (2)针对传统发电置换交易模式的不足,提出了机组发电绩效的基本概念,介绍了绩效评价指标的基本内容,并从节能、减排和低成本等方面构建了机组发电绩效综合评价指标体系,并提出了基于集成赋权的理想物元可拓模型,对机组发电绩效进行评价,通过算例分析验证了所提方法的有效性和适用性。
     (3)在对火电机组间发电置换可行性论文的基础上,分别构建了基于发电绩效的机组发电置换与效益分配模型、基于多任务委托代理的机组发电置换优化模型和基于环境与成本约束的机组发电调度多目标优化模型,算例分析显示,以发电绩效作为发电置换匹配依据,更能够兼顾节能、减排和低成本等方面的要求,多任务委托代理模型适用于火电机组间发电置换优化模型。
     (4)从水电资源条件、水火电机组发电能耗与成本等方面论证了水火发电机组发电置换的可行性,分别构建了基于发电绩效和基于多目标CVaR模型的水火发电置换优化模型及水火电机组两阶段调度优化模型,算例分析显示,多目标CVaR模型能够有效的反应风险偏好程度对系统调度结果的影响,水火电机组两阶段调度优化模型能够降低系统发电能耗、污染物排放和成本,提升系统发电绩效水平。
     (5)介绍了我国风电发展的现状、问题并提出了相应的解决途径,引入机会约束规划办法,构建了风火电机组发电绩效置换优化模型,提出了基于熵权模糊满意度的模型求解算法,算例分析显示,风火电机组发电绩效置换模型能够得到更为均衡的系统调度方案,反映不同置信水平对系统发电调度的影响,具有适用性。
     (6)从全寿命周期的视角分析了风电、火电与抽水蓄能电站的联合运行效益,引入LHS方法对风电出力情景进行模型,分别构建了基于MLSAD方法和Mean-CVaR方法的多类型发电机组调度优化模型,并通过算例分析对比分析了两种模型在求解多类型发电机组调度模型的有效性,结果显示,随着风电预测功率误差方差的增大和置信水平要求的提高,系统运行成本风险均有所增加,所提方法与实际相符,适用于多类型发电机组调度优化问题。
Since the reform and opening, China's economic has experienced a rapid development and got remarkable achievements. Its GDP has surpassed Japan and become the second largest country. As economic developing, energy consumption keeps increasing. Energy supply mainly rely on primary energies, so pollutant emission growing rapidly, such as CO2、SO2、NOX and so on, which makes environmental situation becomes worse. As a developing country, economic development is the main task, which puts enormous pressure on the relationship between economic development, environment protection and energy supplying. Electric power industry is an important energy supply industry in China, so its energy saving and pollution reduction is of great signification to the whole country's sustainable development. When analyzing China's energy structure, we can find that thermal units'output occupies more than80%of the total power generation. This situation makes electric power industry plays an important role in the progress of achieving China's emission reduction targets. How to ameliorate China's power structure? How to increase clean energy generation? How to decrease energy consumption, pollutant emission and cost during energy generation progress? All these questions are worth studying and practicing. According to research statues, we know that conducting power generation replacement between units can effectively decrease thermal power generation and increase renewable energy power generation. Especially during large-scale grid connecting of hydropower, system's energy consumption rate, pollutant emission and cost are all decreased. To ease the plight of economic, energy and pollutant emissions, we should emphasis on carrying out energy generation replacement. However, conventional replacement model cannot balance energy saving, pollutant emission reduction and low cost demands. And a new power generation replacement matching basis is in urgent need. Therefore, this paper puts energy consumption, pollutant emission and generation cost on an equivalent cost namely generation performance costs. And on this basis, establishes several kinds of power generation replacement model. The main work of this article can be summarized as following:
     (1) Reviewed research results on power generation replacement, and introduced China's basic power generation theories, basic trade patterns and economic compensation mechanisms. Then compared different generation pattern's economic and environmental benefits, and established the theoretical foundation.
     (2) To make up for the deficiencies of conventional power generation replacement trade mode, this paper put forward the basic concept of generation performance and its basic content. Then take energy-saving, pollutant emission reduction and low cost into consideration and put forward a comprehensive evaluation index system for power generation performance. This paper established an empowerment-based integration ideal element extensional model, which can evaluate power generation performance. A simulation certificated its validity and applicability.
     (3) Based on research results of papers that on thermal power generation replacement feasibility, this paper established units'power generation and benefits distribution model based on power generation performance, power generation replacement optimization model based on task agency, and power generation scheduling model based on environment protection and low cost. And its simulation result shows that when using power generation performance as matching criterion, we can get an optimal result to meet requirements from energy saving, pollutant emission reduction and low cost. And multitasking principal-agent model suits power generation replacement among thermal units.
     (4) this paper demonstrated the feasibility of power generation between thermal power and hydropower units. And then established multi-objective thermal-hydro power CVaR model based on power generation performance, and thermal-hydro power two-period scheduling optimization model. Their simulation results show that the multi-objective CVaR model can reflect the influence of risk appetite on the result of system scheduling more effectively. And the two-period model can reduce energy consumption, pollutant emission and cost, which can improve system's power generation performance.
     (5) Introduced current situation of wind power in China, put forward existing problems and solving methods. This paper pulled in chance-constrained programming approach, and established thermal-hydro power generation performance replacement optimization model, and corresponding solving algorithm that based on entropy fuzzy satisfaction. Its simulation result shows the thermal-hydro power generation performance replacement optimization model can get a more balanced system scheduling scheme and reflect effect of different confidence levels for power generation scheduling system.
     (6) Pulling in LHS method to establish multi-type power generation optimization scheduling models respectively based on MLS AD method and Mean-CVaR method. And this paper used a simulation to compare two models'effectiveness. The result shows that as error variance of wind power prediction increasing and confidence level improving, system operation cost increasing. That means the methods put forward are along with real condition, so these models can suit multi-type power generation units scheduling optimization problems
引文
[1]Andrii Gritsevskyi, Nebojsa Nakicenovic. Modeling Uncertainty of Induced Technological Change[J].Energy Poliey,2000(28):907-921
    [2]谭忠富等著.电力价格链设计理论与方法[M].北京:经济管理出版社,2009.1
    [3]廖永进,王力,等.火电厂脱硫电价研究与探讨[J].中国电力,2008,41(3):71-74
    [4]翟慧娟,刘金朋,王官庆.大型沼气发电综合利用工程效益评价研究[J].华东电力,2012,40(7):1241-1244
    [5]严干贵,刘红哲,穆钢等.特殊运行条件下风电的“挤出效应”及风电节能减排综合效益的评估[J].电网技术,2012,36(4):51-56
    [6]王敏,丁明.含大型太阳能发电系统的极限传输容量概率计算[J].电力系统自动化,2010,34(7):31-35
    [7]谭忠富,吴恩琦,鞠立伟等.区域间风电投资收益风险对比分析模型[J].电网技术,2013,37(3):712-719
    [8]尚金成.基于节能减排的发电权交易理论及应用:发电权交易理论[J].电力系统自动化,2009,33(12):46-52
    [9]江岳春,姚建纲等,基于“容量合同+效率置换+实时市场”模式的发电竞价系统的研究[J].电工技术学报,2006,(1)
    [10]Montgomery D W. Markets in licenses and efficient pollution rights[J] Journal of Environmental Economics and Management,1972,16:156-166
    [11]Sartzetakis E S. On the efficiency of competitive markets for emission permit[J].Environmental and Resource Economics,2004,27(10):1-19
    [12]肖江文,罗云峰,赵勇,等.初始排污权拍卖的博弈分析[J].华中科技大学学报,2001,29(09):37-39
    [13]李爱年,胡春冬.排污权初始分配的有偿性研究[J].中国软科学,2003,(05):17-21
    [14]赵凤春,杨金田.电力行业S02排污权有偿使用和排污交易探讨[J].环境污染与防止,2009,31(3):85-87
    [15]任玉珑,夏德建.中国电力行业排污权交易机制设计研究[J].技术经济,2010(1):35-43.
    [16]任玉珑,王昌海,等.排污权制度下的电力市场稳定性分析[J].工业工程,2009,12(1):5-9
    [17]Ming Yang. China's energy efficiency target 2010[J].Energy Policy,2008,(36)
    [18]P.A. Steenhof. Decomposition of electricity demand in China's industrial sector[J]. Energy Economics,2006(28)
    [19]魏一鸣等,中国可持续发展战略报告[M].北京:科学出版社,2006
    [20]谭忠富,陈广娟,等.以节能调度为导向的发电侧与售电侧峰谷分时电价联合优化模型[J].中国电机工程学报,2009,29(1):55-62
    [21]国家电网公司电力需求侧管理指导中心.美国节能服务行业回顾[M].2005
    [22]Gehring Kay L. Can yesterday's demand-side management lessons become tomorrow's market solutions[J].The Electricity Journal,2002,15(5)
    [23]Raymond F. Ghajar, Roy Billinton. Economic costs of power interruptions:a consistent model and methodology[J]. Electrical Power and Energy Systems,2006,28
    [24]Le Anh Tuan, Kankar Bhattacharya. Competitive Framework for Procurement of Interruptible Load Services[J].IEEE Transactions on Power Systems,Vol.18, No.2, May 2003
    [25]Khanh Q. Nguyen. Impacts of a rise in electricity tariff on prices of other products in Vietnam[J]. Energy Policy,2008,36(8)
    [26]施应玲,孙艺新,等.差别电价传导机制及延迟性的系统动力学模拟[J].技术经济,2009,28(3):66-69
    [27]邹小燕等.发电公司与大用户的直购电力合同谈判模型[J].系统工程学报,2007,(1)
    [28]范玉宏,张维,等.区域电网节能发电调度模式研究[J].电力系统保护与控制,2009,37(16):107-111
    [29]陈皓勇,张森林,等.区域电力市场环境下节能发电调度方式[J].电网技术,2008,32(24):16-22
    [30]葛亮,谢宇翔,等.与市场机制相协调的发电交易与调度的节能减排方法[J].电工技术学报,2009,24(8):167-173
    [31]Tankut Yalcinoz, Onur Koksoy.A multiobjective optimization method to environmental economic dispatch.Electrical Power and Energy Systems 29 (2007) 42-50
    [32]Miettinen K. Nonlinear Multiobjective optimization[M]. Kluwer Academic Publishers; 1999.
    [33]C. Palanichamy, N. Sundar Babu. Analytical solution for combined economic and emissions dispatch.Electric Power Systems Research 78 (2008) 1129-1137
    [34]C. Palanichamy, K. Srikrishna, Economic thermal power dispatch with emission constraint, J. Indian Institute of Eng. (India) 72 (April 1991) 11.
    [35]刘珂.可再生能源发电投资风险分析与评估模型[D].华北电力大学,2013.
    [36]孟志青,虞晓芬,蒋敏.基于权值不同置信水平下的多目标CVaR模型.中国管理科学,2005(专辑):206-208.
    [37]GRITSEV SKY IA, NAK ICENOVICN. Modeling Uncertainty of Induced Technological Change [J]. Energy Policy,2000(28):907-921.
    [38]国家发改革委能源局、能源研究所《中华人民共和国可再生能源法》政府建议稿起草工作组.可再生能源相关政策、法规以及文献汇编[R].2005,3.
    [39]HoltE.A.:Ellis, M. Trendsin Green Power Marketing in Australia and the United States. Powe Engineering Review[C]. IEEE Power Engineering Review,1997,17(12):17-23.
    [40]王仲颖.从英国可再生能源开发经验看我国可再生能源开发机制(一)[J].我国能源,2000,(2):15-20.
    [41]王白羽.可再生能源配额制在我国应用探讨[J].我国能源,2004,26(4):5-11.
    [42]任东明.关于建立我国可再生能源发展总量目标制度若干问题探讨[J].我国能源,2005,27(4):18-23.
    [43]任东明,张宝秀,张锦秋.可再生能源发电配额制政策(RPs)研究[J].我国人口资源与环境,2002,12(6):23-27.
    [44]樊杰,孙威,任东明.基于可再生能源配额制的东部沿海地区能源结构优化问题探讨[J].自然资源学报,2002,15(4):45-49.
    [45]顾树华,刘白羽.对我国可再生能源配额制的研究与探讨[J].科学新闻,2003,21(7):5-50.
    [46]L. Bird, R. Wustenhagen, J. Aabakken. A review of international green Power markets: recent experience, trends, and market drivers [J]. Renewable and Sustainable Energy Reviews,2002,6:513-536.
    [47]尹春涛.绿色电力营销—可再生能源发展的市场动力[J].我国能源,2004,26(1):56-60.
    [48]戴双凤,吴运生.绿色电力的营销障碍与对策探讨[J].电力需求侧管理,2007,9(6):23-27.
    [49]刘艳丽.浅论我国电力企业绿色营销策略[J].价格与市场,2007,1(4):12-16.
    [50]Fredric C. Menz. Green electricity Policies in the United States:case study [J]. Energy Policy,2005,33:2398-2410.
    [51]刘连玉.对可再生能源配额制的考察与思考[J1.我国电力,2002,(9):74-77.
    [52][GS集团.可再生能源工作组最终报告[R].2000.
    [53]国家计委/国合会能源工作组.可再生能源电力市场配额制政策研讨会论文集[C].2001.120-125.
    [54]Rolf Wustenhagen, Joehen Markard, Bernhard Truffer. Diffosion of Green Power Products in Switzerland [J]. Energy Policy,2003,31:621-632.
    [55]Rolf Wustenhagen, Miehael Bilharz. Green energy market development in Germany: effective public policy and emerging customer demand [J]. Energy Policy,2006, 34:1681-1696.
    [56]曾东红.发达国家可再生能源融资法律制度的发展趋势及借鉴[J].南方经济,2005,(12):12-16.
    [57]李霞,史瑞琼.能源经济可持续发展与促进可再生能源发电法律制度研究[J].能源 与环境,2005,(4):36-40.
    [58]Hammons, T. J. Boyer, J. C.:Conners, S. R.;Davies, M.;Ellis, M.:Fraser, M.:Holt, E.A.; Markard, J. Renewabl Energy Alternatives for Developed Countries. Energy Conversion[C]. IEEE transactions on energy conversion,2000,15(4):481-493.
    [59]国家发展计划委员会基础产业发展司.我国新能源与可再生能源白皮书(1999)[M].我国计划出版社,2000.
    [60]李艳芳.我国《可再生能源法》的制度构建与选择[J].我国人民大学学报,2005,(1):52-57.
    [61]T.J. Hammons. Impact of electric power generation on green house gas emissions in Europe:Russia, Greece, Italy and views of the EU Power Plant Supply Industry-a critical analysis [J]. Electrical Power and Energy Systems,2006,28:548-564.
    [62]肖江平.我国《可再生能源法》的制度设计[J].我国法学,2004,(2):23-26
    [63]De Tuglie, E.:Dieorato, M.:LaSeala, M. Diselosing environmental attributes to stimulate "Green Power" marketing. Power Engineering Society Winter Meeting [C]. IEEE transactions on energy conversion,2000,15(3):585-611.
    [64]李才华,罗鑫,张粒子.完善可再生能源电价机制的设想[J].价格理论与实践,2007,(5):23-2
    [65]付蓉.国外绿色电价项目及对我国的启示[J].我国能源,2011,10:19-21+35.
    [66]时憬丽.关于在电力市场环境下建立和促进可再生能源发电价格体系的研究[J].可再生能源,2008,30(1):43-47
    [67]谭忠富,侯建朝.电价设计与电力产业节能的关系研究[J].华北电力大学学报(社会科学版),2007,(2):56-59.
    [68]尚金成,张立庆.电力节能减排与资源优化配置技术的研究与应用.电网技术,2007,31(22):58263.
    [69]莫莉,周建中,李清清.基于委托代理模型的发电权交易模式.电力系统自动化,2008,32(18):30234.
    [70]肖健,文福拴.发电权交易的阻塞调度.电力系统自动化,2008,32(2):24229.
    [71]尚金成.基于节能减排的发电权交易理论及应用(一)发电权交易理论[J].电力系统自动化,2009,12:46-52.
    [72]国家电力监管委员会.发电权交易监管暂行办法[Z].2008,4
    [73]尚金成,何洋.基于节能减排的发电权交易理论及应用(二)发电权交易分析及应用[J].电力系统自动化,2009,13:37-42.
    [74]王雁凌,张粒子,杨以涵.基于水火电置换的发电权调节市场[J].我国电机工程学报,2006,05:131-136.
    [75]郑欣,蒋传文,李磊,赵岩.基于能耗和效益最优的发电权节能降耗分析[J].电力系统自动化,2008,24:39-42.
    [76]江岳春,姚建刚,周丽兰,盛艳.基于“容量合同+效率置换+实时市场”模式的发电竞价系统的研究[J].电工技术学报,2006,01:52-57.
    [77]Dales J. H. Pollution, property and prices [M]. Toronto:University of Toronto Press,1968
    [78]Tietenberg T.H.,崔卫国,范红延.排污权交易:污染控制政策的改革[M].北京:三联书店,1992
    [79]MONTGOMERY W D. Markets in licenses and efficient pollution control programs[J]. Journal of Economic Theory,1972,5(3):3952418.
    [80]TIETENBERG T H. The design of property rights for air pollution control [J]. Public Policy,1974,27(3):2752292.
    [81]蔡守秋,张建伟.论排污权交易的法律问题[J].河南大学学报:社会科学版,2003(5):982102.
    [82]张艳林,孙永广,刘德顺.碳减排量定价理论研究[J].系统工程理论与实践2002(4):1052108.
    [83]诺思.经济史中的结构与变迁[M].陈郁,译.上海:三联书店,1994.
    [84]COASE R H. The problem of social cost [J]. Journal of Law and Economics, 1960(3):1241.
    [85]吴健.排污权交易[M].北京:我国人民大学出版社,2005:51254.
    [86]周慧杰,宋书巧,周兴.美国的排污权交易及对我国的启示[J].广西师范学院学报:自然科学版,2006,23(6):58-61.
    [87]吴健.排污权交易[M].北京:我国人民大学出版社,2005:68.
    [88]林红,张建宇,杜丹德.我国酸雨控制战略二氧化硫排放总量控制及排放权交易政策实施示范[M].北京:我国环境科学出版社,2004
    [89]罗丽.美国排污权交易制度及其对我国的启示[J].北京理工大学学报:社科版,2004,(1):61-64
    [90]帅亮乾,贵州省产业结构与经济增长关系实证研究[J].价格月刊,2011,(4):66-67
    [91]帅亮乾,贵州省产业结构与经济增长关系实证研究[J].价格月刊,2011,(4):66-67
    [92]Bressers H. T. A Huitema D. Economic Instruments for Environmental Protection:can we trust the magic carpet [J]. International Political Science Review,1999,20(2):175-196.
    [93]Woerdman E. Implementing the Kyoto Protocol:Why JI and CDM show more Promise than International Emissions Trading [J]. Energy Policy,2000,28(1):28-29
    [94]Farrell A. Multi-lateral emission trading:lessons from inter-state NOx control in the United States [J]. Energy Policy,2001,29(13):1061-1072
    [95]安丽.排污权交易评价指标体系与评价方法研究[D].天津:天津大学,2006
    [96]奚爱玲.水环境治理中排污权交易的国际经验及上海的实践[J].世界地理研究,2004,13(2):58-63
    [97]黄新.我国首例异地二氧化硫排污权买卖成交[J].硫酸工业,2003,(2): 12
    [98]Raufer R., Li S. Y. Emissions trading in China:A conceptual leapfrog approach [J].Energy,2009,34:904-912
    [99]任玉珑,夏德建.我国电力行业排污权交易机制设计研究-基于欧美国家的相关经验[J].技术经济,2010,29(1):35-44
    [100]谭忠富,陈广娟,赵建保,侯建朝,姜海洋.以节能调度为导向的发电侧与售电侧峰谷分时电价联合优化模型[J].中国电机工程学报,2009,01:55-62.
    [101]Doonerman Gerard L, Wangensteen Ivar. Demandside Provision of Peaking capacity and reserves in deregulated Power systems[C].International Conference on Electric Utility Deregulation and Research Restructuring and Power Technologies 2000. London(UK),2000:290-295.
    [102]李锐.系统负荷率对电网降损节能的影响[J].电气时代,2006,9:80-81.
    [103]刘昌,姚建刚,余虎,葛亮,李继传一种新型的电网输电阻塞管理模式[J].电网技术,2005,29(12):16-21.
    [104]宋晓辉.考虑需求侧管理的高压配电网规划[D].北京:我国电力科学研究院,2005.
    [105]李天威.火电行业低碳减排对策建议[J].环境保护,2013,24:43-45.
    [106]杜欣慧,孙红玲.节能发电调度机组组合算法的研究[J].现代电力,2010,27(3):21-24
    [107]赖菲,王庭飞,郭翔.火电机组节能发电调度系统研究(二)关键技术[J].发电技术论坛,2010,39(4):83-86
    [108]赖菲,王智微,郭翔.火电机组节能发电调度系统研究(一)系统概述[J].发电技术论坛,2009,38(9):92-94
    [109]赖菲,王智微,郭翔.火电机组节能发电调度系统研究(三)系统实现[J].发电技术论坛,2010,39(5):98-100
    [110]贺茂石.热电联产机组电力调峰运行可行性研究[D].华北电力大学,2012.
    [111]李沛峰,杨勇平,陈玉勇,戈志华,杨志平.热电联产供热系统节能分析及改进[J].工程热物理学报,2013,08:1411-1415.
    [112]陈洁,杨秀,朱兰,张美霞.基于遗传算法的热电联产型微网经济运行优化[J].电力系统保护与控制,2013,08:7-15.
    [113]过夏明,秦毓毅,魏少岩.节能发电调度下的水电短期优化调度[J].电力系统及其自动化学报,2010,22(1):138-141
    [114]陈亮,马光文,杨道辉.节能发电调度下梯级水电站短期优化调度研究[J].水力发电,2009,35(10):85-95
    [115]韦化,梁振成,阳育德.节能调度中的水火电力最优协调问题[J].电力自动化设备,2010,30(4):1-4
    [116]黎静华,韦化.求解机组组合问题的领域搜索法[J].中国电机工程学报.2008(13)
    [117]韦化,李滨,杭乃善,刘东平,文杰.大规模水火电力系统最优潮流的现代内点理论分 析[J].中国电机工程学报.2003(04)
    [118]莫小林.节能发电调度方式下抽水蓄能电站运营模式探讨[D].华北电力大学(北京),2008
    [119]吴至复,曾鸣,刘宝华,等.电力市场中的水火电优化调度模型及其应用[J].电网技术,2006,30(15):45-49
    [120]王雁凌,张粒子,杨以涵.基于水火电置换的发电权调节市场[J].中国电机工程学报,2006,26(5):131-136
    [121]韩冬,蔡兴国.综合环境保护及峰谷电价的水火电短期优化调度[J].电网技术.2009,33(14):78-83
    [122]Sasikala J,Ramaswamy M. Optimal gamma based fixed head hydro thermal scheduling using granitic algorithmic [J]. Expert Systems with Applications,2010,37(4); 3352-3357
    [123]段虞荣,田玉芳.大系统分解协调法和非线性规划法应用于电力系统经济调度[J].重庆大学学报(自然科学版).1992(6):112-118
    [124]陈刚,相年德,陈雪青.水火联合电力系统长期优化调度模型与算法[J].水电能源科学.1992,10(1):48-57
    [125]Ferrero R W,Rivera J F, Shahidehpour S M. A dynamic programming two-stage algorithm for long-term hydrothermal scheduling of multireservoir systems[J]. IEEE Transactions on Power Systems,1998,13(4):1534-1540
    [126]AmjadyN, Farrokhzad D, Modarres M. Optimal reliable operation of hydro thermal power systems with random unit outages [J]. IEEE Transactions on Power Systems,2003,18(1):279-289
    [127]庞峰.电力电量平衡新方法[J].水力发电学报,2001(4):117-122
    [128]Medina J, Quintana V H, Conejo A J. A clipping-off interior-point technique for medium-term hydro-thermal coordination [J]. IEEE Transactions on Power Systems,1999,14(1):266-273
    [129]Contaxis G C, Kavatza S D. Hydrothermal scheduling of a multireservoir power system with stochastic inflows[J]. IEEE Transactions on Power Systems, 1990,5(3):766-773
    [130]朱凌志,陈宁,韩华玲.风电消纳关键问题及应对措施分析[J].电力系统自动化,2011,22:29-34.
    [131]徐国丰,黄民翔,裴旭.华东大规模风电消纳模式研究[J].华东电力,2011,07:1045-1048.
    [132]刘新东,方科,陈焕远,佘彩绮.利用合理弃风提高大规模风电消纳能力的理论研究[J].电力系统保护与控制,2012,06:35-39.
    [133]谢春瑰,高长征,李莹莹,房芳.风火电联合运营优化分析[J].煤炭技术,2011,12:275-277.
    [134]申杨硕,陈致宏,鞠立伟,谭忠富,赵宝柱.节能调度环境下风、火电联合运行优化模型及其应用[J].水电能源科学,2013,05:235-238.
    [135]汪宁渤,丁坤,陟晶,马彦宏,王建东.风电火电打捆联合外送是解决风电市场瓶颈的有效途径[J].电力技术,2010,Z2:1-4+19.
    [136]K. B. Porate, K. L. Thakre, G, L, Bodhe, Impact of wind power on generation economy and emission from coal based thermal power plant, International Journal of Electrical Power and Energy Systems,2012,44(1):889-896.
    [137]龙军,莫群芳,曾建.基于随机规划的含风电场的电力系统节能优化调度策略[J].电网技术,2011,35(9):133-138
    [138]Hongyu ZHANG, Huojian ZHU, Hong SHEN, et al, The Probabilistic Production Simulation for Mixed Wind-Hydro-Thermal Power System and the Sensitivity Analysis for the Indices of Abandoned Wind,2012 IEEE PES Asia-Pacific Power and Energy Engineering Conference, Piscataway, NJ, USA,2012:1-4
    [139]Hongjing Chen, Jianxue Wang, Yao Zhang, Economic Dispatch of Hydro-Thermal Power System with Large-Scale Wind Power Penetration,2012 IEEE PES Asia-Pacific Power and Energy Engineering Conference, Piscataway, NJ, USA, 2012:1-4
    [140]范玉宏,张维,叶永松.基于机组煤耗高低匹配替换的区域电网节能调度模型[J].电网技术,2006,33(6):78-81
    [141]尚金成,刘志都.节能发电调度协调理论及应用[J].电力自动化设备,2009,06:109-114.
    [142]宋剑,任开银.跨区域电力调度服务中心协同工作体系的实现[J].电力系统自动化,2012,13:72-75.
    [143]谭忠富,吴恩琦,鞠立伟等.区域间风电投资收益风险对比分析模型[J].电网技术,2013,37(3):712-719
    [144]谢国辉,张粒子,舒隽.火电机组日前节能发电调度机组组合[J].电力系统及其自动化学报,2011,23(2):122-126
    [145]卫炜,焦莹,居勇等.节能调度下的火电机组节能减排效果研究[J].华东电力,2011,38(1):31-33
    [146]Li Li, Zhongfu Tan, Jianhui Wang.Energy conservation and emission reduction policies for the electric power industry in China[J].Energy Policy,2011,39:3669-3679
    [147]Gert Tinggaard Svendsen, Carsten Daugbjerg, Lene H. Consumers, Industrialists and the Political Economy of Green Taxation:CO2 Taxation in OECD[J]. Energy Policy,2001 (29):489-497.
    [148]Leslie Shiell. Descriptive, Prescriptive and Second-best Approaches to the Control of Global Greenhouse Gas Emissions[J]. Journal of Public Economics,2003 (87): 1431-1452.
    [149]Schuichi Ohori. Optimal Environmental Tax and Level of Privatization in an International Duopoly[J]. Journal of Regulatory Economics,2006(29):225-233.
    [150]李惠玲,白晓民.电动汽车充电对配电网的影响及对策[J].电力系统自动化,2011,35(17):38-43
    [151]Crocker T. D. The Structuring of Atmospheric Pollution Control Systems[J]. The Economics of Air Pollution,1966, (5):61-86
    [152]Fichtner, W. Strategic Production Management of Companies Participating in the European Greenhouse Gas Emission Allowance Trading Scheme[J]. Emission Trading and Business,2006, (S):105-117
    [153]李现忠,蔡兴国,付春梅.碳交易机制下考虑节能减排的竞价交易模式[J].电力系统自动化,2011,35(10):48-52
    [154]曾鸣,李娜,刘超.基于效用函数的居民阶梯电价方案的节电效果评估[J].华东电力.2011,39(8):1215-1219

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700