大线能量焊接高强船体钢的冶金关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为改善低合金高强度船体钢焊接性和提高船体钢大线能量焊接的适应性,本文对高强度船体钢中第二相氧化物粒子形成的热力学进行了深入分析,研究了Ti处理改善高强度船板钢焊接热影响区的(Heat Affected Zone,以下简称HAZ)组织和性能,并探讨了Ti氧化物促进HAZ晶内铁素体形核的机理。深入研究了大线能量焊接船板钢的关键合金设计与关键冶金工艺,并对研制的大线能量焊接船板钢进行了焊接性能分析,提出了可大线能量焊接工艺范围。
     本文首先对大线能量焊接船板钢中氧化物的形成进行了热力学研究,提出了Si-Mn复合脱氧+Ti脱氧的基本技术思路。结果表明:采用Si-Mn复合脱氧,钢液平衡的[O]含量降低。[Si]含量为0.30%时,采用Si单独脱氧相平衡的[O]含量为0.0084%;采用Si-Mn复合脱氧,钢液平衡[O]则可以降低到0.0062%。在船板钢常规Ti含量(0.01-0.02%)、常规氧含量(0.0006%-0.0030%)范围内,钢中的钛优先与氧生成Ti2O3。钢中的A1对Ti2O3的形成有显著,二者在钢液中发生氧化还原反应。因此,当钢液经过Si. Mn弱脱氧后,为了促进Ti203的形成,需将钢液中的氧含量控制小于30ppm,[A]含量控制小于94ppm。
     对Ti氧化物促进晶内针状铁素体形核机理进行分析。采用Gleeble3500D对Ti脱氧钢进行连续冷却淬火实验。相变温度为725℃时,晶界铁素体和侧板条铁素体在晶界开始形成,同时晶内针状铁素体开始形核长大。到650℃时晶界铁素体己基本完全形成,晶内针状铁素体迅速长大,抑制了侧板条铁素体由晶界向晶内的生长。575℃时针状铁素体组织已在奥氏体晶内形成大量交错密排的组织。利用Bonding扩散实验从宏观角度探讨了Ti203周围贫锰区(MDZ)形成的机理,以及高温保温时间对其形核能力的影响。结果表明,在Ti2O3粉末与基体界面处有铁素体带形成,而A12O3粉末与基体界面处却无铁素体带形成,说明Ti2O3有较强的促进铁素体形核能力。电子探针分析发现钢的基体材料与氧化物接触的过渡层中形成了约10μm的贫锰区。Ti2O3吸附了周围的Mn原子,促进了贫锰区的形成,提高了相变平衡温度Ae3,有效地促进了铁素体形成。随着高温保温时间的增加,Ti氧化物促进针状铁素体形核能力下降,这主要因为保温时间越长,Mn越容易扩散到Ti203中并形成相对饱和,造成MDZ的减少,从而导致晶内铁素体形核能力减弱。
     为获得大量、细小、弥散分布的Ti氧化物夹杂,显著促进针状铁素体形核、提高HAZ的韧性,系统研究了微量Mg. Zr对Ti脱氧钢中夹杂物及其大线能量焊接时焊接热影响区组织和韧性的影响。结果表明:当钢中添加12ppm Mg时,钢中形成等摩尔数的Ti2O3和Mg2TiO4氧化物颗粒,此时钢中含Ti氧化物颗粒的粒度最小,数量最多,大线能量焊接时焊接热影响区的低温韧性最高。微量Mg加入到钢中能降低含Ti氧化物聚集长大的能力,有效的细化了氧化物的尺寸,提高了氧化物夹杂促进针状铁素体形核的能力。当钢中添加43ppm Zr时,钢中形成等摩尔数的Ti2O3和ZrO2,此时含Ti氧化物的粒度最为细小,数量最多,大线能量焊接时焊接热影响区的低温韧性最高。这主要是由于Zr氧化物的密度较大,不容易在钢液中上浮,细小的ZrO2颗粒能够为随后形成的含Ti氧化物提供大量的形核核心,避免含Ti氧化物的聚集长大,增加了晶内针状铁素体的形核核心的密度。
     首次开发了大线能量焊接船板钢的关键冶金工艺技术。通过Ti合金丝喂线的方法,可以在钢中形成大量弥散分布的细小含Ti氧化物颗粒,其平均粒度尺寸约为1~3μm,氧化物类型主要为Mg-Al-Ti-O复合氧化物。脱氧时间对钢中Ti氧化物形成存在显著影响。随着脱氧时间的增长,钢中氧化物尺寸增大,数量减少。采用Mg-Ti复合处理的E36大线能量焊接船板钢,能够适应最大240KJ/cm的线能量焊接要求。
To improve the weldability and high heat input welding adaptability of high strength low alloy ship hull steel, analysis of formation thermodynamics on the second phase oxide particles in high strength ship steel, microstructures and properties of Heat Affected Zone (HAZ) in Ti-treated high strength ship hull steel, and mechanism of Ti oxide promoting the formation of acicular ferrite in HAZ were studied in this dissertation. Then key alloy design, metallurgical technology and weldability of high heat input welding ship steel were investigated, proposing the technology range of approvingly high heat input welding.
     Firstly analysis of formation thermodynamics on the oxide particles in high heat input ship steel was studied in this paper, proposing the basic technical thought of Si-Mn complex deoxidization. The result shows that, oxygen content of melt equilibration decrease by using Si-Mn complex deoxidization technique. When Si content was0.3%, oxygen content of melt equilibration was0.0084%by using Si deoxidization, while it lowed to0.0062%by using Si-Mn complex deoxidization. Within the convention scope of Ti (0.01~0.02%) and O(0.0006%-0.0030%) content in ship steel, titanium and oxygen in the liquid steel forms the reaction of Ti2O3pirorly. Also the formation of Ti2O3was effect by aluminium, they can cause oxidation-reduction reaction. So, to promote the formation of Ti2O3, oxygen content of liquid must less than30ppm and aluminium content less than94ppm before Si-Mn complex deoxidization.
     Nucleation mechanism of acicular ferrite promoted by Ti oxides was investigated. The continuous quenching test of Ti deoxidized steel was performed using Gleeble3500D. With a decrease in temperature to725℃, the GBF (grain boundary ferrite) and FSP (ferrite side plate) begin to nucleate along the austenite grain boundaries,at the same time the acicular ferrite mucleate at Ti2O3within austenite grains.The phase transformation of GBF basically completed and the acicular ferrite intragranularly growed rapidly which suppressed the growth of FSB at650℃,the interlocking microstructure of acicular ferrite formed in austenite grains when temperature continued to575℃.Bonding diffusion experiment had been performed to analyze the mechanism of MDZ(Mn-depleted zone) around Ti2O3from macro perspective and the effect of high temperature holding time on ferrite nucleation ability had also been discussed.The results showed that the ferrite layers formed along the interfaces between the steels and the Ti2O3powders and the ferrite layers hadn't been found along the interfaces between the steels and the Al2O3powders.It confirmed that Ti2O3particle had high ability to promote acicular ferrite nucleation.The width of the MDZ decreased with decreasing austenitizing temperature and the ferrite layers disappeared the austenitizing temperature was at950℃.The lOμm width of MDZ formed near steel-Ti2O3interfaces in the bonded apecimens was analyzed by electron probe microanalysis(EPMA).The MDZ developed in the vicility of steel-Ti2O3powder interfaces because Ti2O3itself absorb neighboring Mn within an austenite matrix, then ferrite formed remarkably because of phase equilibrium temperature increased. The nucleation ability decreased at Ti2O3with increasing of high temperature holding time. It was becaused that with increasing of high temperature holding time, manganese diffused into Ti2O3easily and formed into relative saturation, which reduced the MDZ and nucleation ability of intragranular ferrite.
     To gain abundant, fine, dispersive Ti oxides which promote acicular ferrite nucleation notably and enhance toughness of HAZ, effct of small amounts of Mg, Zr on the inclusions and microstructure and HAZ toughness during large heat input welding in Ti treated steel were systematic studied. The result showed that the high input welding HAZ showed the highest low temperature toughness and the size of inclusions was much fine when12ppm Mg added to the Ti treated steel, and the same amounts of Ti2O3and Mg2TiO4formed at this time. Microcontent Mg added to the Ti treated steel decreased the attractive force of inclusions significantly, effectively refined the size of Ti-bearing oxides. The same amounts of Ti2O3and ZrO2formed and HAZ toughness was the highest during high input welding when43ppm Zr added to the Ti treated steel. The density of Zr oxide was relatively higher, and it was not easy for the oxides rising in the liquid steel. Large amounts of fine Zr oxide could provide the nucleation core for the Ti oxide formed later, which avoided the coarsening o f Ti oxides and increase the density of nucleation core of intragranular acicular ferrite.
     Key metallurgical technology of high heat input welding ship steel were empoldered firstly. Large amounts of dispersed Ti-bearing inclusions which average granularity was1~3μm and mainly were Mg-Al-Ti-O complex oxides formed in steel by using Ti wire feeding treatment. Deoxidation time affected the formation of inclusions in Ti treated steel greatly, size of inclusions increased and quantity decreased with increasing deoxidation time. High heat input welding ship steel for E36can adapt240KJ/cm welding energy by using Mg-Ti complex treatment.
引文
[1]杨才福,张永权.新一代易焊接高强度高韧性船体钢的研究.钢铁,2001,36(11):59-64.
    [2]S.Liu, D.L.Olson. The Role of Inclusions in Controlling HSLA steel weld Microstructures. Welding Journal,1986,65(6):139-149.
    [3]H.Zhang, Y.T.Lei, J.S.Wei. Development of High Strength Low Alloy Ship Hull Steel. Steel Construction,2004,19(2):38-43.
    [4]张文钺.焊接物理冶金.天津大学出版社,1991.
    [5]A.D.Wilson,W.G.Taylor. A710:A High Strength Low Carbon Alloy Steel for Offshore Application. Offshore Technology Conference,1985,10:50-71.
    [6]H.J.Kim, B.Y.Kang. Effect of Microstructures Variation on Weld Metal Cold Cracking of HSLA-100 steel. ISIJ International,2003,43(5):706-713.
    [8]J.L.Lee, Y.T.Pan. Effect of Silicon Content on Microstructure and Toughness of Simulated HAZ in Titanium Killed Steels. Material Science and Engineering,1992, 8(3):236-242.
    [9]大野恭秀.Ti-B系大入热溶接用钢のHAZ微视组织特征.铁と钢,1987,73(8):94-101.
    [10]雍岐龙.钢铁材料中的第二相.北京机械工业出版社,2006.
    [12]H.Homma, S.Okita, S.Matsuda, K.Yamamoto. Improvement of HAZ Toughness in HSLA Steel by Introducing Finely Dispersed Ti-oxide. Welding Journal,1987,66: 301-309.
    [13]P.M. Palermo. An Overview of Structural Integrity Technology. SNAME Ship Structure Symposium,1975, OCT.
    [14]S.R.Heller. A Personal Philosophy of Structural Design of Submarine Pressure Hulls. Naval Engineers Journal,1962,5:223-233.
    [15]N.Yurioka. TMCP Steels and Their Welding. Welding in the World, Le Soudage Dans Le Monde,1995,35(6):375-390.
    [16]王祖滨,东涛.低合金高强度钢.北京:原子能出版社,1996.
    [17]GB712-2000.船体结构钢,2000-11.
    [18]周振丰.焊接冶金学(金属焊接性).北京:机械工业出版社,1977.10.
    [19]J.F. Lancaster. Metallurgy of Welding(Third Edition). London,1980:1-5.
    [20]The Japan Welding Society. Cracking and Fracture in Welds.1972.
    [21]Y. Ito, K. Bessyo. Sumitomo Search.1969,5.
    [22]B.A.Graville. Welding of HSLA (Microalloyed) Structural Steels. Proceedings of International Conference, Metals Park, Ohio,1978:85-101.
    [23]G.F.Li, R.N.Wu, T.Q.Lei. Controlling Factors on Susceptibility of High Strength Steels to Stress Corrosion Cracking in Marine Environments. Equipment Environmental Engnieering,2004,1(5):1-6.
    [24]O.Chiaki. Development of Steel Plates by Intensive Use of TMCP and Direct Quenching Process. ISIJ International,2001,46(6):542-553.
    [25]Y.Liu, E.X.Zhu, Y.M.Li, et al. Effect of TMCP Parameters on the Microstructure and Properties of an Nb-Ti Microalloyed Steel. ISIJ International,2005,46(6): 851-857.
    [26]2003 Annual Book of ASTM Standards, ASTM A945/945M,2003,4,1.
    [27]P.J.Konkol, J.A.Mathers, R.Johnson, et al. Friction Stir Welding of HSLA-65 Steel for Shipbuilding. Journal of Ship Production,2003,19(3):159-164.
    [28]K.Sampath. An Understanding of HSLA-65 Plate Steels. Journal of Materials Engineering and Performance.2006,15(1):32-40.
    [29]P.J.Konkol, J.L.Warren, P.A.Hebert. Weldability of HSLA-65 Steel for Ship Structures. Welding Journal,1998,77(9):361-371.
    [30]M.Babit, P.Valetie, G.Rigant. Development of a New Bainitic Steels with Very High Yield Strength at Solac. Proceedings of International Conference on Processing Microstructure and Properties of Microalloyed and Other Modern Steels,1991: 281-288.
    [31]T.Mavropoulos, J.J.Jonas, G.E.Ruddle. Effect of Boren on Dynamic and Static Recrystallization in Ultra Low Carbon Nb Steels. HSLA'85:229-234.
    [32]H.Nakasugi. Development of Controlled Rolled Ultra Low Carbon Bainitic Steel for large Diameter Pipe Line. Transaction of the ISU,1983,22(2):525-527.
    [33]S.W.Thomspon, D.J.Colvin, G.Krauss. Austenite decomposition during continuous cooling of an HSLA-80 Plate Steel. Metallurgical Transactions A,1996, 27(1):1557-1572.
    [34]N.J.Smith, J.T.Mcgrath, J.A.Gianetto, et al. Microstructure/Mechanical Property Relationships of Submerged Arc Welds in HSLA 80 Steel. Welding Journal,1989, 68(3):112-120.
    [35]E.J.Gzyryca. Advances in High Strength Steel Technology for Naval Hull Construction. Key Engineering Materials,1993,84-85:491-520.
    [36]廖建国.大线能量焊接用厚钢板的发展.宽厚板,2002,8(2):44-48.
    [37]S.Shinichi, M.Ryuji, O.Tadashi, et al. Steel Products for Shipbuilding, JFE Technical Report,2004,3(3):41-48.
    [38]同野重雄,小林洋一郎,浜中孝道.大形コンテナ船用大入熱溶接型厚肉降伏點390N/mm2级鋼板.神户制钢技報,1997,47(2):79.
    [39]M.Masanori, I.Koji, F.Yuji, et al.390MPa Yield Strength Steel Plate for Large Heat-input Welding for Large Container Ships. Nippon Steel Technical Report,2004, 90:7-10.
    [40]柴田光明,同野重雄,浜中孝道.大入熱溶接用YP460钢板の開發.CAMP-ISIJ,1998,11:521.
    [41]J.D.Walters. Microchemical Analysis of Non-Metallic Inclusions in C-Mn Steel Sheilded Metal Arc Welds by Analytical Transmission Electron Miroscopy. Master Thesis, Naval Postgraduate School, Monterey CA,1998.
    [42]W.Y.Kim, J.OJo, T.I.Chung, et al. Thermodynamics of Titanium, Nitrogen and TiN Formation in Liquid Iron. ISIJ International,2007,47(8):1082-1089.
    [43]陈茂爱,亓效刚,傅一飞.Ti-Nb微合金钢及焊接热影响区中的第二相粒子.特殊钢,2004,25(3):10-13.
    [44]K.Yamamoto, S.Matsuda, T.Haze. A Newly Developed Ti-Oxide Bearing Steel Having High HAZ Toughness. Residual and Unspecified Elements in Steel, ASTM STP,1989:266-284.
    [45]Y.Nagai, H.Fukami, Hajime, et al. Production of High-Toughness Steel for Offshore Structures. Proceedings of OMAE0322nd International Conference on Offshore Mechanics and Arctic Engineering, Cancun, Mexico,2003,6:319-325.
    [46]Y.Terada, H.Tamehiro, H.Morimoto, et al. XI00 Line-pipe with Excellent HAZ Toughness and Deformability. Proceedings of OMAE0322nd International Conference on Offshore Mechanics and Arctic Engineering, Cancun, Mexico,2003,6: 287-293.
    [47]田志凌.低合金高强钢的焊接性.中国机械工程学会2002焊接年会主题报告,2002.
    [48]张德勤.微合金钢焊缝金属中针状铁素体形成机理的研究.博士学位论文,天津大学,2000.
    [49]R.A.Farrar, P.L.Harrison. Acicular Ferrite in Carbon-Manganese Weld Metals: An Overview. Journal of Material Science,1987,22:3812-3820.
    [50]田德蔚,钱百年.适用图像仪测定M-A的腐蚀方法.物理测试,1994,2: 35-39.
    [51]许祖泽.新型微合金钢的焊接.北京机械工业出版社,2004.
    [52]P.L.Harrison. PhD Thesis, University of Southampton,1983.
    [53]莫立春.钢的奥氏体化与焊接HAZ组织演变过程模拟.博士学位论文,中国科学院沈阳金属所,2001.8.
    [56]T.Yukio, S.Naoki, T.Takeshi, et al. Improvement in HAZ Toughness of Steel by TiN-MnS Addition. ISIJ International,1994,34(10):829-835.
    [57]P.L. Harrison, R.A.Farrar. Journal of Materials Science.1981,16:2218-2226.
    [58]J.I.Takamura, S.Mizoguhci. Metallurgy of Oxides in Steels. Proceedings of The Six International Iron and Steel Congress,1990, Nagoya, ISIJ:591-597.
    [59]S.Mizoguchi, J.I.Takamura. Control of Oxides as Inoculants-Metallurgy of Oxides in Steels 2. Proceedings of The Six International Iron and Steel Congress, 1990, Nagoya, ISIJ:598-604.
    [60]S.Ogibayashi, K.Yamaguchi, M.Hirai, et al. The Features of Oxides in Ti-Deoxidized Steel. Proceedings of The Six International Iron and Steel Congress, 1990, Nagoya, ISIJ:612-617.
    [61]蒋国昌.纯净钢及二次精练.上海上海科学技术出版社,1996,10:223-233.
    [62]J.H.Shim, Y.W.Cho, S.H.Chung, et al. Nucleation of Intragranular Ferrite at Ti2O3 Particle in Low Carbon Steel. Acta mater.,1999,47(9):2751-2760.
    [63]J.S.Byun, J.H.Shim, Y.W.Cho. Non-metallic inclusion and Intragranular Nucleation of Ferrite in Ti-Killed C-Mn Steel. Acta Mater.,2003,51:1593-1606.
    [64]G.Hiroki, K.I.MIYAZAWA, T.Kazuaki. Effect of Oxygen Content on Size and Distribution of Oxides in Steel. ISIJ International,1995,35(3):286-291.
    [65]G.Hiroki, K.I.MIYAZAWA, T.Kazuaki. Effect of Cooling Rate on Composition of Oxides Precipitated during Solidification of Steels. ISIJ International,1995,35(6): 708-714.
    [66]G.Hiroki, K.I.Miyazawa, K.I.Yamaguchi, et al. Effect of Cooling Rate on Oxide Precipitation During Solidification of Low Carbon Steels. ISIJ International,1994, 34(5):414-419.
    [67]Jye-long LEE, Yeong-Tsuen PAN. Effect of Killing Time on the Microstructure and Toughness of the Heat Affected Zone in Ti-killed Steels. Metallurgical Transaction A,1991,22A:2818-2822.
    [68]王明林.低碳钢凝固过程含钛析出物的析出行为及其对凝固组织影响的机理研究.博士学位论文,钢铁研究总院,2003,6.
    [69]R.A.Farrar. Acicular ferrite in carbon manganese weld metals:an overview. Journal of materials science,1987,22:3812-3820.
    [70]韩顺昌.针状铁素体的物理冶金学.材料开发与应用,1995,10(5):2-7.
    [71]韩顺昌.针状铁素体的物理冶金学(续).材料开发与应用,1995,10(6):2-8.
    [72]J.M.Gregg, H.K.D.H.Bhadeshia. Solid-State Nulceation of Acicular Ferrite on Minerals Added to Molten Steel. Acta Mater.,1997,45(2):739-748.
    [73]R.A.Farrar, M.N.Watson. Metal Construcution,1985,17:374-379.
    [74]H.Mabuchi, R.Uemori, M.Fujioka. The Role of Mn Depletion in Intgra-Granular Ferrite Transformation in the Heat Affected Zone of Welded Joints with Large Heat Input in Structural Steels. ISIJ International,1996,36(11):1406-1412.
    [75]J.H.Shim. PhD Thesis, Seul National University.2000,2.
    [76]J.M.Gregg, H.K.Bhadeshia. Titanium-Rich Mineral Phases and the Nucleation of Bainite. Metallurgical and Materials Transactions A,1994,25A:1603-1611.
    [77]J.L.Lee. Evaluation of the Nucleation Potential of Intragranular Acicular Ferrite in Steel Weldments. Acta mater.,1994,42(10):3291-3298.
    [78]FJ.Barbaro. Materials science and technology,1989,5:1057-1067.
    [79]S.S.Laurent. Mater. Sci. Engng A,1992,203:149.
    [80]余圣甫,李志远,刘顺洪.高韧性药芯焊丝焊缝金属的显微组织.材料开发与应用,1999,14(3):20-23.
    [81]T.K.Lee, H.J.Kim, B.Y.Kang, et al. Effect of Inclusions on the Nucleation of Acicular Ferrite in Welds. ISIJ International,2000,40(12):1260-1268.
    [82]G.Thewlis. Transformation Kinetics of Ferrous Weld Metals. Materials Science and Technology,1994,10(4):110-124.
    [83]Jye-Long Lee, Yeong-Tsuen Pan. The Formation of Intragranular Ferrite in Simulated Heat-Affected Zone. ISIJ International,1995,35(8):1027-1033.
    [84]李新明,郑少波,郑庆等.钢的氧化物冶金技术.上海金属,2005,27(5):55-60.
    [86]黄希祜.钢铁冶金原理,北京:冶金工业出版社,1981,190-191,190-193.
    [87]Bodsworth C and Bell H B. Physical chemistry of iron and steel manufacture, Great Britain Blutler and Tanner,1972, Vol.41, No.34:240-248.
    [88]Recommended values of equilibrium eonstants for the reactions in steelmaking, Japan Society for the Promotion of Science,19th Committee, Tolyo,1984.
    [89]陈家祥.连续铸钢手册.北京:冶金工业出版社.1990.
    [90]李文超.冶金与材料物理化学,北京:冶金工业出版社,2001:127-136.
    [91]李文超.冶金与材料物理化学,北京:冶金工业出版社,2001:521-522.
    [92]陈家祥.炼钢常用图表数据手册.北京:冶金工业出版社.1984:643-644.
    [93]Jong-Oh Jo; Joong-Beom Lee; Sun-In Kim; et al. Thermodynamics of titanium, nitrogen and oxygen in liquid stainless steels. Sohn International Symposium: Advanced Processing of Metals and Materials-Proceedings of the International Symposium,2006 TMS Fall Extraction and Processing Division 2006:185-189.
    [94]王明林.凝固过程含钛析出物的析出行为及其对凝固组织影响的机理研究:博士学位论文.钢铁研究总院,2003.
    [95]Zhongting Ma, Dieter Janke. Characteristics of Oxide Precipitation and Growth during Solidification of Deoxidized Steel. ISIJ International,1998,38(1):46-52.
    [96]张良哲,赵宪明,吴迪,许云波.微合金钢等温沉淀析出动力学模型.钢铁研究学报,2006,18(4).
    [97]R.J.Jessmean,etal. Mechanical properties and precipitation hardening response in Armco Ni-Cop (ASTM A710 Grade A and A736) alloy steel. ATB Metall.1983, 23(4):1-10.
    [98]Narita K. Physical Chemistry of the Groups IVa(Ti,Zr), Va(V,Nb, Ta) and the Rare Earth Elements in Steel. Trans ISIJ.1975, (15):145-152.
    [99]Hoogendoorn T M, Spanraft M J. Quantifying the Effect of Microalloying Elements on Structures During Processing. Korchynsky M. eds, Microalloying'75. New York:Union Carbides Corporation,1976,75-85.
    [100]Smith R P. The Solubility of Niobium Carbide in Gamma Iron. Trans AIME. 1966,236:220-221.
    [101]Irvine K J, Pickering F B, Gladman T. Grain Refined C-Mn Steels. JISI.1967, 205:161-182.
    [102]Nordberg H, Aronsson B. Solubility of Niobium Carbide in Austenite. JISI. 1968,12:1263-1266.
    [103]Mori T et al. Thermodynamic Properties of Niobium Carbides and Nitrides in Steels. Tetsu-to-Hagane.1968,54:763-776.
    [104]Woodhead J H. Vanadium in High Strength Steel(Chicago). London:Vanitec, 1980.
    [105]郑鲁,雍岐龙,孙珍宝.碳化铌在微合金钢中的溶解.金属学报.1987,23: B277-281.
    [106]Farrar R.A., Harrison P.L., Acicular Ferrite in Carbon-Manganese Weld Metals: An Overview. Journal of Material Science,1987,22:3812-3820.
    [107]Brabaro F J, Krauklis P, Easterling K E. Formation of acicular ferrite at oxide particles in steels. Mater Sci Technol,1989,5:1057-1068.
    [108]Tae-Kyu LEE,H.J.KIM. Effect of inclusion size on the nucleation of acicular ferrite in welds.ISIJ internation,2000,40(12):1260-1268.
    [109]Yamamoto K., Matsuda S., Haze T..A Newly Developed Ti-Oxided Bearing Steel Having High HAZ Toughness. Residual and Unspecified Elements in Steel, ASTM STP,1989:266-284.
    [110]Enomoto M. Nucleation of phase transformations at intragranular inclusions in steelJ.Metals and Materials,1998,4(2):115-123.
    [111]S.Ohkita, H.Homma, N.Mori, et al. The Effect of Oxide Inclusions on Microstructures of Ti-B Containing Weld metal. Australian Welding Journal,1984, 19(3):29-36.
    [112]G.M. Evans. Microstructure and Properties of Ferritic Steel Welds Containing Al and Ti. Welding Journal,1995,74(8):249-261.
    [113]A.O.Kluken, O.Grong. Mechanisms of Inclusion Formation in Al-Ti-Si-Mn deoxidized steel Weld Metals. Metall. Transaction,1989,20A:1335-1349.
    [114]S.Liu, D.L.Olson. The Role of Inclusions In Controlling HSLA Steel Weld Microstructure. Welding Research Supplement,1986,65(6):139-150.
    [115]J.D.Abson, R.E.Dolby, P.H.M.Hart. The Role of Non-metallic Inclusions in Ferrite Nucleation in Carbon Steel Weld Metals. Proc. International Conference on Trends in Steels and Consumables for Welding, London, The welding Insititute, 1978:75.
    [116]Y.Horil. Study on the Toughness of Large-Heat Input Weld Metal for Low Temperature-Service TMCP Steel. Nippon Steel Technical Report,1988,37(4):15-21.
    [117]H.Toshiaki, O.Yasuhide. Steel Plates With Superior HAZ Toughness for Offshore Structures. Nippon Steel Technical Report,1988,36(1):1-6.
    [118]高村仁一.氧化物对钢性能的作用.世界钢铁,2005,2:8-11.
    [119]郑庆,朱立新.氧化物冶金技术的理论与工艺.世界钢铁,2005,2:1-6.
    [120]D.Yu, D.P.Dunne, T.Chandra, et al. Austenite Grain Coarsening and Formation of Intragranular Ferrite in HSLA Steels Deoxidized with Ti and Al. Materials Transactions, JIM,1996,37(10):1554-1560.
    [121]K.Yamamoto, J.Takamura. Effect of Boron on Intragranular Ferrite Formation in Ti-Oxide Bearing Steels. ISIJ International,1996,36(1):80-86.
    [122]V.D.Eijk, J.Walmsley. Mechanisms of Inclusion Formation in Low Alloy Steels Deoxidized with Titanium. Mater. Sci. Techn.,2000,1:55-61.
    [123]余圣甫,雷毅,黄安国,等.氧化物冶金技术及其应用.材料导报,2004,18(8):50-52.
    [124]Y.Nagai, H.Fukami, Hajime, et al. Production of High-Toughness Steel for Offshore Structures. Proceedings of OMAE03 22nd International Conference on Offshore Mechanics and Arctic Engineering, Cancun, Mexico,2003,6:319-325.
    [125]Y.Terada, H.Tamehiro, H.Morimoto, et al. X100 Line-pipe with Excellent HAZ Toughness and Deformability. Proceedings of OMAE03 22nd International Conference on Offshore Mechanics and Arctic Engineering, Cancun, Mexico,2003,6: 287-293.
    [126]A.Kojima, A.Kiyose, R.Uemori, et al. Super High HAZ Toughness Technology with Fine Microstructure Imparted by Fine Particles.新日铁技报,2004,380:2-5.
    [127]T.Hara, H.Asahl, H.Tamehiro, et al. Steel Having Improved Toughness in Welding Heat-Affected Zone. United States Patent,5985053,1999,11,16.
    [128]J.Li, F.M.Wang, X.Y.Zhang, et al. Effcet of Magnesium-Contained Deoxidizer on Cleanliness of Liquid Steel and Mechanical Properties of Final Sheets.2006 International Symposium on Slab Casting and Rolling,2006,4:430-434.
    [129]A. Kojima, A.Kiyose, Ruemori, et al. Super High HAZ Toughness Technology with Fine Microstructure Imparted by Fine Particles. Nippon Steel Technical Report, 2004,90:2-6.
    [130]J.L. Lee, Y.T. Pan. The Formation of Intragranular Acicular Ferrite in Simulated Heat-affected Zone. ISIJ International,1995,35(8):1027-1033.
    [131]J.H.Shim, Y.W.Cho, S.H.Chung, et al. Nucleation of Intragranular ferrite at Ti2O3 Particle in Low Carbon Steel. Acta Mater.,1999,47(9):2751-2760.
    [132]S.C.Park, I.H.Jung, K.S.Oh, et al. Effect of Al on the Evolution of Non-metallic Inclusions in the Mn-Si-Ti-Mg Deoxidized Steel During Soldification:Experiments and Thermodynamic Calculations. ISIJ International,2004,44(6):1016-1023.
    [133]C.H.Chang, I.H.Jung, S.C.Park, et al. Evolution of Inclusions and Resultant Microstructural Change with Mg Addition in Mn/Si/Ti Deoxidized Steels. Script Materialia,2005,53:1253-1258.
    [134]C.H.Chang, I.H.Jung, S.C.Park, et al. Effect of Mg on the Evolution of Non-metalic Inclusions in Mn-Si-Ti Deoxidized Steel during Solidification: Experiments and Thermodynamic Calculations. Ironmaking and Steelmaking,2005, 32(3):251-257.
    [135]李尚兵,王谦,何生平.镁合金对钢液脱氧脱硫的作用.钢铁钒钛,2007,28(2):74-77.
    [136]S.Mizoguchi. "Oxides Metallurgy"-Present and Future Prospects. The fourth workshop on high performance steel. Pohang, Corea.2002.1:79-88.
    [137]Jye-long Lee. Evaluation of the nucleation potential of intragranular acicular ferrite in steel weldments. Acta mater.,1994,42(10):3291-3298.
    [138]K.S.Oh, W.Y.Choo, H.G.Lee. Behavior of Nonmetallic Inclusions During Steelmaking Processes for Acicular Ferrite Formation in C-Mn Structural Steel. The fourth workshop on high performance steel. Pohang, Corea.2002.1:103-107.
    [139]K.S.Oh. Effect of Small Amounts of Al, Mg, and Zr Addition to the Ti Oxide Steel Melt on Behavior of Nonmetallic Inclusions For IAF Formation at HAZ. The fourth workshop on high performance steel. Pohang, Corea.2002.1:253-257.
    [140]王蕾,陈晓,习天辉.大线能量低焊接裂纹敏感性钢的研究.材料导报,2002,16(5):24-26.
    [141]习天辉,陈晓,李平和.含Zr钢中夹杂物对低温韧性的影响.钢铁,2004,39(12):60-63.
    [142]习天辉,陈晓,陈颜堂.Zr微合金化HSLA钢粗晶热影响区的组织和性能.特殊钢,2005,26(2):16-19.
    [143]A.M.Guo, S.R.Li, J.Guo, P.H.Li, et al. Effect of Zirconium Addition on the Impact Toughness of the Heat Affected Zone in a High Strength Low Alloy Pipeline Steel. Materials Characterization, Article in Press,2007,1-7.
    [144]上田修三(荆洪阳译).结构钢的焊接-低合金钢的性能及冶金学.北京冶金工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700