碱土金属微合金化大线能量焊接低合金高强钢的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用碱土金属元素Ca、Mg与Nb、V、Ti等元素,按单个、两个和三个氧化物形成元素系列复合微合金化,设计了抗拉强度490MPa级非调质大线能量焊接低合金高强度钢。系统研究了试验钢母材及30kJ/cm、60kJ/cm、100kJ/cm不同线能量焊接热模拟热影响区(HAZ)力学性能、夹杂物形态分布及微观组织特征等。结果表明:
     试验钢母材力学性能达到设计要求,对于提高材料的强韧性而言,以Nb配合Ca、Mg、Ca-Mg和Ti-Ca-Mg复合微合金化要优于以V、Nb-V配合Ca、Mg、Ca-Mg和Ti-Ca-Mg复合微合金化。试验钢均可承受100kJ/cm大线能量焊接,表明选用的氧化物形成元素中除传统的Ti之外,碱土金属元素Ca、Mg可改善大线能量焊接HAZ强韧性。采用Ti-Ca-Mg三种氧化物形成元素微合金化比单独采用Ti、Ca或Mg单个氧化物形成元素以及Ti-Ca、Ti-Mg、Ca-Mg两个氧化物形成元素微合金化对提高100kJ/cm大线能量HAZ强韧性更为有利。
     试验钢母材组织为内部存在亚结构的铁素体+少量珠光体组织,随焊接线能量增大,HAZ组织按贝氏体(或贝氏体+少量IAF)→少量贝氏体+IAF→晶界铁素体+IAF组织变化。试验钢母材与不同线能量焊接HAZ冲击断口扫描电镜及透射电镜复合析出物成分能谱分析结果与相应的微合金化系列一致。Ca系、Mg系、Ca-Mg系和Ti-Ca-Mg系试验钢与Ti系试验钢相比洁净度指数明显降低,其中Ti-Ca-Mg系试验钢洁净度指数最小,洁净度最高,且Ti-Ca-Mg系试验钢夹杂物的平均粒径最小。Ca、Mg微合金化对夹杂球化变性作用较显著,Ti-Ca-Mg微合金化对夹杂物球化效果最好。碱土金属元素Ca、Mg以复合氧化物的形式出现,且大多数复合析出物都富含Mn和S。IAF以含Ca、Mg的尺寸为500nm~3μm的非金属氧化物夹杂为核心形核生成。不同微合金化系列有效的IAF形核核心数量不同,导致HAZ组织中IAF体积分数和HAZ强韧性相应发生变化。IAF形核核心较多的微合金化系列,其IAF体积分数较高,且IAF相对比较细小,IAF数量的增多可抑制晶界铁素体的长大和粗化。HAZ组织中IAF相对数量及晶界铁素体的形态是影响HAZ强韧性的决定性因素。
     基于Ca、Mg对钢质的净化作用和夹杂物变性特性,一方面可提高母材强韧性,另一方面,可使HAZ获得小尺度表面含MnS的析出物,促进IAF形核,提高HAZ强韧性。而Ti与碱土金属元素Ca、Mg或Ca-Mg的复合微合金化,可促进MnS在碱土金属Ca、Mg及Ca-Mg钢复合析出物表面的析出,又增强了析出物对IAF的形核能力,进一步提高了HAZ强韧性。HAZ不同析出物的IAF形核能力按Ca(O,S)-MnS或Mg(O,S)-MnS、氧化钛-MnS或CaMg(O,S)-MnS、TiCa(O,S)-MnS或TiMg(O,S)-MnS、TiCaMg(O,S)-MnS的顺序增大。
     碱土金属Ca、Mg微合金化钢HAZ中IAF形核机制包括两个方面:一方面,在HAZ析出物表面均不同程度存在MnS,该MnS可通过适当提高复合析出物与铁素体之间的晶格匹配度和适当降低复合析出物与奥氏体的平均热膨胀系数差异,抑制高温下先共析铁素体的生成,提高IAF形核能力和体积分数;另一方面,HAZ中的一定量的尺寸为500nm~3μm的复合析出物,可提高其周围的应变能,增大IAF相变驱动力。不同微合金化系列占主导地位的IAF形核机制不尽相同。
     试验优化出新钢种的化学成分,并结合某钢铁企业设备及工艺流程状况,提出了新钢种合理的内控冶炼化学成分范围及控制轧制生产工艺,结合相关技术标准制定了工业化生产工艺规程及交货条件,并申报国家发明专利一项。所有工作为新钢种的商品化打下基础。
High heat input welding non-quenched and tempered high strength low-alloyed (HSLA) steels with tensile strength of 490MPa grade were designed by composite-micro-alloying with single, double and tri-oxide-forming elements of alkaline earth metal elements of calcium(Ca), magnesium(Mg) and niobium(Nb), vanadium(V), titanium(Ti) in this paper. Mechanical properties, morphological distribution of inclusions and microstructure characteristics of the as-rolled steel plates and the heat-affected zone (HAZ) of 30kJ/cm, 60kJ/cm, 100kJ/cm heat input welding thermal simulation were studied systematically. It was found that:
     The mechanical properties of the as-rolled steel plates met the target requirements. For improving the strength and toughness of the materials, Nb composite-micro-alloying with Ca, Mg, Ca-Mg and Ti-Ca-Mg was superior to that of V and Nb-V. All of the experiment steels could bear 100kJ/cm high heat input welding, indicating that in addition to the traditional elements of Ti, the selected oxide-forming elements of the alkaline earth metal elements Ca, Mg could improve the strength and toughness of HAZ. The tri-oxide-forming elements of Ti-Ca-Mg micro-alloying was more favorable for improving the strength and toughness of 100kJ/cm HAZ than single oxide-forming element of Ti, Ca or Mg micro-alloying as well as double oxide-forming elements of Ti-Ca, Ti-Mg, Ca-Mg micro-alloying.
     The microstructures of the as-rolled steel plates were ferrite with sub-structures and a small amount of pearlite, and the microstructures of HAZ changed from bainite (or bainite and a small amount of intragranular acicular ferrite--IAF) to bainite and IAF, and further changed to a small amount of grain boundary ferrite and IAF as the welding heat input increased.
     The compositions of the composite precipitates analysised with scanning electron microscopy(SEM) and transmission electron microscopy(TEM) both in the impact fracture of the as-rolled steel plates and in different heat input welding HAZ were consistent with the corresponding micro-alloying steel series. The cleanliness index of Ca, Mg, Ca-Mg and Ti-Ca-Mg steels were significantly lower compared to that of Ti steel, Ti-Ca-Mg steel had the smallest of cleanliness index and the highest degree of cleanliness, and the average particle size of inclusions in Ti-Ca-Mg steel was the smallest. Ca, Mg micro-alloying had significant spheroidizing capabilities of the inclusions, and Ti-Ca-Mg micro-alloying had the best spheroidizing effect of the inclusions. Alkaline earth metal elements Ca, Mg appeared in the form of composite oxides, and the majority of composite precipitates were rich in manganese(Mn) and sulphur(S). The nuclei of IAF were the non-metallic oxides inclusions containing Ca, Mg with the size of about 500nm to 3μm. The number of effective IAF nuclei were inconsistent for different microalloying series, resulting the corresponding changes of the volume fraction of IAF in HAZ and strength and toughness of HAZ. The larger the number of IAF nuclei in HAZ of the micro-alloying series, the higher the volume fraction and the relatively finer of IAF became in HAZ, the increase of IAF inhibited the growing up and coarsening of grain boundary ferrite. The relative amount of IAF and the morphology of grain boundary ferrite in HAZ were the decisive factors affecting the strength and toughness of HAZ.
     Based on their features of steel purification of and inclusion modification, Ca and Mg micro-alloying improved strength and toughness of the as-rolled steel plates, and formed small-size precipitates containing MnS on its surface which promoting the nucleation of IAF in HAZ and then improved the toughness of HAZ. The composite micro-alloying of Ti with alkaline earth metal elements Ca, Mg or Ca-Mg could promote the MnS precipitating on the surface of precipitates containing Ca, Mg or Ca-Mg, enhanced IAF nucleation ability of precipitates, and further improved the strength and toughness of HAZ. The IAF nucleation capability of precipitates in HAZ increased in the order of Ca(O,S)-MnS or Mg(O,S)-MnS, Ti-MnS or CaMg(O,S)-MnS, TiCa(O,S)-MnS or TiMg(O,S)-MnS, TiCaMg(O,S)-MnS.
     The IAF nucleation mechanism in HAZ of alkaline earth metal Ca, Mg micro-alloyed steels including two aspects: on the one hand, as almost all of the surface of precipitates in HAZ containing different amounts of MnS, the MnS could appropriatly increase the lattice matching between precipitates and the ferrite, and also appropriatly reduce average coefficient of thermal expansion differences between precipitates and austenite, thus inhibited the high temperature formation of proeutectoid ferrite, and improved the IAF nucleation capability and its volume fraction; on the other hand, the certain amount precipitates with the size of 500nm to 3μm in HAZ could increase the strain energy around the precipitates, and increased the driving force of IAF transformation. The dominant nucleation mechanism of IAF in HAZ of different micro-alloyed series was not the same as each other.
     The chemical compositions of a new steel were optimized, and the internal controlled smelting chemical compositions ranges and controlled rolling production processes of the new steel were suggested in combination with the equipment and technological process of a steel enterprises. The industrial production processes and delivery terms of the new steel were also established combining with the technical standards related to the new steel, and a national invention patent for the new steel were declared. All of the above works laid the foundation for the commercialization of the new steel.
引文
[1]廖建国.大线能量焊接用厚钢板的发展[J].宽厚板,2002,8(2):44~48
    [2]林謙次,藤沢清二,中川一郎.建築用高性能550MPa級高張力鋼板―鉄骨コストのミニマム化と環境負荷軽減を実現する新設計基準強度厚板HBL385[J]. JFE技報,2004,5:45~50
    [3]木村達己,久田光夫,藤沢清二.超大入熱溶接部靭性に優れる建築構造用厚鋼板[J].川崎制铁技报,2002,34(4):158~163
    [4]児島明彦,吉井健一,秦知彦.大入熱溶接に対応した建築鉄骨用高HAZ靭性鋼の開発[J].新日鉄技報,2004,380:33~37
    [5] S Yoshihino,H Hohsuke,K Hisaya. Welding Heat-input Limit of Rolled Steels for Building Structures Based on Simulated HAZ Tests[J]. Transactions of JWRI,2001,30(1):127~134
    [6] H Qiu,H Mori,M Enoki et al. Effect of Welding Thermal Cycle and Cold Working on the Ductility of SN490 Steel Under Low and High-speed Loading[J]. Materials Science and Engineering,2001,A316:217~223
    [7]富田孚,高屿修嗣,北方贤一郎,等.大入热溶接用钢板KSTシリ-ズ[J].神户制钢技报,1979,29(4):4~8
    [8]児島明彦,清瀬明人,植森龍治,等.微細粒子によるHAZ細粒高靭化技術“HTUFF?”の開発[J].新日鉄技報,2004,380:1~4
    [9]川端文丸,天野虔一,板仓教次,等.钢溶接热影响部韧性に及ぼす局部的硬化部の形态效果[J].日本造船学会论文集,1995,173:349~357
    [10]天野虔一.最近の低温用厚钢板の进步[J].溶接学会志,1998,67(7):36~39
    [11] Y Sakumoto,R Chijiiwa. Development of Fire Resistant Steel for Steel Construction[C].鋼構造論文集,1994,1(1):25~40
    [12] A A B Sugden,H K D H Bhadeshia. Lower Acicular Ferrite[J]. Metallurgical Transactions A,1989,20A(9):1811~1818
    [13] D J Abson,R E Dolby. Proc. of Conf. on Trends in Steels and Consumables for Welding[C]. Abingdon:The Welding Institute,1987:75~101
    [14]许清风,王孔藩,李向民,等.世界贸易中心倒塌原因浅析[J].钢结构,2002,17(3):54~56
    [15]高山透,日野谷重晴,石黒三岐雄,等. Nb-Ti添加高張力鋼の析出物分析法と析出挙動[J].鉄と鋼,1996,82(2):147~152
    [16]金沢正午,中岛明,冈本健太郎.微细TiNによる溶接ボンド部靭性の改善と大入热溶接用钢的开发[J].鉄と鋼,1975,61(11):2589~2603
    [17]寺田好男,千々岩力雄,為広博.大入熱溶接继手靭性の優れたYP42 kgf/mm2级海洋构造物用鋼板の開発[J].鉄と鋼,1987,73:S1308
    [18] S F Medina,M Chapa,P Valles et al. Influence of Ti and N Contents on Austenite Grain Control and Precipitate Size in Structural Steels[J]. ISIJ International,1999,39(9):930~936
    [19] R Mendoza,J Camacho,G Lugo et al. Structure of a Low Carbon Al-killed/Ti-added Steel[J]. ISIJ International,1997,37(2):176~180
    [20] F J Barbaro,P Crauclis,K E Easterling. Formation of Acicular Ferrite at Oxide Particles in Steels[J]. Material Science and Technology,1989,5(11):1057~1068
    [21]森影康,大井健次,川端文丸,等.低炭素鋼におけるTiN上のフェライト核生成に及ぼすTiNサイズの影響[J].鉄と鋼,1998,84(7):510~515
    [22] Y Tomita,N Saito,T Tsuzuki et al. Improvement in HAZ Toughness of Steel by TiN-MnS Addition[J]. ISIJ International,1994,34(10):829~835
    [23] J H Shim,J S Byon,Y W Cho et al. Effects of Si and Al on Acicular Ferrite Formation in C-Mn Steel[J]. Metallurgical and Materials Transactions A,2001,32A(1):75~83
    [24] J S Byun,J H Shim,Y W Cho et al. Non-metallic Inclusion and Intragranular Nucleation of Ferrite in Ti-killed C–Mn Steel[J]. Acta Materialia,2003,51:1593~1606
    [25] J H Shim,Y W Cho,S H Chung et al. Nucleation of Intragranular Ferrite at Ti2O3 Particle in Low Carbon Steel[J]. Acta Metallurgica,1999,47(9):2751~2760
    [26] J M Gregg,H K D H Bhadeshia. Solid-state Nucleation of Acicular Ferrite on Minerals aAdded to Molten Steel[J]. Acta Metallurgica,1997,45(2):739~748
    [27]寺田好男,為広博,千々岩力雄. Ti脱酸鋼の大入熱溶接相当再現 HAZの低温靭性に及ぼすMnの影響[J].鉄と鋼,2004,90(10):812~818
    [28]仲井清眞,弓立明宏,小林千悟,等.鉄鋼材料中のTi系酸化物の粒内フェライト生成への効果[J].鉄と鋼,2004,90(3):141~145
    [29] H H Jin,J H Shim,Y W Cho et al. Formation of Intragranular Acicular Ferrite Grains in a Ti-containing Low Carbon Steel[J]. ISIJ International,2003,43(7):1111~1113
    [30] Y Yang,Z B Yang,F M Wang et al. Effect of Inclusion on Formation of Acicular Ferrite in Ti-bearing Non-quenched-and-Tempered Steels[J]. Iron and Steel Supplement,2005,40:244~249
    [31] M Shome,D S Sarma,O P Gupta et al. Precipitate Dissolution and Grain Growth in the Heat Affected Zone of HSLA-100 Steel[J]. ISIJ International,2003,43(9):1431~1437
    [32]洪永昌,尹桂全. Ti、Nb对结构钢焊接热影响区组织和韧性的影响[J].电焊机,2002,32(4):21~23
    [33] M Suehiro,Z K Liu,J Agren. Effect of Niobium on Massive Tranformation in Ultra Low Carbon Steels:A Solute Drag Treatment[J]. Acta Metallurgica,1996,44(10):4241~4251
    [34] A J Craven , K He , L A J Garvie et al. Complex Heterogeneous Precipitation in Titanium–niobium Microalloyed Al-killed HSLA Steels-I (Ti,Nb)(C,N) Particles[J]. Acta Metallurgica,2000,48:3857~3868
    [35] M Hamada,Y Fukada,Y Komizo. Microstructure and Precipitation Behavior in Heat Affected Zone of C-Mn Microalloyed Steel Containing Nb,V and Ti[J]. ISIJ International,1995,35(10):1196~1202
    [36]竹下智,山内学.大入热溶接に韧性优れた低降伏比高张力钢板[P].公开特许公报,P2001-172736A
    [37]渡辺征一.最近のボロン处理钢について[J].日本金属学会会报,1980,19(11):804~812
    [38]渡边之,小屿敏文.韧性におよぼすTi,Bおよび酸素の影响[J].溶接学会志,1980,49(11):772~780
    [39]大野恭秀,岡村义弘,松田昭一,等. Ti-B系大入熱溶接用鋼のHAZ微视組織の特征[J].鉄と鋼,1987,73(8):1010~1017
    [40] K Yamamoto,T Hasegawa,J Takamura. Effect of B on Intra-granular Ferrite Formation in Ti-Oxide Bearing Steel[J]. ISIJ International,1996,36(1):80~86
    [41]森直道,本间弘之,大北茂,等. Ti-B系溶接金属における韧性向上机构--Ti-B系溶接金属に关する研究(第1报)[J].溶接学会志,1981,50(2):174~181
    [42] S H Zhang,N Hattori,M Enomoto et al. Ferrite Nucleation at Ceramic Austenite Interfaces[J]. ISIJ International,1996,36(10):1301~1309
    [43] F Ishikawa,T Takahashi,T Ochi. Intragranular Ferrite Nucleation in Medium-carbon Vanadium Steels[J]. Metallurgical and Materials Transactions,1994,25A(5):929~936
    [44] G Q Yin,C F Wang,S J Wang. Second Phase Particles and Intragranular Ferrite Nucleation in Microalloyed V-N Steels[J]. Iron and Steel Supplement,2005,40:315~319
    [45] F Ishikawa,T Takahashi. The Formation of Intragranular Ferrite Plates in Medium-carbon Steels for Hot-forging and Its Effect on the Toughness[J]. ISIJ International,1995,35(9):1128~1133
    [46] H H Jin,H C Lee. Acicular Ferrite Microstructure under Isothermal Transformation in Low Carbon Steel containing V and Mo[J]. Iron and Steel Supplement,2005,40:719~722
    [47] T Furuhara,J Yamaguchi,N Sugita et al. Nucleation of Proeutectoid Ferrite on Complex Precipitates in Austenite[J]. ISIJ International,2003,43(10):1630~1639
    [48] T Furuhara,T shinyoshi,G Miyamoto et al. Multiphase Crystallography in the Nucleation of Intragranular Ferrite on MnS+V(C,N) Complex Precipitate in Austenite[J]. ISIJ International,2003,43(12):2028~2037
    [49] K He,D V Edmonds. Formation of Acicular Ferrite and Influence of Vanadium Alloying[J]. Materials Science and Technology,2002,18(3):289~296
    [50] T Maki,T Furohara. Kinetics and Crystallography of Intragranular Ferrite Formed on MnS+V(C,N) Complex Precipitate in Austenite[J]. Iron and Steel Supplement,2005,40:16~22
    [51]荆天辅,张静武,傅万堂,等.微量钛对控轧微合金钢焊接HAZ的组织和韧性的影响[J].钢铁,1997,32(3):55~60
    [52] M Wakoh,T Sawai,S Mizoguchi. Effect of S Content on the MnS Precipitation in Steel with Oxide Nuclei[J]. ISIJ International,1996,36(8):1014~1021
    [53]澤井隆,若生昌光,溝口庄三.低硫鋼でのMnS析出におよぼす鋼中Zr酸化物の影響[J].鉄と鋼,1996,82(7):587~592
    [54]長谷川一,中島敬治,溝口庄三. Fe-Si合金におけるMnS析出に対する鋼中介在物の影響[J].鉄と鋼,2001,87(11):700~706
    [55] Sawai,M Wakoh,Y Ueshima et al. Analysis of Oxide Dispersion during Solidification in Ti,Zr-deoxidized Steels[J]. ISIJ International,1992,32(1):169~173
    [56] Y Li,J A Wilson,D N Crowther et al. The Effect of Vanadium,Niobium,Titanium and Zirconium on the Microstructure and Mechanical Properties of Thin Slab Cast Steels[J]. ISIJ International,2004,44(6):1093~1102
    [57] G C Jiang,Y R Zhu,S Q Guo et al. The Existence of Intragranular Ferrite Plates and Nucleating Inclusions in the Heat Affected Zone of X-60 Pipe Steel[J]. Journal of Materials Science,1997,32(11):2985~2989
    [58]若生昌光,澤井隆,溝口庄三.低硫鋼でのMnS析出に及ぼすTi-Zr酸化物の影響[J].鉄と鋼,1996,82(7):593~598
    [59] A M Guo,J Guo,W X Yuan et al. Influence of Zr on Toughness of HAZ for Ultra High Strength Low Carbon Banite Steel[J]. Iron and Steel Supplement,2005,40:132~136
    [60]船越督己,田中智夫,上田修三,等.希土类元素とB添加による高张力鋼の大入熱溶接ボンド部組織と靭性の改良[J].鉄と鋼,1977,63(2):303~312
    [61]古泽遵,有持和茂,藏保浩文,等.大入热溶接用高张力钢板の开发[J].住友金属,1988,40(1):39~47
    [62] T Gladman,G Fourlaris,M T Noghani. Grain Refinement of Steel by Oxidic Second Phase Particles[J]. Materials Science and Technology,1999,15(12):1414~1424
    [63] S S Babu,S A David. Inclusion Formation and Microstructure Evolution in Low Alloy Steel Welds[J]. ISIJ International,2002,42(12):1344~1353
    [64] G Shigesato,M Sugiyama. Development of In-situ Observation Technique Using Scanning Ion Microscopy and Demonstration of Mn Depletion Effect on Intragranular Ferrite Transformation in Low-alloy Steel[J]. Journal of Electron Microscopy,2002,51(6):359~367
    [65]重里元一,杉山昌章,粟飯原周二,等.低合金鋼溶接熱影響部における粒内フェライト変態に及ぼすMn希薄域の影響[J].鉄と鋼,2001,87(2):93~100
    [66] H Mabuchi,R Uemori,M Fujioka. The Role of Mn Depletion in Intra-Granular Ferrite Transformation in the Heat Affected Zone of Welded Joints with Large Heat Input in Structural Steels[J]. ISIJ International,1996,36(11):1406~1412
    [67] K Itoh,M Nakanishi. Study on Charpy Impact Properties of Weld Metal with Submerged Arc Welding[S]. IIW Doc,Ⅻ-113-75,1975
    [68]松田昭一.γ→α変態及ぼすTiNの影響[J].鉄と鋼,1976,62(10):1356~1362
    [69]张莉芹.大线能量低焊接裂纹敏感性钢WDL590D2、WDL610D2的研究[D].武汉:武汉科技大学,2000
    [70]石川房男,高桥稔彦,越智达朗.粒内フェライトの生成机构[J]. CAMP-ISIJ,1990,3:1797
    [71]黑泽文夫,铃木茂.鉄鋼材料の表面·界面分析に関する最近の研究[J].日本金属学会会报,1991,30(7):640~647
    [72] J L Lee,Y T Pan. The Formation of Intragranular Acicular Ferrite in Simulated Heat-affected Zone[J]. ISIJ International,1995,35(8):1027~1033
    [73] J L Lee. Evaluation of the Nucleation Potential of Intragranular Acicular Ferrite in Steel Weldments[J]. Acta Metal Materials,1994,42(10):3291~3298
    [74] HAN Qiyong,TANG Li,WANG Qingkui. Application of Barium - containing Alloys in Steelmaking[J]. Journal of Iron and Steel Research,1992,4(3):98~106
    [75]谢中,倪红卫.镁在钢水脱硫中的应用[J].钢铁研究,2007,35(12):35~41
    [76]王建生.铁液中钡氧、钡硫、钡磷平衡及合金元素对钡溶解度的影响[D].北京钢铁学院博士论文,1988
    [77]史域芳.钡合金精炼作用的研究[D].北京科技大学博士论文,1992
    [78]韩其勇.含钡合金在钢生产中的应用[J].钢铁研究学报,1992,4(3):98~106
    [79]王忠英.钡合金处理轴承钢的理论及工艺研究[D].北京科技大学博士论文,1998
    [80]黄小良,王忠英.钙和钡对钢脱氧及夹杂变性的理论分析[J].青海大学学报(自然科学版),2004,22(3):8~11
    [81]黄孟珏,汪婕莹.钙在钢中的作用及合金化行为[J].马钢技术,1998,3:52~55
    [82]张鉴.冶金熔体的计算热力学[M].北京:冶金工业出版社,1998
    [83]陈襄武.钢铁冶金物理化学[M].北京:冶金工业出版社,1990
    [84]音谷登平.钙洁净钢[M].北京:冶金工业出版社,1994
    [85] Irons G A,Guthrie R I L. The Kinetics of Molten Iron Desulphurization Using Magnesium Vaporr[J]. Metallurgical Translations,1998,12b(4):755~767
    [86]宁玫,付继成,郑建华.钙处理对钢中夹杂物变性的分析研究[C].北京:2005中国钢铁年会,2005:246~251
    [87]知水.特殊钢炉外精炼[M].北京:原子能出版社,1996:79
    [88]王建,姜丽.镁处理对钢中夹杂物变性研究[J].包钢科技,2008,34(4):32~35
    [89] Dr S K Saxena. Prduction of ultra-clean steels with better mechanical properties with magnesium treatment[C]. Steelmaking Conference Proceedings,1996:89~96
    [90]周德光,傅杰.轴承钢中镁的控制及作用研究[J].钢铁,2002,37(7):23~25
    [91] Gammal T E,赵风林.在钢的二次精炼中镁的作用[J].钢铁,1987,22(11):33
    [92]孙文山,傅杰.镁在35CrNi3MoV钢中的作用[J].兵器材料科学与工程,1997,7:3~8
    [93]陆丰,曹风馥,李承基. Ca在58CrV钢中的合金化行为[J].金属学报,1992,6:36~40
    [94]高德春,李承基,等. O对42MnCr钢显徽组织及冲击韧性的影响[J].金属热处理学报,1993,3:33~37
    [95]李承基,高德春,等. Ca对CrMnCuV钢中晶界偏聚及冲击韧性的影响[J].金属学报,1993,12:40~45
    [96] T M伊茨科维奇.钢脱氧及非金属夹杂物的变性处理[M].北京:冶金工业出版社,1983:193~238
    [97]姜周华,李阳,刘杨.钡处理钢的微观组织和机械性能研究[J].材料,1992,7(4):707~711
    [98] Maurizio VEDANI,Aldo MANNUCCI. Effects of Titanium Addition on Precipitate and Microstructural Control in C-Mn Microalloyed Steels[J]. ISIJ International,2002,42(12):1520~1526
    [99]高村仁,溝口庄三.氧化物对钢性能的作用世界[J].钢铁,2005,2:8~10
    [100] Lee T K,Kim H J,Kong B Y. Eeffect of Inclusion Size on the Nuclation of Acicular Ferrite in welds[J]. ISIJ International,2000,40(12):1260~1268
    [101]陈晓,秦晓钟.高性能压力容器和压力钢管用钢[M].北京:机械工业出版社,1998:21~23
    [102]薛正良,王义芳,王立涛.用小气泡从钢液中去除夹杂物颗粒[J].金属学报,2003,39(4):431
    [103] Reed Thomas. Free Energy of Formation of Binary Compounds[M]. 1971
    [104] Bu Yong,Chen Xiao,Hu Benfu,H Takahashi. Nucleation of Intra-granular Ferrite in the HAZ of Ti-bearing HSLA Steel[C]. Shanghai:Second International Conference on Advanced Structural Steels,2004:985~992
    [105] H K D H Bhadeshia. Bainite in Steels[M]. The Inst Mater.,London,1992:245
    [106] Jye Long Lee,Yeong Tsuen Pan. The Formation of Intragranular Acicular Ferrite in Simulated Heat-affected Zone[J]. ISIJ International,1995,35(8):1027~1033
    [107] R A Ricks,P R Howell. The Nature of Acicular in HSLA Steel Weld[J]. Journal of Materials Science,1982,17(3):732
    [108] Bruce L,Bramfitt. The Effect of Carbide and Nitride Addition on the Heterogeneous Nucleation Behavior of Liquid Iron[J]. Metal Trans,1970,1(7):1987~1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700