Mg处理冶炼工艺对船板钢母材和焊接热影响区影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶用厚板是钢铁板材产品中重要的战略产品之一,而能适应大线能量焊接的船用厚板是近年来造船业最为迫切的需求。由于大线能量焊接过程焊缝附近长时间经历高温过程,钢板焊接热影响区的微观组织发生严重劣化,导致韧性急剧下降,严重影响钢板的力学性能,所以改善厚板焊接热影响区(heat affected zone(HAZ))韧性成为钢铁领域最为重要的研究课题之一。而在改善钢铁厚板焊接热影响区韧性的研究中,利用微细粒子的氧化物冶金工艺是近年来国内外最为重要的研究领域。由于Mg处理工艺引入的MgO粒子具有高温稳定并趋向于细小弥散分布的特性,所以Mg处理工艺被认为是氧化物冶金工艺中最为有效的处理手段之一,而国内Mg处理工艺的系统研究还没有报道。本文以目前使用范围广质量要求高,同时又是对大线能量焊接需求最为迫切的EH36船板钢为目标钢种,对Mg处理冶炼工艺对船板钢母材和焊接热影响区的影响进行了系统的研究。
     本论文根据EH36船板钢的合金体系,设计了试验钢的冶炼成分体系,利用一阶活度相互作用系数计算出钢液中各元素的活度系数,并由此计算得出Mg处理后钢液中[%O]和[%Mg]的平衡关系,为试验提供了理论依据。根据EH36船板钢和性能指标设计了试验钢TMCP轧钢工艺。分别采用常规工艺和Mg处理工艺冶炼了实验钢锭,然后采用完全相同的TMCP轧制工艺将实验钢锭轧制成实验钢厚板。
     对比研究了Mg处理工艺对厚钢板母材的影响,发现Mg处理工艺虽然向钢铁基体中引入了的大量的微细夹杂物粒子,但微细粒子对钢板母材的组织和性能没有影响。通过金相组织分析发现,无论是垂直于轧向还是平行于轧向上,与常规冶炼工艺的钢板相比,Mg处理钢的组织和形态没有发生变化。拉伸试验、冲击试验等力学性能检测结果表明,Mg处理钢板的横向和纵向的低温冲击性能、抗拉强度和屈服强度,与常规冶炼工艺的钢板相比力学性能基本相当。
     研究了钢板大线能量焊接后热影响区的韧性劣化机理进行。明确了厚钢板焊接HAZ韧性劣化的机理,即大线能量焊接过程焊缝附近长时间经历高温过程,钢板焊接热影响区的晶粒发生严重粗化,同时在冷却相变过程中生成脆性组织,造成韧性急剧下降。阐明了利用Mg处理冶炼工艺改善钢板焊接HAZ冲击韧性的机制,即利用微细粒子沉淀于奥氏体晶界,在焊接热循环的过程中作为钉扎粒子阻止奥氏体晶粒的长大,同时在在奥氏体向铁素体的固相转变过程中,利用固溶于奥氏体晶内微细夹杂物诱发晶内铁素体(IGF)的形核和长大,从而达到优化晶内组织,改善HAZ冲击韧性的作用。
     对比研究了Mg处理工艺对钢板焊接热影响区的低温韧性的影响,发现采用Mg处理工艺的钢板其焊接HAZ表现出了优异的低温韧性。通过对钢板热模拟焊接热影响区冲击断口的分析发现,Mg处理工艺钢的HAZ冲击断口由很多较为细小的解理断面组成,而常规冶炼工艺钢的HAZ冲击断口由面积较大的解理断面组成。冲击试验力学性能检测结果表明,钢板的HAZ平均冲击功大幅度提高,是常规冶炼工艺的钢板的5倍以上
     采用SEM.TEM.EDS技术相结合,对比研究了Mg处理工艺对厚钢板中微细夹杂物粒子的成分、粒径和分布密度的影响,研究表明Mg处理工艺大幅度减少微米级夹杂物(大于0.2μm)中Al2O3的存在,夹杂物的尺寸分布范围主要集中在0.2μm-1.5μm;Mg处理工艺向钢中大量引入粒径在200nm以下的小尺寸夹杂物,Mg处理钢中纳米级夹杂物(小于0.2μm)的分布密度高于常规冶炼工艺钢一个数量级。
     采用SEM.TEM.EDS与CSLM技术和EBSD技术相结合,对微细粒子改善厚钢板焊接HAZ冲击韧性进行了系统的研究。利用CSLM技术通过原位观察焊接热循环过程中HAZ晶粒的生长和变化情况,发现Mg处理工艺向钢中引入的大量粒径在200nm以下的小尺寸夹杂物,在钢板的焊接热输入高温区对奥氏体晶粒产生了十分显著的钉扎作用,抑制了奥氏体晶粒生长。在完全相同焊接热模拟条件下,Mg处理钢板HAZ原奥氏体晶粒平均尺寸要比常规工艺钢板原奥氏体晶粒平均尺寸小6倍。通过EBSD技术对钢焊接HAZ铁素体晶界取向差分析发现,Mg处理钢中焊接HAZ呈大角度晶界的晶内铁素体的比例显著增加。分析Mg处理钢焊接HAZ晶内组织发现,Mg处理向钢中引入的大量粒径在0.2μmn-1.5μmn的微米级夹杂物可以有效地诱发晶内针状铁素体形核生长,形成了交叉互锁状、具有大角晶界和高位错密度的针状铁素体组织,晶粒交叉互锁可以有效抑制裂纹的延伸扩展,通过优化晶内组织达到改善了HAZ冲击韧性。
     Mg处理冶炼工艺在对船板钢板母材的组织和性能没有产生不利影响的情况下,有效的改善了钢板大线能量焊接热影响区的韧性。
Thick plate used for ship is one of the important strategic products, and there has been an increasing demand for thick ship plate with excellent weldability in high-heat input welding in recent years. During the thermal cycle of high-heat input welding, the fine microstructure of steel plates of heat affected zone(HAZ) is destroyed, resulting in the markedly reduced toughness of the HAZ. So improving the toughness of HAZ has been the key subject in the fields of steel research. Oxide metallurgy is considered a effective way to deal with such problem for oxide metallurgy can be used for the retardation of grain growth by the use of fine particles, which are stable at the high temperature. Mg has been proved to be one effective element in oxide metallurgy for the formation of dispersed and fine MgO particles that are stable at high temperature. However, the detailed and systemic research on steel with Mg treatment is seldom reported. So this thesis focused on the comprehensive study on the influence of Mg treatment on the base metal and HAZ of ship plate steel. In this study, EH36 ship plate steel was selected for its wide appliance and high quality requirement.
     Based on the alloy system of EH36 ship plate steel, the composition of each element in smelting steel was designed and activity coefficient of each element in the molten steel was worked out by the first order activity interaction coefficient. Then the equilibrium relation between [%O] and [%Mg] in the molten steel with Mg treatment was also calculated, which could provide theoretical basis for this experiment. According to the performance index of EH36 ship plate steel, the thermo-mechanical control process(TMCP) was designed. The experiment steels were made by vacuum melting furnace with traditional metallurgy technology and metallurgy technology with Mg treatment. Both the molten steel were then cast into ingots and then subsequently hot rolled to get test steel plates with same TMCP.
     This study found from comparative researches that Mg treatment has little effect on the microstructure and performance of base metal even though a lot of fine inclusions occurred in the steel after Mg addition. Whether on the direction prependicular or parallel to the rolling direction, the microstructure and morphology did not change. And both in the transversal and longitudinal direction of the steel with Mg treatment, the low temperature impact toughness, tensile strength and yeild strength were comparative to steel without Mg treatment.
     The toughness degradation mechanism of HAZ in plate steel after high-heat input welding was analysed. It was found that the microstructure of HAZ became coarse during experiencing long-time high temperature near the welding line, and meanwhile its toughness lowered sharply due to the formation of brittle zone during the air-cooled process. Furthermore, the impact toughness improvement mechanism of HAZ in Mg treatment steel was discussed. Fine inclusions deposited on the austenite grain boundary and retarded the growth of austenite grain as pinning particles during the themal cylcle of high-heat put welding. And simultaneously, the fine inclusions solid soluble in the austenite grains could induce the promotion of intragranular ferrite(IGF) during the solid phase transformation from austenite to ferrite, which would finally optimize the microstructure and improve the impact toughness of HAZ in plate steel.
     Plate steel with Mg treatment exhibited excellent low temperature impact toughness of HAZ compared with steel without Mg treatment. It was observed in the plate steel with Mg treatment that the impact fracture of HAZ was composed of a lot of tiny cleavage sections, while in the plate steel without Mg treatment, the impact fracture of HAZ was composed of larger area cleavage sections. It was measured that the average fracture energy of HAZ in plate steel with Mg treatment was 5 times more than that in plate steel without Mg treatment.
     The influence of Mg treatment on the composition, grain size and distribution density of fine inclusions in plate steel were studied by the combination of scanning electron microscope (SEM), transmission electron microscopy(TEM) and Energy Dispersive Spetrum (EDS) technology. It was shown that the amount of Al2O3 existing in inclusions(>0.2μm) with micro dimension decreased evidently and the size distribution concentrated in 0.2-1.5μm after the Mg was added to the steel. It was also found that Mg addition had introduced a great quantity of inclusions smaller than 200nm to the steel, which was 10 times higher than the quantity of inclusions(<0.2μm) existing in steel without Mg treatment.
     To comprehensively understand the improvement of fine inclusions on the impact toughness of HAZ in plate steel, confocal scanning laser microscope(CSLM) and electron back scattered diffraction (EBSD) technology as well as SEM, TEM and EDS technology were used. It was through CSLM technology that the grain growth and transformation of HAZ during welding thermal input were in situ observed. It was found that a great quantity of fine inclusions with the size smaller than 200 nm introduced by Mg addition had a effective pinning effect on the austenite and could retard the austenite grain growth at high temperature zone during high-heat input of welding. Under the completely same thermal input of welding, the average grain size of prior austenite of HAZ in plate steel with Mg treatment was 6 times smaller than that in plate steel without Mg treatment. The ferrite grain boundary misorientation difference of HAZ was analysed by EBSD technology, which found that the proportion of IGF with large angle boundary in plate steel with Mg treatment increased remarkably. From the observation of the microstructure in HAZ, it was found that a great number of fine inclusions with the size ranging of 0.2μm-1.5μm introduced by Mg treatment were very effective to induce the IGF nucleation and growth, which would finally lead to the microstructure with cross interlocking shape, large angle boundary and full of dislocations. Such a microstructure could effectively inhibit the crack spreading and improve the impact toughness of HAZ.
     The smelting process of ship plate steel with Mg treatment could improve the impact toughness of HAZ in plate steel with high-heat input welding effectively without destroying the microstructure and performance of base metal in this kind of shipbuilding steel.
引文
[1]中国钢铁工业协会.《中国钢铁工业年鉴2009》(中文)[J].北京:钢铁工业协会2009:107-108.
    [2]中国船舶工业行业协会.中国造船业近年飞速发展将实现转型升级[J].国内外机电一体化技术,2010,6:26-26.
    [3]李科浚.船级社的重要性[J].中国船检,2007,5:30-30.
    [4]高珊,张才毅,童传国.高强度高韧性TMCP船板的研制[J].世界钢铁,2009,9(5):14-17.
    [5]陈家本,郑惠锦,朱若凡,顾长石.中国船舶焊接技术进展[J].焊接,2007,5:1-6.
    [6]G. Thewlis.Transformation kinetics of ferrous weld metals[J].Materials science and technology,1994,10(2):110-125.
    [7]B. C. Kim, S. Lee, D. Y. Lee and N. J. Kim. In situ fracture observations on tempered martensite embrittlement in an AlSl 4340 steel[J], Metallurgical and Materials Transactions A,1991,22 (8):1889-1892.
    [8]C. L. Davis and J. E. King. Effect of cooling rate on intercritically reheated microstructure and toughness in high strength low alloy steel[J],:Materials science and technology,1993,9(1):8-15.
    [9]铃木,别所,豊田,南.焊接热影响区M-A岛组织形态的破坏作用[J].焊接学会论文集,13(1995),293-301.
    [10]田川、宫田、栗饭原、岡本.M-A岛组织形态对结构钢焊接热影响区强度及韧性的影响[J].铁钢,1993,79(10):1176-1181.
    [11]Y. Li, D. N. Growther, J. W. Green, P. S. Mitchell and T. N. Baker:The Effect of Vanadium and Niobium on the Properties and Microstructure of the Intercritically Reheated Coarse Grained Heat Affected Zone in Low Carbon Microalloyed Steels[J], ISIJ Int.,41(2001),46-55.
    [12]笠松、高屿、细谷.M-A岛组织形态对结构钢焊接热影响区韧性的影响[J].铁钢,1979,65(8):1232-1241.
    [13]S. Kanazawa, A. Nakashima, K. Okamoto and K. Kanaya. Improved toughness of weld fussion zone by fine tin particles and development of a steel for large heat input welding[J], Tetsu to Hagane,1975,61(11):2589-2603.
    [14]Younes C.; Heard P. J.; Wild R. K.; Flewitt, P. E. J. Micro-structural characterization and analysis of inclusions in C-Mn steel and weld metal[J]. Metallurgical and Materials Transactions A, Physical Metallurgy and Materials Science,2000,31A(3): 615-628
    [15]杨军,范红刚,薛锦,段立宇.低合金高强钢焊缝针状铁素体形核问题的探讨[J].西安交通大学学报,1998,32(9):89-93.
    [16]De Mello Ricardo Silva Tavares, DA Rocha Paranhos Ronaldo Pinheiro, De Souza Bott Ivani, Estudo de inclusoes nao metalicas em metais de solda dearco submerso. Study of non-metallic inclusions in submerged arc weld metals[J]. Cienciay Engenharia/Science and Engineering Journal,2003,12(SPEC):49-54
    [17]Lee T K, Kim H J, Kang B Y, Hwang S.K.. Effect of inclusion size on the nucleation of acieular ferrlte in welds[J]. ISIJ International,2000,40(12):1260-1268.
    [18]张德勤,雷毅,刘志义.微合金钢焊缝金属中的针状铁素体[J].石油大学学报:自然科学版,2003,27(4):141-144
    [19]演田昌彦.焊接金属·焊接热影响区晶内变态改善韧性研究课题[C].夹杂物控制材料组织·焊接HAZ韧性资料集.东京,日本铁钢学会,2006:1-4.
    [20]Takamura Jin ichi, Mizoguhci Shozo. Role of oxides in steels perform ances metallurgy of oxides insteels[C]. ISIJ Proceedings of the sixth international iron and steel congress, Nagoya, ISIJ, c1990:591-597.
    [21]S. Mizoguchi and J. Takamura. Control of Oxides as Inoculants Metallurgy of Oxides in Steels[C]. Proc. of 6th Int. Iron and Steel Cong., Nagoya, ISIJ,1990:598-604.
    [22]余圣甫,雷毅,黄安国,谢明力,李志远.氧化物冶金技术及其应用[J].材料导报,2004,18(8):50-52.
    [23]Shim J H, Cho Y W, Chung S H, Shim J.-D.; Lee D.N. Nucleation of intragranular ferrite at Ti203 particle in low carbon steel[J]. Acta Materialia,1999,47(9): 2751-2760
    [24]Oh Young-joo, Lee Sang-yoon, Byun Jung-Soo, Shim J-H, Cho Y W. Non-metallic inclusions and acicular ferrite in low carbon steel[J]. Materials Transactions, JIM, 2000,41(12):1663-1669
    [25]Byun Jung-Soo, Shim Jae-hyeok, Suh Jin-yoo, Young-Joo Oh, Young Whan Cho, Jae-Dong Shim and Dong Nyung Lee. Inoculated acicular ferrite microstructure and mechanical properties[J]. Materials Science and Engineering A,2001,319-321(11): 326-331
    [26]Chen Y T, Chen X, Ding Q F, Zeng J. Microstructure and inclusion characterization in the simulated coarse grain heat affected zone with large heat input of a Ti-Zr-microalloyed HSLA steel[J]. Acta Metallurgica Sinica (English Letters),2005, 18(2):96-106
    [27]Beomjoo, Sangho Uhm, Changhee Lee, Jongbong Lee, Youngho An. Efects of inclusions and microstructures on impact energy of high heat-input submerged-arc-weld metals[J]. Journal of Engineering Materials and Technology, Transactions of the ASME,2005,127(2):204-213.
    [28]T. Funakoshi, T. Tanaka, S. Ueda, M. Ishikawa, N. Koshizuka and K. Kobayashi. Weldable steel excellent in the toughnessof the bondin a single layer weldingwith a large heat-input[J]. Tetsu-to-Hagane,1977,63(2),303-309.
    [29]中西、小沟、瀬田.利用氧化物改善焊接热影响区韧性[J].焊接学会志.1983,52(2),117-124。
    [30]Y. Ohno, Y. Okamura, S. Matsuda, K. Yamamoto and T. Mukai. Characteristics of haz microstructure in ti-b treated steel for large heat input welding [J] Tetsu-to-Hagane,1987,73(8),1010-1017.
    [31]Naoshi Ayukawa, Yoshio Terada, Takuya Hara, Hitoshi Asahi高强度管线钢及其焊管的性能研究[J].焊管,2005,28(2):50-60.
    [32]H. Homma, S. Ohkita, S. Matsuda, K.Yamamoto. Numerical Simulation of Solder Simulation[J]. Welding Research Supplement.1987,85 (10):301s-306s.
    [33]R. Chijiiwa, H. Tamehiro, M. Hirai, H. Matsuda. Extra High Toughness Titanium Oxide Steel Plates for Offshore Structures and Line Pipe[J]. H. Mimura:7th Int. Conf. on Offshore Mechanics and Arctic Engineering, Houston,USA,1988(5):165-172.
    [34]K. Yamamoto, S. Matsuda, H. Haze, R. Chijiiwa, H. Mimura. Residual and Unspecified Elements in Steel Residual and Unspecified Elements in Steels[C]. ASTM-STP 1042, Philadelphia,ASTM,1989:266-271.
    [35]Z.G. Yang, C. Zhang, T. Pan. The Mechanism of Intragranular Ferrite Nucleation on Inclusion in Steel [J]. Materials Science Forum,2005,475-479(1):113-116.
    [36]F. Ishikawa, T. Takahashi and T. Ochi. Intragranular Ferrite Nucleationin Medium-Carbon Vanadium Steels[J]. Metallurgical and Materials TransactionsA, 1994,25A:929-936
    [37]K. Nishioka,H. Tamehiro. Transformation Plasticity of Titanium[C]. Microalloyed HSLA Steels, Chicago, USA, ASM,1988:597-605.
    [38]Diza-Fuentes M, Madariaga 1, Gutierrez I. Acicular ferrite microstructures and mechanical properties in a low carbon wrought steel[J]. Materials Science Forum, 1998,284-286:245-252
    [39]Madariaga I, Gutierrez I. Role of the particle matrix interface on the nucleation of acicular ferrite in a medium carbon microalloyed steel[J]. Acta Materialia,1999, 47(3):951-960
    [40]G. Shigesato, M. Sugiyama, R. Uemori. Cross sectional TEM observation of MnS as a nucleation site of ferrite[C]. CAMP-ISIJ, Nagoya, ISIJ,1999 12(1),534-534.
    [41]Yamamoto K.; Hasegawa S.; Takamura J.. Effect of boron on the intra-granular ferrite formation in titanium-oxides bearing steels[J]. Tetsu-to-Hagane,1993,79(10), 1169-1175
    [42]Aihara Shuji, Uemori Ryuji, Furuya Hitoshi, Tomita Yukio, Shigesato Genichi. Influence of Mn depleted zone on intragranular ferrite formation in HAZ of low alloy steel[C]. CAMP-ISIJ, Nagoya, ISIJ,1999,12(6):1293-1293.
    [43]Shigesato Genichi, Sugiyama Masaaki, Aihara Shuji, Uemori Ryuji, Furuya Hitoshi. Influence of Mn-depleted zone on intragranular ferrite formation in HAZ of low alloy steel[C]. CAMP-ISIJ, Nagoya, ISIJ,1999,12(4):1294-1294.
    [44]G. Shigesato, M. Sugiyama, S. Aihara, R. Uemori, Y. Tomita.Effect of Mn Depletion on Intra-granular Ferrite Transformation in Heat Affected Zone of Welding in Low Alloy Steel[J].Tetsu to Hagane,2001,87(2):93-100.
    [45]Yamaguchi. J., Takemura. N., Furuhara, T., Maki, T., Uemori, R. Crystallography of ferrite nucleated at (MnS+V(C, N)) complex precipitate in austenite[C]. CAMP-ISIJ, Nagoya, ISIJ,1998,11(4):1128-1128.
    [46]T. Furuhara, T. Shinyoshi, G. Miyamoto, J. Yamaguchi, N. Sugita, N. Kimura, N. Takemura, T. Maki. Effect of Boron on Intra-granular Ferrite Formation in Ti-Oxide Bearing Steels[J]. ISIJ Int.,2003.43:2028-2037
    [47]J. Yang, M. Kuwabara, T. Sakai, N. Uchida, Z. Z. Liu, M. Sano. Simultaneous Desulfurization and Deoxidation of Molten Steel with In Situ Produced Magnesium Vapor[J]. ISIJ Int.,2007,47(3):418-426
    [48]S. Kimura, K. Nakajima, S. Mizoguchi. Behavior of alumina-magnesia complex inclusions and magnesia inclusions on the surface of molten low-carbon steels[J]. Metallurgical and materials transactions B, Process metallurgy and materials processing science,2001,32B (1),79-85.
    [49]K. Sakata, H. Suito.Grain-growth-inhibiting effects of primary inclusion particles of ZrO2 and MgO in Fe-10 mass Pct Ni alloy[J]. Metallurgical and materials transactions A, Physical metallurgy and materials science,2000,31 (4),1213-1223.
    [50]K. Sakata,H. Suito. Dispersion of fine primary inclusions of MgO and ZrO2 in Fe-10 mass Pct Ni alloy and the solidification structure[J]. Metallurgical and materials transactions B, Process metallurgy and materials processing science,1999,30B (6): 1053-1063.
    [51]H. Ohta, H. Suito. Characteristics of Particle Size Distribution of Deoxidation Products with Mg, Zr, Al, Ca, Si/Mn and Mg/Al in Fe-10mass%Ni Alloy[J]. ISIJ Int., 2006,46(1),14-21.
    [52]H. Ohta,H. Suito.Dispersion behavior of MgO, ZrO2, Al2O3, CaO-Al2O3 and MnO-SiO2 deoxidation particles during solidification of Fe-10mass%Ni alloy [J]. ISIJ Int.,2006,46(1),22-28.
    [53]G. V. Pervushin,H. Suito.Effect of primary deoxidation products of Al2O3, ZrO2, Ce2O3 and MgO on TiN precipitation in Fe-10mass%Ni alloy[J]. ISIJ Int.,41(2001), 748-756.
    [54]H. Ohta,H. Suito. Precipitation and dispersion control of MnS by deoxidation products of ZrO2, Al2O3, MgO and MnO-SiO2 particles in fe-10mass%Ni alloy [J]. ISIJ Int.,2006,46(4),480-489.
    [55]A. V. Karasev and H. Suito.Effect of particle size distribution on austenite grain growth in Fe-0.05mass%C alloy deoxidized with Mn-Si, Ti, Mg, Zr and Ce[J]. ISIJ Int.,2006,46(5),718-727.
    [56]J. Yang, T. Yamasaki, M. Kuwabara.Behavior of inclusions in deoxidation process of molten steel with in situ produced mg vapor [J]. ISIJ Int.,2007,47(5):699-708.
    [57]R. Takata, J. Yang,M. Kuwabara. Characteristics of inclusions generated during Al-Mg complex deoxidation of molten steel[J]. ISIJ Int.,2007,47(10):1379-1386.
    [58]R. Irizato, R. Takata, J. Yang, M. Kuwabara. Inclusions behavior in Mn-Si-Mg complex deoxidation process of molten steel[C]. CAMP-ISIJ, Nagoya, ISIJ, 2007,20(4):864-864.
    [59]H. Ohta, H. Suito. Activities in CaO-MgO-Al2O3 slags and deoxidation equilibria of Al, Mg, and Ca[J]. ISIJ Int.,1996,36(8):983-990.
    [60]H. Ohta,H. Suito. Deoxidation equilibria of calcium and magnesium in liquid iron [J]. Metallurgical and materials transactions B, Process metallurgy and materials processing science,1997,28B(6):1131-1139.
    [61]H. Itoh, M. Hino,S. Banya. Thermodynamics on the Formation of Non-Metallic Inclusion of Spinel in Liquid Steel [J]. Tetsu-to-Hagane,1997,83(10):623-628.
    [62]H. Itoh, M. Hino, S. Banya. Thermodynamics on the Formation of Non-metallic Inclusion of Spinel (MgO-Al2O3) in Liquid Steel[J]. Tetsu-to-Hagane,1998,84(2): 85-90.
    [63]J. D. Seo, S. H. Kim.Thermodynamic assessment of Mg deoxidation reaction of liquid iron andequilibria of [Mg]-[Al]-[O] and [Mg]-[S]-[O][J]. Steel Research, 2000,71(4):101-106.
    [64]N. Nadif and C. Gatellier. Magnesium on the Solubility of Oxygen and Sulfur in Liquid. Steel[J]. Rew. Metall.,1986,83:377-394.
    [65]Q. Y. Han, D. Zhou,C. X. Xiang. Determination of Dissolved Sulfur and Mg-S, Mg-O Equilibria in Molten Iron [J]. Steel Research,1997,68:9-14.
    [66]J. Yang, S. Ozaki, R. Kakimoto, K. Okumura, M. Kuwabara, M. Sano. Desulfurization of Molten Iron with Magnesium Vapor Produced In-situ by Carbotbermic Reduction of Magnesium Oxide[J]. ISIJ Int.,2001,41 (9):945-954.
    [67]J. Yang, K. Okumura, M. Kuwabara,M. Sano. Desulfurization of Molten Iron with Magnesium Vapor Produced In-situ by Aluminothermic Reduction of Magnesium Oxide[J]. ISIJ Int.,2001,41 (9):965-973.
    [68]J. Yang, K. Okumura, M. Kuwabara, M. Sano. Effects of Operating Paraments on Desulfurization of Molten Iron with Magnesium Vapor Produced In-situ by Aluminothermic Reduction of Magnesium Oxide[J]. ISIJ Int.,2002,42 (6):595-602.
    [69]J. Yang, K. Okumura, M. Kuwabara, M. Sano. Behavior of Magnesium in the Desulfurization Process of Molten Iron with Magnesium Vapor Produced In-situ by Aluminothermic Reduction of Magnesium Oxide[J]. ISIJ Int.,42 (2002),685-693.
    [70]J.Yang, K.Okumura, M.Kuwabara, M.Sano. Improvement of Desulfurization Efficiency of Molten Iron with Magnesium Vapor Produced In Situ by Aluminothennic Reduction of Magnesium Oxide[J]. Metallurgical and materials transactions B, Process metallurgy and materials processing science, 2003,34B:619-629.
    [71]J. Yang, M. Kuwabara, T. Teshigawara, M. Sano. Mechanism of Resulfurization in the Magnesium Desulfurization Process of Molten Iron[J]. ISIJ Int.,2005,45 (11), 1607-1615.
    [72]J. Yang, M. Kuwabara, K. Okumura and M. Sano. Prevention of Resulfurization in the Desulfurization Process with Magnesium Vapor Produced In Situ by Aluminothermic Reduction of Magnesium Oxide[J]. ISIJ Int.,2005,45(12): 1795-1803.
    [73]Yang Jian, Zhu Kai, Shen Jian-guo, K. Mamoru:Improvement of Steel Cleanliness by Deoxidation with Mg Vapor[J]. Journal of Iron and Steel Research International, 2008,15(10):675-680.
    [74]A. Kojima, A. Kiyose, R. Uemori, M. Minagawa, M. Hoshino, T. Nakashima, K. Ishida and H. YasuiSuper high HAZ toughness technology with fine microstructure imparted by fine particles[J]. Nippon Steel Technical Report,2004,380:2-5
    [75]T. Inoue, K. Tanabe, M. Ohara, K. Koyama, Y. Tomita, R. Chijiiwa, Y. Tsuda, S. Isoda. Development of ultra-heavy plates with excellent electron beam weldability [J]. Nippon Steel Technical Report,1993:32-38
    [76]Trophy具有优异焊接热影响区韧性的HTUFF钢获市村产业奖[J]. Nippon Steel Monthly,2004,140(7):1-4
    [77]M. Minagawa, K. Ishida, Y. Funatsu, S. Imai.390 Mpa yield strength plate for large heat-input welding for large container ships[J]. Nippon Steel Technical Report, 2004,380:6-8.
    [78]M. Nagahara, H. Fukami.530N/mm2 tensile strength grade steel plate for multi-purpose gas carrier[J]. Nippon Steel Technical Report,2004,380:9-11.
    [79]A. Kojima, K. Koshii, T. Hada, O. Saeki, K. Ichikawa, Y. Yoshida, Y. Shimura and K. Azuma. Development of high HAZ toughness steel plates for box column with high heat input welding[J]. Nippon Steel Technical Report,2004,380:33-37.
    [80]Y. Nagai, H. Fukami, H. Inoue, A. Date, T. Nakashima, A. Kojima and T. Adachi. YS500/mm2 high strength steel for offshore structures with good CTOD properties at welded joints[J]. Nippon Steel Technical Report,2004,380:12-16
    [81]Terada Yoshio, Kojima Akihiko, Kiyose Akihito, Nakashima Takao, Doi Naoki, Hara Takuya, Morimoto Hiroshi, Sugiyama Masaaki. High-strength Linepipes with Excellent HAZ Toughness and Deformability[J]. Nippon Steel Technical Report, 2004,380:76-81
    [82]S. Suzuki, K. Ichimiya and T. Akita. High tensile strength steel plants for shipbuilding with excellent HAZ toughness[J]. JFE Technical Report,2004,5,19-24.
    [83]T. Kimura, H. Sumi,Y. Kitani. High tensile strength steel plants and welding consumables for architectural construction with excellent toughness in welded joints[J]. JFE Technical Report,2004,5:38-44.
    [84]K. Nishimura, K. Matsui and N. Tsumura. High performance steel plates for bridge construction[J]. JFE Technical Report,2004,5:25-30.
    [85]K. Hayashi, K. Araki and T. Abe. High performance steel plates for tanks and pressure vessels[J]. JFE Technical Report,2004,5:56-62.
    [86]N. Ishikawa, S. Endo and J. Kondo. High performance UOE linepipes[J]. JFE Technical Report,2005,9:19-24
    [87]S. Okano, T. Koyama, Y. Kobayashi, M. Yamauchi.355-460 MPa Yield Point Steel Plates and Welding Consumables for Large Heat-input Welding for Giant Container Ships[J]. Kobe Steel Engineering Reports,2002,52(1):2-6.
    [88]H. Hatano, Y. Okazaki, T. Takagi, H. Takeda, T. Koyama, S. Okano. Development of Thick SA440 Steel Plate for Ultra High Heat Input Welding[J]. Kobe Steel Engineering Reports,2002,52(1):49-53.
    [89]H. Hatano, H. Kawano and S. Okano.780MPa Class Steel Plate for Architectural Construction[J]. Kobe Steel Engineering Reports,2004,54(2):105-109.
    [90]H. Kawano, M. Shibata, S. Okano, Y, Kobayashi, Y. Okazaki,H. Hatano. TMCP Steel Plate with Excellent HAZ Toughness for High-rise Buildings[J]. Kobe Steel Engineering Reports,2004,54(2):110-113.
    [91]K. Abe, M. Izumi, M. Shibata, H. Imamura, H. Kawano and H. Hatano. High Tensile Strength Steel Plates for High-heat Input Welding[J]. Kobe Steel Engineering Reports, 2005,55(2):26-29.
    [92]张莉芹,卜勇,陈晓.大线能量低焊接裂纹敏感性钢的焊接(二)--热影响区组织及晶内铁素体形核机理研究压力容器[J].2002,19(8):35-38.
    [93]卜勇、胡本芙、高桥平七郎、张莉芹.含钛低合金高强钢焊接热影响区晶内铁素体形核机制研究[J].钢铁,2002,37(11):48-52.
    [94]陈晓、陈颜堂、王蕾、刘继雄、卜勇.大线能量低焊接裂纹敏感性钢的显微组织[J].中国有色金属学报,2004,14(5):217-223.
    [95]习天辉、陈晓、李俊凤、陈颜堂、郭爱民、卜勇.锆处理对微合金钢粗晶热影响区组织的影响[J].机械工程学报,200630(11):77-80.
    [96]刘继雄、王青峰、李平和、董汉雄、习天辉、陈晓.高性能耐火耐候建筑用钢焊接性能研究[J].钢铁,2002,37(12):40-43.
    [97]傅博、李巍、程钢.鞍钢ANS400超细晶粒钢焊接热影响区的冲击韧性[J].焊接,2004,1:23-25.
    [98]郝森、付魁军.Nb-Ti微合金钢大线能量焊接粗晶区组织和韧性的研究[J].鞍钢技术,2005,5:15-18.
    [99]宋立秋、罗守斌、郭爱林.船用热轧钢板焊接性能研究[J].钢铁钒钛,2001,22(2):25-32.
    [100]尹桂全、张纯明.微Ti钢焊后冷却过程中的第二相粒子[J].钢铁,2002,37(4):53-56.
    [101]尹桂全、王世俊、黄贞益.低碳微合金Ti-Nb可焊钢中的N及其第二相粒子[J].焊接学报,2006,27(5):57-60.
    [102]洪永昌.微合金钢模拟焊接热影响区组织和韧性研究[J].热处理,2002,17(3):16-19.
    [103]洪永昌、尹桂全.Ti、Nb对结构钢焊接热影响区组织和韧性的影响[J].电焊机,2002,32(4):21-23.
    [104]陈茂爱,武传松,廉荣,唐逸民.Ti微合金钢第二相粒子在焊接热循环过程中的溶解、粗化及再析出[J].机械工程学报,2003,39(7):138-142.
    [105]陈茂爱、武传松、王建国、唐逸民、楼松年.含Ti微合金钢中的第二相粒子对焊接粗晶热影响区组织及韧性的影响[J].焊接学报,2002,23(3):37-40.
    [106]亓效钢、陈茂爱、陈俊华、尚绪强.Ti-Nb微合金钢焊接粗晶热影响区组织及韧性[J].金属成形工艺,2004,22(1):30-40.
    [107]陈茂爱、亓效刚、傅一飞.Ti-Nb微合金钢及焊接热影响区中的第二相粒子[J].特殊钢,2004,25(3):10-13.
    [108]亓效刚、陈茂爱、陈俊华、徐连孝.Ti-Nb微合金钢中第二相粒子对CGHAZ组织及韧性的影响[J].机械工程学报,2005,41(6):86-92.
    [109]陈茂爱、武传松、杨敏、唐逸民、吴人洁.Ti-V-Nb微合金钢第二相粒子在焊接热循环过程中的变化规律[J].金属学报,2004,40(2):148-154.
    [110]陈俊华,亓效刚、李华宾、陈茂爱.Ti-V-Nb微合金钢中的第二相粒子及其对焊接 热影响区奥氏体晶粒长大的影响[J].热加工工艺,2004,6:13-15.
    [111]亓效刚、孙高祚、陈俊华、陈茂爱.焊接热循环对X-60管线钢中第二相粒子的影响[J].热加工工艺,2005,6,51-53.
    [112]贾坤宁、高彩茹、杜林秀、王国栋.微钙钢中第二相粒子对焊接CGHAZ奥氏体晶粒度及强韧度的影响[J].焊接学报,2007,28(3):73-76.
    [113]贾坤宁、赵洪运、高彩茹、王国栋.微钙钢焊后显微组织中的粒状贝氏体对韧性的影响[J].焊接学报,2007,28(2):95-98.
    [114]邹宏辉,符仁任,李麟.SiMn系高强度低合金钢钢显微组织研究[J].机械工程材料,2002,3:12-14
    [115]Arif Basuki Etienne Aemoudt. Influence of rolling of steel in the intereritica region on the stability of retained austenite[J], Journal of Materials Proeessing Technology 1999, (89-90):37-43
    [116]韦习成,李麟,符仁钮.高强度低合金钢钢显微组织与性能关系的评述[J].钢铁研究学报,2001,10:71-76
    []17] 徐祖耀.碳钢中的残余奥氏体[J].上海金属,1995,1:1-6
    [118]B. Mintz., J. J. Jonas. Hot ductility of steels and its relationship to the problem of transverse cracking during continous casting[J]. International Materials Reviews, 1991,36(5):202-208
    [119]霍向东,柳得橹,工元立,柏明卓,康永林.CSP 工艺生产的低碳钢中纳米尺寸硫化物[J].钢铁,2005,40(8):170-175
    [120]刘新宇,王新华,王万军,张丽珠,周有预.低应变速率下锰硫比对低碳钢高温力学性能的影响[J].北京科技大学学报,2000,22(5):427-429
    [121]Mintz, R. Abu-Shosha, M. Shaker. Influence of deformation induced ferrite grain bounddary sliding and dynamic recrystalisation on the hot ductility of 0.1-0.75%C steel [J]. Materials Science and tecnology.1993,9(10):907-914
    [122]Roman Diederichs, Gerhard Pariser. Modelling of Manganese Sulphide Formation during Solidification, Part2:Correlation of Solification and MnS Formation[J]. Streel Reserch int.,2006,77 (4):256-265.
    [123]Yaguci H.. Manganese sulfide precipitation in low-carbon resulfurized free-machining steel[J]. Metallurgical and Materials TransactionsA,1986,17A(11): 2080-2083.
    [124]李曼云,孙本荣.钢的控制轧制和控制冷却技术手册[M].北京:冶金工业出版 社,1998,2-75
    [125]王明家.V-Ti-N微合金钢焊接热影响区组织与韧性的研究.[硕士学位论文].秦皇岛:燕山大学.1988:28-38
    [126]胡淑娥,王静.一种耐火钢的焊接热模拟研究.建筑钢结构进展[J].2005,7(4):50-51
    [127]赵敏,孙长伟.焊接热模拟技术及其应用[J].焊接技术,1999,8(4):41-42
    [128]伊东裕恭,日野光,万谷志郎.钢中Mg脱氧平衡[J].铁钢.(1997)83,19-24.
    [129]陈家祥.炼钢常用图表数据手册[M],北京:冶金工业出版社.1984.511-521.
    [130]黄希诂.钢铁冶金原理[M].北京:冶金工业出版社.2004:111-111.
    [131]杜挺,韩其勇,王常珍.稀士碱土等元素的物理化学及在材料中的应用[M].北京,科学出版社,1995:19-20.
    [132]H. Ohta, H. Suito.Calcium and magnesium deoxidation in Fe-Ni and Fe-Cr alloys equilibrated with CaO-A12O3 and CaO-Al2O3-MgO slags[J]. ISIJ Int.,2003,43 (9), 1293-1300.
    [133]Sung-Koo Jo, Bo Song and Seon-hyo Kim. Thermodynamics on the Formation of Spinel(MgO·Al2O3). Inclusion in Liquid Iron Containing Chromium[J]. Metallurgical and Materials Transactions B.2002,33B.703-709.
    [134]J.D.Seo, S.H.Kim, K.R.Lee.Thermodynamic assessment of the Al deoxidation reaction in liquid iron[J]. Steel research A.1998,69(2):49-53.
    [135]J.D.Seo, S.H.Kim, K.R.Lee, Thermodynamic assessment of Mg deoxidation reaction of liquid iron and equilibria of [Mg]-[Al]-[O] and [Mg]-[O][J]. steel reseach 2004,74(4):101-106.
    [136]Won-Gap Seo,Woong-Hee Han,Jeong-Sik Kim and Jong-Jin Pak. Deoxidation Equilibria among Mg,Al and O in Liquid Iron in the Presence of MgO·Al2O3 Spinel[J]. ISIJ Int.,2003,43.201-208.
    [137]Hiroki Ohta, Hideaki Suito. Activities in CaO-MgO-Al2O3 Slags and Deoxidation Equilibria of Al,Mg,and Ca[J]. ISIJ Int.,1996,36.983-990.
    [138]D. L. Sponseller, R. A. Flinn. Solubility of Calcium of Calcium in liquid Iron +3RD-Element Interaction Effects[J]. Transactions of the ransactions of the Metallurgical Society of Aime A.1964,230(4),876-888.
    [139]Mikhailov G.G., Tyurin A.G. Deoxidation and Desulfurization of Steel With Calcium, Manganese and Aluminum[J]. Russian metallurgy. Metally A.1984,4:7-12.
    [140]R.Inoue, H.Suito. Calcium desulfurization equilibrium in liquid iron[J]. Steel research,1994,65(10):403-409.
    [141]Jeong-Do Seo, Seon-Hyo Kim, "Thermodynamic assessment of Mg deoxidation reactions of liquid iron and equilibria of [Mg]-[Al]-[O] and [Mg]-[S]-[O][J]. Steel. Research,2000,71(4):101-106.
    [142]G.Li,R.Inoue, H.Suito. Measurement of aluminum or silicon activity in Fe-Ni (<30 %) alloys using mullite and ZrO2-Vbased solid electrolyte galvanic cell[J]. Steel Research,1996,67(12),528-536.
    [143]Ferreiro V, Douglas J F, Warren J, Karim A. Nonequilibrium pattern formation in the crystallization of polymer blend films[J]. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics A.2002,65,(4):042802/1-042802/4
    [144]Ferreiro V, Douglas J F, Warren J, Karim A.Growth pulsations in symmetric dendritic crystallization in thin polymer blend films[J]. Physical review. E, Statistical, nonlinear, and soft matter physics A.2002,65(5):051606.1-051606.16
    [145]束德林.金属力学性能(第二版)[M].1999年,北京,机械工业出版社:68-71
    [146]闫洪,周天瑞,塑性成形原理[M].2008年12月,北京,清华大学出版社:24-24
    [147]Sunghak Lee, Byung Chun Kim, Dongil Kwon. Fracture toughness analysis of heat-affected zones in high-strength low-alloy steel welds [J]. Metallurgical and Materials Transactions A,1993,24A(5):1133-1141.
    [148]D. W. Tian, L. P. Karjalainen, Bainian Qian, Xiaofeng. ChenNonuniform distribution of carbonitride particles and its effect on prior austenite grain size in the simulated coarse-grained heat-affected zone of thermomechanical control-processed steels[J]. Metallurgical and Materials Transactions A,1996,27A(12):4031-4038
    [149]V. Tvergaard, A. Needleman. Analysis of the Charpy V-notch test for welds[J], Engineering Fracture Mechanics,2000,65(6):627-643.
    [150]T. C. Nguyen, D. C. Weckman. A thermal and microstructure evolution model of direct-drive friction welding of plain carbon steel[J]. Metallurgical and Materials Transactions B,2006,37(2):275-292.
    [151]Sunghak Lee, Byung Chun Kim, DONGIL Kwon. Correlation of microstructure and fracture properties in weld heat-affected zones of thermomechanically controlled processed steels [J]. Metallurgical and Materials Transactions A,1993,24A(8): 2803-2816
    [152]W. O. Soboyejo, J. Zhou, J. Crompton, T. McGaughy, F. OrthCleavage initiation in the intercritically reheated coarse-grained heat affected zone:Part Ⅱ. Failure criteria and statistical effects [J]. Metallurgical and Materials Transactions A,2001,32A(3): 533-545
    [153]M.F.Ashby, K.E.Easterling. A first report on diagrams for grain growth in welds[J]. Acta Metall,1982,30:1969-1978
    [154]C.R. Ouro, F.L. Bastian, and I. de S. Bott. Influence of local brittle zone size on the heat affected zone toughness of structural steel for offshore applications[C]. Trends in Welding Research, Proceeding of the 4th International Conference,5-8 June 1995, Gatlinburg, Tennessee.519-524
    [155]U.Draugelates.The significance of austenite grain size for transgormation behavior andtoughness in the coarse-grain region of the heat-affected zone of fine-grain structural steels[J]. SCHWEISSEN+SCHNEIDEN/welding&cutting,1997,149 (5) E66-E69
    [156]Pandecs, Marsh Sp. The analytical modeling of normal grain growth [J]. JOM,1992. 9:25-29
    [157]Hrivnak I. Mathematical modelling of Weld Phenomenana [A]. The Institute of Materials 1995[C]. London I Carlton House Terrace,1995:163-171
    [158]S Kanazawa. Improved toughness of weld fussion zone by fine TiN particles and development of a steel for large heatinput welding[J]. Tetsu-to-Hagane,1975,61(1 1):2589-2603
    [159]水渡英昭.结晶粒径、氧化物粒子性质及脱氧元素浓度对焊接HAZ组织与性能的影响[C].夹杂物控制材料组织·焊接HAZ韧性.东京:日本铁钢协会,20061-13
    [160]李新城,陈光,张开华.钢铁材料组织超细化技术研究[J].热加工工艺,2002(6):54-57
    [161]B L Bramfitt. Effect of carbide and nitride additions on hererogeneous nucleation behavior of liquid Iron[J]. Metal. Trans.,1970,1(7):1987-1995
    [162]T Furuhara. Muhiphase crystallography in the nucleation of intragranular ferrite on M nS+V(C, N)complex precipitate in austenite[J]. ISIJ Int,2003,43(12):2028-2037
    [163]潘涛,杨志刚,白秉哲,方鸿生.钢中夹杂物与奥氏体基体热膨胀系数差异导致的热应力和应变能研究[J].金属学报,2003,39(10):1037-1042
    [164]M Enomoto. Nucleation of phase transformations at intragranular inclusions in steel[J]. Metals and Materials,1998,4(2):115-123
    [165]D. V. Edmonds, R. C. Cochrane. Structure-property relationships in bainitic steels[J]. Metallurgical and Materials Transactions A,1990,21A(6):1527-1540
    [166]Ricks R A, Howell P R, Barritte G S. The nature of acicular ferrite in HSLA steel weld metals[J]. Journal of Materials Science,1982.17:732-740
    [167]Zhang S, Hattori N, Enomoto M, Tarui T. Ferrite nucleation at ceramic/austenite interfaces[J]. ISIJ inter.,1996.36(10):1301-1309.
    [168]Zhang Z, Farrar R A. Role of inclusions in formation of acicular ferrite in low alloy weld metals[J]. Mater. Sci. Tech.,1996.12(3):237-260.
    [169]Lee T K, Kim H J, Kang B Y, Hwang S K. Effect of inclusion size on the nucleation of acicular ferrite in welds[J]. ISIJ inter.,2000.40(12):1260-1268.
    [170]Capdevila C, Caballero F G, Carcia De Andres C, Modelling of kinetics of isothermal idiomorphic ferrite formation in a medium-carbon vanadium-titanium microalloyed steel[J]. Metallurgical and materials transactions A,2001.32A(7): 1591-1597
    [171]王巍,付立铭,夹杂物/析出相尺寸对晶内铁素体形核的影响[J].金属学报,2008(44),723-728
    [172]Tae Kyu Lee, H.J.Kim. Effeet of inclusion size on the nueleation of acicular ferrite in welds[J]. ISIJ International A,200040(12):1260-1268
    [173]Tomita Y, Saito N, Tsuzuki T, Tokunaga Y, Okamoto K. Improvement in HAZ toughness of steel by TiN-MnS addition[J]. ISIJ International A,1994; 34(10): 829-835.
    [174]Lee, T.K., Kim, H.J., Kang, B.Y., Hwang, S.K.. Effect of Ti addition on the potency of MnS for ferrite nucleation in C-Mn-V steels[J]. ISIJ International,2000, 40(12):1260-1268.
    [175]Lee J L. Evaluation of the nucleation potential of intragranular acicular ferrite in steel weldments[J]. Acta Metal,1994,42(10):3291-3298
    [176]F. Ishikawa, T. Takahashi. Steels for Hot-forging and Its Effect on the Toughness[J]. ISIJ International A,1995; 35(9):1128-1133.
    [177]Abson D J. Nonmetallic Inclusions in Ferritic Steel Weld Metals-A Review[J]. Welding World,1989,27(3/4):76-101
    [178]Madariaga I, Romero J L, Gutierrez I. Upper acicular ferrite formation in a medium-carbon microalloyed steel by isothermal transformation:Nucleation enhancement by CuS[J]. Metallurgical and materials transactions A, Physical metallurgy and materials science A.1998:29A(3):1003-1015
    [179]Lee J L, Pan Y T. The formation of intragranular acicular ferrite in simulated heat-affected zone[J]. ISIJ international A,1995,35(8):1027-1033
    [180]Lee J L, Pan Y T. Microstructure and toughness of the stimulated heat-affected zone in Ti-and Al-killed steels[J].Materials science & engineering. A, Structural materials: properties, microstructure and processing A.1991,136:109-118.
    [181]Qingyun Sha, Zuqing Sun. Grain growth behavior of coarse-grained austenite in a Nb-V-Ti microalloyed stee[J]. Materials Science and Engineering A,2009,523(1-2): 77-84
    [182]Diaz-fuentes M, Iza-mendia A, Gutierrez I. Analysis of different acicular ferrite microstructures in low-carbon steels by electron backscattered diffraction. Study of their toughhess behavior[J]. Metall Mater Trans,2003,34(11):2505-2516

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700