激光焊接低合金高强钢T型搭接接头性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以船舶轻量化发展中的先进结构材料的应用研究为主要背景,以激光穿透焊接低合金高强钢T型搭接接头为主要研究对象,结合国内外关于激光焊接三明治结构夹芯板的研究现状,系统研究了高功率CO2激光穿透焊接低合金高强钢T型搭接接头时焊接工艺参数对焊缝成形影响的规律,且对T型接头的显微组织和力学性能进行了测试与分析,并重点研究了装配间隙对焊缝成形及焊后接头扭转性能的影响。
     NbV微合金化10CrNiMnMoV钢的激光焊接工艺参数试验表明,适宜的激光功率与线能量的匹配可以获得成形良好、截面特征尺寸合适的焊缝;增大激光功率有利于增加熔深,且在确定的激光功率下,线能量略高于深熔焊阈值2.4 kJ/cm时会取得合适的结合区宽度,继续增大线能量对提高结合区宽度收效甚微;离焦量对截面形貌尤其是熔深有较大影响,试验根据试样熔深实际需求选取离焦量为负2 mm;此外,面腹板间的配合间隙会影响激光焊接过程中热输入的传递,进而影响熔池的稳定流动,不利于获得稳定的焊缝尺寸。间隙过大时由于熔池的流动失稳并填充面腹板处间隙,造成焊缝表面塌陷与结合区气孔等缺陷。
     显微组织分析表明,NbV微合金化10CrNiMnMoV钢T型搭接接头焊缝中心为典型的柱状晶,组织为过冷奥氏体转变得到的低碳马氏体,且细小的晶粒组织有利于提高焊缝的强度。热影响区从熔合线起至母材处,依次是粗晶区、细晶区和两相区。热影响区宽度约为1 mm,相比接头尺寸而言较窄,有利于获得良好的接头性能。
     T型搭接接头的显微硬度测试表明,典型焊接工艺下低合金高强钢激光穿透焊接T型搭接接头的显微硬度水平分布呈马鞍形,焊缝中心的硬度由于细小板条状马氏体的出现达320 HV左右,较母材硬度约180 HV有大幅提高。热影响区尺寸较窄,因而硬度在热影响区域出现突变。焊接线能量在不同优化工艺参数下区间内的变化对焊缝组织的影响有限,因而相同显微硬度测试位置的硬度值变化很小。
     T型搭接接头扭转试验表明,结合区宽度对接头抗扭转性能的有重要影响,结合区宽度越宽时T型接头所能承受扭矩也越大。结合区宽度达到2 mm时,所承受最大扭矩约100 N·m。当接头存在间隙时,虽然结合区宽度稍有增加,但不利于抗扭转性能的提升及稳定焊缝尺寸的获得,因而焊接时尽力避免配合间隙的存在。
The main application backgrounds of this paper are the development of advanced lightweight structural materials in the shipbuilding industry, and its research subjects are laser welding T-lap joint of high strength low alloy steel. Combined with the advanced manufacturing methods of laser welded sandwich structure panels abroad, the influence of laser welding parameters were studied under high power CO2 laser to achieve proper dimensions, then microstructure and mechanical properties of T-lap joints were also analyzed. Root gap’s influence on section dimensions and torsion performance were especially researched.
     The laser penetration welding experiment of 10CrNiMnMoV steel shows that appropriate macrograph and section dimensions can be achieved under matching parameters between laser power and heat input; the increasing of laser power is conducive to increase laser penetration. After the laser power is selected, appropriate root width could be obtained where the heat input slightly higher than the deep penetration threshold: 2.4 kJ / cm, and the root width maintain stable even if heat input keeps increasing; defocus amount of -2 mm is selected cause it has important influence on weld penetration and section morphology. In addition, root gap between the web plate and core will affect the stability of welding pool, which is not conducive to stable section dimensions, and may lead to other defects like surface collapsing and porosity etc.
     Microstructure analysis showed that, seam center of 10CrNiMnMoV steel consists of typical columnar grain, low-carbon martensitic is form the transformation of austenite due to rapid cooling process, and fine grain organization will help improve the joint strength. Joint area is consists of coarse grain zone, fine grain zone, and mushy zone. Width of heat-affected zone is about 1 mm, which is narrow comparing to the joint size, and it is conductive to good application performance.
     Microhardness test of T-lap joint under optimized parameter indicates that horizontal T-lap joint hardness distribution was saddle-shaped under optimized welding parameters. The hardness of seam is about 320 HV due to appearance of fine martensite, which is largely improved compared with 180 HV of raw materials. The width of heat-affected zone is narrow, where hardness appears sudden drawdown in this area. Heat input of experimental parameters have limited impact on microstructure, then microhardness of same testing spots have little changes.
     T-lap joint torsion tests show that root width plays critical role when joint are under torsional loading, T-lap joints can withstand greater torque with wider root width. Torque reaches 100 N·m when root width increasing to 1 mm. Root gap have negative effect on torsion performance and section dimensions, although it may slightly increase root width, thus root gap should be avoided during welding process.
引文
[1]徐亚超,李苗苗,冯芸.中国造船业现状分析[J].网络财富,2010,(5)
    [2]满颖.高成本时代的中国造船[J].中国船检,2011,(2):40-42.
    [3]丁敏.中国造船市场分析[J].世界海运,2008,(4):1-3,12.
    [4]中国船级社材料与焊接规范、北京:人民交通出版社,2006
    [5]赵大利.船舶工业经济研究集萃[M].大连理工大学出版社,2009,8.
    [6] Noury, P., Hayman, B., McGeorge, D. and Weitzenb?ck, J.: Lightweight construction for advanced shipbuilding– recent development, in: Proceedings of the 37th WEGEMT Summer School,11-15.11.2002, Madrid, Spain, pp. 11.
    [7]曹明法主编.玻璃钢船舶文集(第一辑) [C] .中船总第七O八研究所,1993.
    [8]岳灿甫,吴始桥.国外船用激光焊接波纹夹芯板的开发与应用[J].鱼雷技术, 2008,15(4): 1-5.
    [9]张延昌.船舶特种耐撞结构设计研究[D ].镇江:江苏科技大学, 2006.
    [10]辛锋先,卢天健,陈常青.轻质金属三明治板的隔声性能研究[J].声学学报,2008,33(44):中国船舶工业协会,行业信息,2009.
    [11]尚高峰.轻量化船舶结构极限强度研究[学位论文].无锡:中国船舶科学研究中心,2011.
    [12]王承权,戴海波,杜述勇.铝合金船体结构应用带筋板的几个问题[J].船海工程, 2003,(04).
    [13]施利娟.铝合金带筋板的力学性能优化设计[学位论文].武汉理工大学, 2010.
    [14] Hutchinson, J.W.,Xue Z., 2005, Metal Sandwich Plates Optimized for Pressure Impulses, International Journal of Mechanical Sciences, Vol. 47, pp. 545-569.
    [15]杨震平.浅析高强钢焊接[ J] . Installation, 2006( 11) : 47- 48.
    [16]祁俊峰.全铝结构船长甲板的CO2激光焊接技术研究[学位论文].北京:北京工业大学,2008.
    [17] SIKORA, J.P. & DINSENBACHER, A.L.:“SWATH Structure: Navy Research Development Applications”, Marine Technology, 27, 4, 1990, p. 211-220
    [18]左铁钏.高强铝合金的激光加工[ M] .北京:国防工业出版社,2001. 103- 110
    [19]陈祥宝,张宝艳,邢丽英.先进树脂基复合材料技术发展及应用现状[J].中国材料进展, 2009,(06) .
    [20]张长涛.中国船舶工业的现状与未来[J].洞察,2007.2:57-59
    [21]刘静安.铝材在交通运输工业中的开发与应用[J].四川有色金属,2001(3):27-32.
    [22]党旭丹. X-cor夹层结构制备与力学性能研究[学位论文].南京航空航天大学, 2009 .
    [23] Meyer Shipyard: Ships built by light beams, http://www.schulergroup.com/en/40applications/20Laser_Technology/30gross_und_dickblechbearbeitung/Inform_Meyer_Sonderdruck_englisch.pdf#search=%22%2Bmeyer%2Bshipyard%22
    [24] B. R. Finke, P.D. Kapadia, J.M Dowden. A Fundamental Plasma Based Model for Energy Transfer in Laser Material Processing [J]. J. Phys. D. Appl... 1990, (23): 643~654
    [25]李亚玲.船用5083铝合金CO2激光-MIG复合焊接工艺研究[学位论文].上海:上海交通大学,2009
    [26]唐卓.船用厚板高功率激光焊接工艺适应性研究[学位论文].上海:上海交通大学,2007.
    [27] Brown D., Kennedy S.J., Kennedy D.J.L., Allen D.E.: Sandwich Plate System Risers for Stadia, SSRC 2002 Annual Stability Conference, Seattle, Washington, 24-27 April 2002
    [28] Jani Romanoff. Bending Response of Laser Welded Web-Core Sandwich Plates. Doctoral Dissertation in Helsinki University of Technology, 2007: 17~19
    [29]陈彦宾.现代激光焊接技术.北京:科学出版社,2005:56~92
    [30]陈祝年.焊接工程师手册[M] .北京:机械工业出版社, 2002.
    [31] KUJALA P, KLANAC A. Steel sandwich panels in marine applications [J]. Brodogradnka, 2005,56(4): 305-314.
    [32] RAJAPAKSE Y D S , HUI D, Marine composite and sandwich structures [J]. Composites: Part B, 2008,39:1-4.
    [33] RAJAPAKSE Y D S , HUI D, Marine composite foreword [J]. Composites: Part B, 2004,35:447-450.
    [34]王焕军.低合金调质高强钢球罐的焊接质量控制[ J] .焊接技术, 2004 ( 5) : 50-51.
    [35]夏佃秀,尚成嘉,孙卫华,侯东华,陈晔.低合金高强钢大热输入焊接热影响区组织性能[J].焊接学报陈晓,陈颜堂,王蕾,等.大线能量低焊接裂纹敏感性钢的显微组织[ J] .中国有色金属学报, 2004( S1) : 217- 223.
    [36]张文钺.焊接冶金学[M].北京:机械工业出版社, 1996, 189
    [37]习天辉.陈晓,袁泽喜.大线能量焊接用钢热影响区组织和性能的研究进[J].特殊钢,2003, 24(5): 1-5
    [38]张慧敏,丁成钢,史春元等.焊后热处理对10Ni5CrMoV钢热影响区低温冲击韧性的影响[J].焊接,2006(12): 20-31.
    [39]邹增大,李亚江,尹士科.低合-金调质高强度钢焊接及工程应用[M].北京:化学工业出版社,2000:1-15.
    [40]栾世珍. Nb及Ti对C-Mn钢焊接粗晶区晶粒度,组织及韧性的影响[J].宝钢技术,l993(4): 48-52.
    [41] J.Schuster, et al, Schweissen & Schneiden (Welding and Cutting )[M]. 1999,51(5):74-77,252-257
    [42]陈颜堂,丁庆丰,刘惟忠,等.大线能量焊接用钢热影响区的组织与性能[ J] .金属热处理, 2005( 9) : 19-22.
    [43]李午申.我国合金结构钢的新发展及其焊接性[J].焊接学报,2001,22(5):82-86
    [44]陈家权,高季明,郭燕杰.低碳低合金钢焊接接头的疲劳裂纹的扩展性能[J].东北大学学报,1994,15(3):309-1
    [45]高志国,吴毅雄,黄坚等.船用大功率激光焊接技术.电焊机.2006, 36(5):55~58
    [46] B. R. Finke, P.D. Kapadia, J.M Dowden. A Fundamental Plasma Based Model for Energy Transfer in Laser Material Processing [J]. J. Phys. D. Appl... 1990, (23): 643-654
    [47]周振丰,张文钺.焊接冶金与金属焊接性.北京:机械工业出版社,第2版,1988:48-156、406~420
    [48]黄遐,曾元松,李志强.Finite Element Simulation of Peen Forming Process for the saddle shape,ITIC2006技术与创新国际会议——先进制造技术:35-43
    [49] W E Savage. A historical view of weld ability[J].Proceedings on Welding Metallurgy of Structural Steel.Denver:U.S.A,1987(4):203-222.
    [50]薛祖德,陈进文,林冬华.低合金高强度结构钢的发展与应用[学位论文].造船技术,2002,8(6):15-20.
    [51]任芝兰. HG70低合金高强钢焊接性研究[学位论文].长沙:中南大学,2008.
    [52] ROMANOFF, J, KUJALA, P.:“Formulations for the Strength Analysis of All Steel Sandwich Panels”, Helsinki University of Technology, Ship Laboratory, Report M-266, Espoo, 2002.
    [53] KUJALA, P., ROMANOFF, J., TABRI, K., EHLERS, S.:“All Steel Sandwich Panels– Design Challenges for Practical Applications on Ship“. PRADS 2004, 13-17 September, 2004, Lübeck, 2004.Light weight construction for advanced shipbuilding
    [54] Fatigue life tests of steel laser-welded sandwich structures
    [55] Y. Peng, C. Wang, W. Chen, G. Bao, L. Zhao, Z. Tian. Microstructure and mechanical properties CO2 laser welded joint of ferrite ultrafine grained steel .Proc. of Int. Session of Workshop on New Generation Steel. 2001, :199-206.
    [56] Vinson, J.R.: Sandwich structures: past, present, and future, in: Thomsen, O.T., Bozhevolnaya, E. and Lyckegaard, A. (Eds.): Sandwich Structures 7:Advancing with Sandwich Structures and Materials, Springer, Dordrecht, pp. 3-12, 2005.
    [57] P.W. Fuerschbach, J. T. Norris, R. C. Dykhizen, and A. R. Mahoney. Development and Evaluation of an In-Situ Beam Measurement for Spot Welding Lasers, Welding Journal, Vol. 83,pp 154-159 (2004), 2011,(04) .
    [58] SvenssonL E. Control of microstructures and properties in steel ARC welds[M ] . Boca Raton: CRC Press, 1994
    [59] Squillace A, Prisco U. Influence of filler material on mirco and macro mechanical behavior of laser-beam-welded T-joint for aerospace applications. J Mater Des Appl, 2009;223(3):103–15.
    [60] Chang, W.S., Ventsel, E., Krauthammer, T., John, J., 2005,Bending Behavior of Corrugated-Core Sandwich Plates, Composite Structures, Vol. 70, pp. 81-89
    [61]周振丰张文钺著焊接冶金与金属焊接性、第二版、北京:机械工业出版社,1989
    [62] Romanoff J, Varsta P. Bending response of web-core sandwich beams. Compos Struct 2006;73(4):478–87.
    [63] Knox EM, Cowling MJ, Winkle IE. Adhesively bonded steel corrugated core sandwich construction for marine applications .Marine Struct 1998;11:185–204.
    [64] Sopanen, A., Talonen, J., Kujala, P., Corrosion tests for Sandwich Structures, in Finnish (Korroosiokokeet kerrolevyrakenteilla), Helsinki University of Technology, Ship Laboratory, M-252, Espoo, 2000
    [65] van Aanhold, J.E., Groves, A., Lystrup, A and McGeorge, D.: Dynamic and Static Performance of Composite T-joints, NATO RTO Symposium on Combat Survivability of Air, Space, Sea and Land Vehicles, Aalborg, Denmark, September 2002
    [66] Marisco, T.A., et al.: Laser welding of lightweight structural steel panels, Proceedings of the Laser Materials Processing Conf., ICALEO’93, Orlando
    [67] SANDWICH: Advanced composite sandwich steel structures, http://sandwich.balport.com/, 2000
    [68] Roland, F. and Metschkow, B.: Laser sandwich panels for shipbuilding and structural steel engineering, Meyer Werft, Papenburg, 1997
    [69] Roland, F., Reinert, T. and Pethan, G.: Laser welding in shipbuilding– an overview of the activities at Meyer Werft, Proceedings IIW, Copenhagen, 2002
    [70] Kujala, P., Mets?, A. and Nallikari, M.: All steel sandwich panels for ship applications, SHIPYARD 2000: Spin-off project, Helsinki University of Technology, Ship Laboratory, Otaniemi,M-196, 1995
    [71] Romanoff, J. and Kujala, P.: The optimum design for steel sandwich panels filled with polymeric foams”, Proceedings of FAST 2001, Southampton, 2001
    [72] Romanoff J, Remes H, Jutila M, Varsta P, Socha G. The stiffness of laser stake welded T-joints in web-core sandwich structures. Thin-Walled Struct 2007;45(4):453–62.
    [73] Romanoff, J. and Kujala, P.: Formulations for the strength analysis of all steel sandwich panels”, Helsinki University of Technology, Ship Laboratory, Otaniemi, M-266, 2002
    [74]魏伟,姚远,陈明,郑培和,秦芳,孔德举.车身镀锌钢板激光搭接焊焊缝成形及焊接性能研究[J].汽车工艺与材料, 2009,(03) .
    [75] Hutchinson, J.W., Xue, Z., 2005, Metal Sandwich Plates Optimized for Pressure Impulses, International Journal of Mechanical Sciences, Vol. 47, pp. 545-569.
    [76] Zenkert, D., 1995, An Introduction to Sandwich Construction. EMAS Ltd., Solihull, UK.
    [77]张彦华.焊接力学与结构完整性原理.北京航空航天大学出版社.2007,8.
    [78] D.拉达伊.焊接热效应.机械工业出版社.1997,7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700