C3基因敲除抑制炎症反应促进小鼠脊髓损伤后再生与功能恢复的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脊髓损伤(spinal cord injury, SCI)以其高致残率和死亡率而倍受关注。SCI的最终神经学损害由两种机制引起,即原发性损伤和继发性损伤。前者包括机械压迫、出血、电解质从受损细胞中外溢等;后者包括水肿、炎症反应、局部缺血、生长因子、细胞因子、再灌注、Ca2+溢出以及过氧化基团异常变化等对脊髓产生的损害作用。近年来对SCI的研究主要集中在损伤后期组织再生方面,如神经干细胞移植或嗅鞘细胞移植等,但收效甚微。主要原因就是忽略了继发性损伤带来的严重影响,损伤早期残存的神经元没有得到及时的保护,从而导致后期再生的先决条件欠缺。对于SCI来说,原发性损伤是一个不可逆转的过程,而继发性损伤则是一个可逆且可控的过程。因此,在减低原发性损伤因素的同时,应用多种手段,如减轻炎症免疫反应、阻断神经毒性损伤、减少凋亡发生等,尽可能把继发性损伤的程度降到最低,已成为SCI早期治疗的研究热点。
     在继发性损伤早期,存在一个重要的炎症反应过程,它能触发其后发生的一系列针对受损部位细胞和分子水平的反应;此外,炎症反应可以导致受损局部胶质瘢痕的形成,从而进一步阻碍再生。抑制炎症反应能够促进中枢神经系统(central nervous system, CNS)的再生与功能恢复。值得注意的是,炎症过程引起了补体系统的激活,激活的补体片段又能通过多种途径导致炎症反应,对自身组织成分造成损害,加重SCI后的继发性损伤。那么是否可以通过阻断补体系统的激活来抑制炎症反应,从而减轻SCI后的继发性损伤呢?通过何种方式才能阻断补体系统的激活呢?我们选择敲除补体C3基因。因为已知补体系统的三条激活途径——包括经典途径、凝集素途径和旁路途径,虽然启动途径不同,但最后都汇集于一点,即C3转化酶对C3的分解,并在分解之后的活化过程中产生许多具有炎症介质作用的活性片断,如C3a、C4a和C5a等,最后进入共同的末端通路,形成攻膜复合体(membrane attack complx,MAC),并导致炎症反应。可见C3在补体系统已知的三条激活途径中处于枢纽地位,是补体系统激活的必要条件。本研究的目的就是通过敲除补体C3基因来抑制炎症反应,从而减轻继发性损伤,促进SCI后的再生和功能恢复。
     实验动物分为WT组(野生型)和KO组(敲基因型),所有实验均在两组之间同时比较进行。参照改良Allen打击法,建立C3敲基因小鼠脊髓撞击伤模型,撞击位置为T12,撞击强度为5g×6cm,在此基础上进行Basso, Beattie and Bresnahan (BBB)行为学评分,并在SCI后不同时间(1h、12h、24h)分别用TNF-α抗体、星形胶质细胞(astrocytes,AST)的标记物GFAP抗体以及再生抑制相关蛋白NgR抗体和RhoA抗体进行免疫组织化学染色,用western blot检测SCI后1h、2h、6h、12h、24h TNF-α蛋白的表达,RT-PCR检测SCI后24h RhoA mRNA的表达,用神经元的标记物NF-200抗体检测SCI后14d和21d神经纤维再生情况,观察敲除补体C3基因对SCI后炎症因子TNF-α的表达、AST的活化、神经纤维的再生以及再生抑制相关蛋白NgR、RhoA表达的影响,以此验证通过敲除补体C3基因来抑制炎症反应、减轻继发性损伤从而促进再生的可行性。为了排除实验动物个体差异和在体诸多干扰因素的影响,又设计了体外实验。首先纯化培养AST和神经元,达到一定生长状态后,用无菌注射器针头呈“#”字形划伤,建立离体培养AST和神经元机械性损伤模型,ELISA检测细胞损伤后不同时间(1h、2h、6h、12h、24h、48h)培养上清中TNF-α的分泌情况,以验证C3基因敲除对炎症反应的抑制。随后将小鼠背根神经节(dorsal root ganglion, DRG)与机械划伤后的AST共培养,分别于1d、2d、3d、4d观察DRG神经突起生长状况。
     主要结果:
     1、建立了小鼠脊髓撞击伤模型,撞击位置为T12,撞击强度为5g×6cm,SCI后小鼠呈现典型的截瘫症状;
     2、SCI后,WT组和KO组24h内病理学观察结果相似:损伤区结构破坏,灰质多灶性出血,损伤中心出现空腔,面积随时间延长逐渐增大;
     3、SCI后,KO组小鼠BBB评分明显高于WT组,21d时KO组得分为17±0.8,已接近正常小鼠,而WT组得分仅为11±0.2;
     4、Western blot和TNF-α免疫组织化学结果均表明,与WT组相比,KO组SCI后各时间点TNF-α免疫反应阳性细胞数目与免疫反应强度均比较稳定,高于KO组假手术对照,低于WT组表达的最高峰(6h);
     5、KO组小鼠SCI后,活化AST数目和活化持续时间明显减少;
     6、SCI后KO组小鼠再生神经纤维密度和长度均明显优于WT组;
     7、SCI后,KO组再生抑制相关蛋白NgR、RhoA等的表达均有升高,但与WT组无明显区别。而western blot结果却表明SCI后,虽然WT组RhoA mRNA的表达升高,但KO组却并未升高;
     8、ELISA检测AST和神经元机械性损伤模型上清液中TNF-α含量,发现机械性损伤后,无论是AST还是神经元,WT组TNF-α的表达在1h至48h均显著增加(p<0.05),6h达到最高峰。而KO组TNF-α的表达量未见显著升高;
     9、建立了DRG与AST机械性损伤模型共培养体系,发现DRG + AST(WT,未损伤)和DRG + AST(KO,未损伤)两组中的DRG神经突起生长状况最好,突起长,密度大。DRG + AST(WT,损伤)和DRG + AST(KO,损伤)两组中的DRG神经突起生长都受到了抑制,前者受到的抑制作用最明显,神经突起长度最短,密度最小;后者受到的抑制作用较小,神经突起长度和密度介于DRG + AST(WT/KO,未损伤)和DRG + AST(WT,损伤)之间。
     主要结论:
     1. C3基因敲除能够有效抑制小鼠SCI后炎症因子TNF-α的表达,减轻炎症反应;
     2. C3基因敲除能够减少活化AST数目和持续时间,有利于减少炎症因子的释放、减轻继发性损伤、改善再生环境,促进神经再生和功能恢复;
     3. C3基因敲除后,小鼠神经纤维再生情况得到显著改善,运动能力得到较好恢复;
     4. C3基因敲除能够抑制体外培养的AST和神经元分泌TNF-α,有效改善神经突起生长的微环境,促进再生。
     总之,本研究通过建立C3敲基因小鼠脊髓撞击伤模型和DRG与AST机械性损伤模型共培养体系,运用免疫组织化学法、免疫荧光双标、western blot、RT-PCR、细胞培养以及ELISA等方法,证明敲除补体C3基因能够在一定程度上抑制炎症反应,减轻继发性损伤,促进神经再生和功能恢复。说明通过阻断补体系统激活来促进SCI后的神经再生与功能恢复不失为一条可行的新途径,为研究脊髓继发性损伤、促进CNS再生提供了新思路。
Spinal cord injury (SCI) has being paid much attention for its high deformity and mortality rates. The ultimate impairment of SCI is caused by two mechanisms, that is, initial injury and secondary injury. The former includes mechanical pressure, hemorrhage, electrolyte overflow and etc. The latter includes the impairment from edema, inflammation, local ischema, growth factors, cytokines, Ca2+ overflow and the abnormal change of peroxide radicles. These years the research about SCI has been focused on the tissue regeneration during the late stage of injury, for example, the transplantation of neural stem cells or olfactory ensheath cells, with not many effects. The main reason is that the secondary injury is neglected and the survived neurons during early stage of injury are not protected in time. These lead to the lack of innate condition for regeneration. As for SCI, the initial injury is a process that cannot be reversed, while the secondary injury is a process that can be reversed and controled. So more and more attention has been paid to alleviate the secondary injury through kinds of methods such as reducing inflammation.
     There is an important inflammation process during the early phase of secondary injury which can lead to a series of reactions being harmful to the cells at the injury site. Besides, inflammation can result in the formation of glial scar which inhibits regeneration. Reducing inflammation can improve regeneration and functional recovery of central nervous system (CNS). It is worthy of notice that inflammation can activate complement system, and the activated complement segments can induce inflammation and aggravate the secondary injury to self tissues. Can we reduce inflammation through inhibiting the activation of complement system? How can we do it? We choose to knock out the C3 gene. Because C3 is a pivotal factor in complement activate pathways and is necessary for activation of complement system. In this study, our objective is to knock out the C3 gene to reduce inflammation and secondary injury to improve regeneration and functional recovery after SCI.
     Animals were divided into WT group (wide type) and KO group (knock out type). All experiments were done at the same time between these two groups. Allen`s weight-drop method was adopted to establish the C3 deficient mouse spinal cord contusion model. By Basso, Beattie and Bresnahan (BBB) score method we observed the functional recovery of SCI mouse. By immunohistochemstry staining method, western blot, RT-PCR, we observed the expression of TNF-α, the activation of astrocytes (AST), the expression of regeneration inhibitory factors NgR and RhoA and the regeneration of nerve fibers. To exclude the individual differences of animals and interferential factors in vivo, we established AST and neuron mechanical injury models and detected their secretion of TNF-αat different time points. After that dosal root ganglions (DRG) were cocultured with AST mechanical injury model and the growth of DRG neurites were detected on different culture days.
     Main results:
     1. A mouse spinal cord weight-drop contusion model(5g×6cm) was established. The contused site was at T12. Typical paraplegia symptoms were occurred;
     2. Both WT and KO mice showed similar pathological results after SCI: the spinal cord fabric at injury site was damaged, lots of hemorrhagic foci could be detected mainly in grey matter, and cavums appeared at injury centre with extendting areas;
     3. The BBB score of KO mice after SCI was higher than WT mice obviously. The score of KO mice on 21d was 17±0.8, which was close to normal mice, while the WT mice just get 11±1.2 at the same time;
     4. Western blot and immunohistochemistry showed that the number of TNF-αpositive cells and immunohistohemical intensity of KO mice after SCI were stable and higher than KO mice with sham operation but lower than WT mice at 6h;
     5. The activated AST number and its activating duration of KO mice decreased obviously after SCI when compared to WT mice;
     6. The length and density of regenerating neural fibers of KO mice after SCI were higher than WT mice obviously;
     7. The immunohistochemistry staining method showed that the expression of NgR and RhoA were enhanced after SCI in KO mice, with no obvious difference to WT mice however. Western blot showed that the expression of RhoA mRNA in WT mice increased after SCI, but not in KO mice;
     8. TNF-αsecreted by AST or neurons was detected by ELISA after mechanical injury. Its secretion in WT mice, whether from AST or neurons, increased during 1h to 48h, with peak at 6h. However, the secretion in KO mice did not increase;
     9. DRG was cocultured with AST mechanical injury model. The length and density of neurites growth from DRG were measured. DRG+AST(WT , uninjured)and DRG+AST(KO,uninjured)groups had the longest and densest neurites. DRG+AST(WT, injured) group had the shortest and sparsest neurites. As for DRG+AST(KO, injured), its length and density of neurites were between DRG+AST(WT/KO, uninjured) and DRG+AST(WT, injured).
     Main conclusions:
     1. C3 knock-out can inhibit the expression of TNF-αafter SCI and reduce inflammation;
     2. C3 knock-out can reduce the activated AST number and its activating duration, which is favorable to reduce inflammation, alleviate secondary injury and improve the regeneration environment;
     3. C3 knock-out can improve the neurite regeneration and functional recovery after SCI;
     4. C3 knock-out can inhibit the TNF-αsecreted by AST and neurons in vitro and promote neurite outgrowth.
     In conclusion, our study showed that C3 gene knock-out can inhibit inflammation to some degree, reduce the secondary injury and improve the neurite regeneration and functional recovery after SCI. It is a new feasible way to promote the regeneraton of CNS through inhibiting the activation of complement system.
引文
1. Talac R, Friedman JA, Moore MJ, et al. Animal models of spinal cord injury for evaluation of tissue engineering treatment strategies. Biomaterials, 2004, 25(9): 1505-1510.
    2. Amar AP, Levy ML. Pathogeneisis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury. Neurosurgery, 1999, 44: 1027-1039.
    3. Allen AR. Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture disloration of spinal column. JAMA, 1911, 57: 878-880.
    4. Wrathall JR. Spinal cord injury models. J Neurotrauma, 1992, 9(suppl 1): s129-134.
    5. Finkelstein SD, Gillespie JA, Markowitz RS, et al. Experimental spinal cord injury: qualitative and quantitative histopathologic evaluation. J Neurotrauma, 1990, 7(1): 29-40.
    6. Kwon BK, Oxland TR, Tetzlaff W. Animal models used in spinal cord regeneration research. Spine, 2002, 27(14): 1504-1510.
    7. Kaptanoglu E, Tuncel M, Palaoglu S, et al. Comparison of the effects of melatonin and methylprednisolone in experimental spinal cord injury. J Neurosurg, 2000, 93(suppl 1): s77-84.
    8. Khan M, Griebel R. Acute spinal cord injury in the rat comparison of three experimental techniques. Can J Neurol Sci, 1983, 10: 161-165.
    9.李兵仓,刘枚。大鼠胚胎脊髓对成鼠脊髓损伤的组织修复作用。中华创伤杂志,1993,4:199。
    10.马景良,凌志恒。带蒂大网膜移植治疗实验性脊髓损伤。中华骨科杂志,1990,3:193。
    11.贾宁阳,肖湘生。脊髓损伤的病理变化及其与磁共振成像演变。中国矫形外科杂志,1998,5:255。
    12. Weirich SD, Cotler HB, Narayana PA, et al. Histopathologic correlation of magnetic resonance imaging signal patterns in a spinal cord injury model. Spine, 1990, 15(7): 630-638.
    13. Fuji H, Yone K, Sakou T. Magnetic resonance imaging study of experimental acute spinal cord injury. Spine, 1993, 18(14): 2030-2034.
    14.申存英。外伤后脊髓空洞症。中华创伤杂志,1994,3:117。
    15.刘树清,胥少丁。磁共振成象在陈旧性脊椎脊髓损伤诊断中的价值。中华外科杂志,1991,29(5):308-311。
    16. Williams B, Terry AF, Jones HWF, et al. Syringomyelia as a sequel to traumatic paraplegia. Parappalegia, 1981, 19(2): 67-80.
    17. La Haye PA, Batzdorf U. Posttraumatic syringomyelia. West J Med, 1988, 148(6): 657-663.
    18. Kao CC, Chang LW. The mechanism of spinal cord cavitation following spinal cord transection. J Neurosurg, 1977, 46(2): 197-209.
    1. Marsala M, Galik J, Ishikawa T, et al. Technique of selective spinal cord cooling in rat: methodology and application. J Neurosci Methods, 2004, 74(1): 97.
    2. Albin MS, White RJ, Locke GE. Treatment of spinal cord trauma by selective hypothermia perfusion. Surg Forum, 2005, 16: 423-424.
    3. Bracken MB, Holford TR. Effects of timing on recovery of segmental and longtract neurologic function in NASCIS 2. J Neurosurg, 1993, 79: 502-507.
    4. Nockels R, Young W. Pharmacologic strategies in the treatment of experimental spinal cord injuries. J Neurotrauma, 1992, 9(1s): s211-217.
    5.廖维宏,张光铂。进一步加强脊髓损伤修复研究。中国脊柱脊髓杂志,2003,13(9):517-519。
    6. Cheng H, Cao Y, Olson L. Spinal cord repair in adult paraplegic rats: partial restoration of functional neurologic impairment. Exp Neurol, 1985, 88: 123-134.
    7. Gall K, Kerasidis H, Wrathall JR, et al. Spinal cord contusion in the rat: behavioral analysis of functional neurologic impairment. Exp Neurol, 1985, 88: 123-134.
    8. Morgan BP, Gasque P, Singhrao SK, Piddlesden SJ. Role of complement in inflammation and injury in the nervous system. Exp Clin Immunogenet. [15] Gong C, Qin Z, Betz AL, et al. Celluar localization of tumor necrosis factor alpha following focal cerebral ischemia in mice. Brain Res, 1998, 801(1 ~ 2): 1-8.
    9.周新涛,李绍英。补体系统与缺血性脑血管病。国外医学脑血管病分册,2000,8(1):12-15。
    10. Homeister JW, Lucchesi BR. Complement activation and inhibition in myocardial ischemia and reperfusion injury. Annu Rev Pharmacol Toxicol, 1994, 34: 17-40.
    11. Kilgore KS, Friedrichs GS, Homeister JW, et al. The complement system in myocardial ischaemia/reperfusion injury. Cardiovasc Res, 1994, 28(4): 437-444.
    12. Benzaquen LR, Nicholson-Weller A, Halperin JA. Terminal complement proteins C5b-9 release basic fibroblast growth factor and platelet-derived growth factor from endothelial cells. J Exp Med, 1994, 179(3): 985-992.
    13. Imm MD, Feldhoff PW, Feldhoff RC, et al . The administration of complement component C9 augments post-ischemiccerebral infarction volume in neonatal rats.Neurosci Lett, 2002, 325(3): 175~178.
    14. Nijmeijer R, Lagrand WK, Lubbers YT, et al . C- reactive protein activates complement in infarcted human myocardium . Am J Pathol ,2003 ,163 :269~275.
    15. Gong C, Qin Z, Betz AL, et al. Celluar localization of tumor necrosis factor alpha following focal cerebral ischemia in mice. Brain Res, 1998, 801(1 ~ 2): 1-8.
    16. Ventevs HD, Dantzer R, Kelly KW, et al. A new concept in neurodegeneration: TNF-αis a silencer of survival signal. Trends Neurosci, 2000, 23(4): 175-180.
    17. Lee YB, Yune SY, Baik YH, et al. Role of tumor necrosis factor in neuronal and glial apoptosis after spinal cord injury. Exp Neurol, 2000, 166(1): 190-195.
    18. Liberto CM, Albrecht PJ, Herx LM, et al. Pro-regenerative properties of cytokine-activated astrocytes. J Neurochem, 2004, 89: 1092-1100.
    19. Faulkner JR, Herrmann JE, Woo MJ, et al. Reactive astrocytes protect tissure and preserve function after spinal cord injury. 2004, J Neurosci, 24: 2143-2155.
    20. Menet V, Prieto M, Privat A, et al. Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes. 2003, Proc Natl Acad Sci, USA., 100: 8999-9004.
    21. Diane MS, Vance L, David AC. Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro. Exp Neurology, 1990, 109: 111-130.
    22. Chen YM, Swanson RA. Astrocytes and brain injury. J Cereb Blood Flow and Metab, 2003, 23(1): 137-149.
    23. Lee SJ, Zhou T, Choic C, et al. Differential regulation and function of Fas expression on glia cells. J Immunol, 2000, 164(3): 1277-1285.
    24. Saas P, Walker PR, Quiquerez AL, et al. A self-defence mechanism of astrocytes against Fas-mediated death involving interleukin-8 and CXCR2. Neuroreport, 2002, 28(15): 1921-1924.
    25. Brambilla R, Bracchi-Ricard V, Hu WH, et al. Inhibition of astroglial nuclear factorκB reduces inflammation and improves functional recovery after spinal cord injury. JEM,2005,202(1):145-156.1997;14(1):19-23.
    26. Neumann H, Schweigreiter R, Yamashita T, et al. Tumor necrosis factor inhibits neurite outgrowth and branching of hippocampal neurons by Rho-dependent mechanism. J Neurosci, 2002, 22(3): 854-862.
    27. Guo Q, Li SR, Su BY. Nogo-A immunoreactivity in injured spinal cord of adult rats. Neurosci Bulletin, 2005, 21(4): 287-290.
    28. Guo Q, Li SR, Su BY. Expression of oligodendrocyte myelin glycoprotein and its receptor NgR after the injury of rat central nervous system. Neurosci Letters, 2007, 422: 103–108.
    29. Anderson AJ, Najbauer J, Huang W, et al. Upregulation of complement inhibitors in association with vulnerable cells following contusion-induced spinal cord injury. J Neurotrauma, 2005, 22(3): 382-397.
    1. MacFarlane SN, Sontheimer H. Electrophysiological changes that accompany reactive gliosis in vitro. J Neurosci, 1997, 17: 7316-7329.
    2. Allen AR. Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture disloration of spinal column. JAMA, 1911, 57: 878-880.
    3. Buchan A, Pulsinelli WA. Hypothermia but not the N-methyl-D-aspartate antagonist, MK-801, attenuates neuronal damage in gerbils subjected to transient global ischemia. J Nrurosci, 1990, 10(1):311-316.
    4. Balentine JD, Greene WB, Bornstein M. In vitro spinal cord trauma. Lab Invest, 1988, 58(1): 93-99.
    5. Murphy EJ, Horrocks LA. A model for compression trauma: pressure-induced injury in cell cultures. J Neurotrauma, 1993,10(4): 431-444.
    6. Margulies SS, Thibault LE, Gennarelli TA. Physical model simulations of brain injury in the primate. J Biomech, 1990, 23(8): 823-836.
    7. LaPlaca MC, Thibault LE. An in vitro traumatic injury model to examine the response of neurons to a hydrodynamically-induced deformation. Ann Biomed Eng, 1997, 25(4):665-677.
    8. Ellis EF, McKinney JS, Willoughby KA, et al. A new model for rapid stretch-induced injury of cells in culture: characterization of the model using astrocytes. J Neurotrauma, 1995, 12(3): 325-339.
    9. Tecoma ES, Monyer H, Goldberg MP, et al. Traumatic neuronal injury in vitro is attenuated by NMDA antagonists. Neuron, 1989, 2(6): 1541-1545.
    10. Mukhin AG, Ivanova SA, Knoblach SM, et al. New in vitro model of traumatic neuronal injury: evaluation of secondary injury and glutamate receptor-mediated neurotoxicity. J Neurotrauma, 1997, 14(9):651-663.
    11.朱长庚主编,神经解剖学[M],北京,人民卫生出版社,2002:400-407。
    12. Yu AC, Lau LT. Expression of interleukin-1 alpha, tumor necrosis factor alpha and interleukin-6 genes in astrocytes under ischemic injury. Neurochem Int, 2000, 36(4-5): 369-377.
    13. Bethen JR. Spinal cord injury-induced inflammation: a dual-edged sword. Prog BrainRes, 2000, 128(1): 33-42.
    14. Pan W, Zadina JY, Hauung SL, et al. Tumor necrosis factor: A neuromodulator in CNS. Neurosci Biobehav Rev, 1997, 21(5): 603-613.
    15. Hayashi M, Ueyama K, Nemoto T, et al. Sequential mRNA expression for immediate early genes, cytokines, and neurotrophins in spinal cord injury. J Neurotrauma, 2000, 17(3): 203-218.
    16.陈慰峰主编,医学免疫学(第三版),北京,人民卫生出版社,2001:62-63。
    17. Anderson AJ, Najbauer J, Huang W, et al. Upregulation of complement inhibitors in association with vulnerable cells following contusion-induced spinal cord injury. J Neurotrauma, 2005, 22(3): 382-397.
    1.薛庆善,吴良芳,保天然。植块联合培养法探讨备用背根猫脊髓背核组织对鸡胚背根节神经突起生长的影响。解剖学报,1995,26(1):29-34。
    2. Hopkins SJ, Rothwell NJ. Cytokines and the nervous system. I. Expression and recognition. Trends Neurosci, 1995, 18: 83-88.
    3. Chung IY, Benveniste EN. Tumor necrosis factor-allpha production by astrocytes: induction by lipopolysaccharide, interferon-gamma and interleukin-1. J Immunol, 1990, 144: 2999-3007.
    4.刘立,王津存,张志均等。清除补体对大鼠局灶性脑缺血的作用。中国临床康复,2003,7(13):1882-1883。
    5. Diane MS, Vance L, David AC. Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro. Exp Neurology, 1990, 109: 111-130.
    6. Chen YM, Swanson RA. Astrocytes and brain injury. J Cereb Blood Flow and Metab, 2003, 23(1): 137-149.
    7. Brambilla R, Bracchi-Ricard V, Hu WH, et al. Inhibition of astroglial nuclear factorκB reduces inflammation and improves functional recovery after spinal cord injury. JEM,2005,202(1):145-156.
    8. Menet V, Prieto M, Privat A, et al. Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes. 2003, Proc Natl Acad Sci, USA., 100: 8999-9004.
    1. Santiago Ramon y Cajal. Degeneration and regeneration of the nervous sytem. Oxford Univ Press, London, 1928.
    2. Tuszynski MH. Neurotrophic factors [A]. In: Tuszynski MH, Kordower J, eds CNS regeneration [M]. San Diego: Academic Press, 1999: 109-158.
    3. Chen ZY, Cao L, Wang LM, et al. Development of neurotrophic factor for treatment of neurodegeneration. Current Peptide and Peptide Science, 2001, 2: 216-276.
    4. Bregman BS, Coumans JV, Dai HN, et al. Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury. Prog Brain Res, 2002, 137: 257-273.
    5.何成。神经营养因子的修复作用及其机制。中国神经科学杂志,2002,18(1):446-471。
    6. Priestley JV, Ramer MS, King VR, et al. Stimulating regeneration in the damaged spinal cord. J Physiol Paris, 2002, 96(1-2): 123-133.
    7. Lacroix S, Tuszynski MH. Neurotrophic factors and gene therapy in spinal cord injury. Neurorehabil Neural Repair, 2000, 14(4): 265-275.
    8. Schnell L, Schneider R, Kolbeck R, et al. Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature, 1994, 367: 170-173.
    9. Barres BA, Raff MC, Gaese F, et al. A crucial role for neurotrophin-3 in oligodendrocyte development. Nature, 1994, 367: 371-375.
    10. Zhang WR, Kitagawa H, Hayashi T, et al. Nerve growth factor in CNS repair. Brain Res, 1999, 842(1): 211-214.
    11. Osteragaard K, Jone SA, Hyman C, et al. Effects of donor age and brain-derived neurotrophic factor on the survival of dopaminergic neurons. Neuro Clin, 1996, 142(2): 340.
    12. Blesch A, Yang H, Weidner N, et al. Axonal responses to cellulary delivered NT-4/5 after spinal cord injury. Mol Cell Neurosci, 2004, 27(2): 190-201.
    13.蔡文琴主编,发育神经生物学[M],北京,科学出版社,2007:480-481。
    14. Lin LF, Doherty DH, Lile JD, et al. GDNF: a glial cell line-derived neurotrophic factorfor midbrain dopaminergic neurons. Science, 1993, 260: 1130-1132.
    15. Hou JG, Lin LF, Mytilineou C, et al. Glial cell line-derived neurotrophic factor excerts neurotrophic effects on dopaminergic neurons in vitro and promotes their survival and regrowth after damage by 1-methy1-4-phenylpyridinium. J Neurochem, 1996, 66: 74-82.
    16. Williams LR, Inouye G, Cummins V, et al. Glial cell line-derived neurotrophic factor sustains axotomized basal forebrain cholinergic neurons in vivo: dose-response comparison to nerve growth factor and brain-derived neurotrophic factor. J Pharmacol Exp Ther, 1996, 227: 1140-1151.
    17. David S, Aguayo AJ. Axon elongation into peripheral nervous system“bridges”after central nervous system injury in adult rats. Science, 1981, 214(4523): 931-933.
    18. Spillmann AA, Christ F and Schwab ME. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature, 2000, 403(6768): 434-439.
    19. GrandPre T, Nakamura F, Vartanian T, et al. Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature, 2000, 403(6768): 439-444.
    20. Prinjha R, Moore SE, Vinson M, et al. Inhibitor of neurite outgrowth in humans. Nature, 2000, 403(6768): 383-384.
    21. McKerracher L, David S, Jackson DL, et al. Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuorn, 1994, 13(4): 805-811.
    22. Mukhopadhyay G, Doherty P, Walsh FS. A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron, 1994, 13(3): 757-767.
    23. Kevin C, Wang, Koprivica V, et al. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature, 2002, 417(6892): 941-944.
    24. Kottis V, Thibault P, Mikol D, et al. Oligodendrocyte-myelin glycoprotein (OMgp) is an inhibitor of neurite outgrowth. J Neurochem, 2002, 82: 1566-1569.
    25. Mi S, Lee X, Shao Z, et al. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci, 2004, 7(3): 221-228.
    26. Park JB, Yiu G, Kaneko S, et al. A TNF receptor family member, TROY, is a coreceptor with Nogo receptor in mediating the inhibitory activity of myelin inhibitors. Neuron,2005, 45(3): 345-351.
    27. Goldberg JL, Barres BA. Nogo in nerve regeneration. Nature, 2000, 403: 369-370.
    28. Chen MS, Huber AB, Haar ME, et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature, 2000, 403: 434-439.
    29. Fournier AE, GrandPre T, Strittmatter SM. Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature, 2001, 409: 341-346.
    30. Merkler D, Metz GA, Raineteau O, et al. Locomotor recovery in spinal cord injury rats treated with an antibody neutralizing the myelin-associated neurite growth inhibitor Nogo-A. J Neurosci, 2001, 21(10): 3665-3673.
    31. Sicotte M, Tsatas O, Suh YJ, et al. Immunization with myelin or recombinant Nogo-66/MAG in alum promotes axon regeneration and sprouting after corticospinal tract lesions in the spinal cord. Mol Cell Neurosci, 2003, 23(2): 251-263.
    32. GrandPre T, Li S, Strittmatter SM. Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature, 2002, 417(6888): 547-551.
    33. Dergham P, Ellezam B, Essagian, et al. Rho signaling pathway targeted to promote spinal cord repair. J Neurosci, 2002, 22(15): 6570-6577.
    34. Kastin AJ, Pan W. Targeting neurite growth inhibitors to induce CNS regeneration. Curr Pharm Des, 2005, 11(10): 1247-1253.
    35. Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci, 2004, 5(2): 146-156.
    36. Bradbury EJ, Moon LD, Popat RJ, et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature, 2002, 416(6881): 636-640.
    37. Massey JM, Hubscher CH, Wagoner MR, et al. Chondroitinase ABC digestion of the perineuronal net promotes functional collateral sprouting in the cuneate nucleus after cervical spinal coed injury. J Neurosci, 2006, 26(16): 4406-4414.
    38. Houle JD, Tom VJ, Mayes D, et al. Combining an autologous peripheral nervous system“bridge”and matrix modification by chondroitinase allows robust, functional regeneration beyond a hemisection lesion of the adult rat spinal cord. J Neurosci, 2006,
    26(28): 7405-7415.
    39. Barami K, Diaz FG. Celluar transplantation and spinal cord injury. Neurosurg, 2000, 47: 691-700.
    40. Reynolds ML, Woolf CJ. Reciproca Schwann Cell-axon interactions. Current Opinion Neurlbiol, 1993, 3(5): 683-690.
    41. Rush RA. Immunohistochemical localization of endogenous nerve growth factor. Nature, 1984, 312: 364-367.
    42. Lindholm D, Heumann R, Meyer M, et al. Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature, 1987, 330: 658-659.
    43.杨智宽,葛坚,刘海泉,等。大鼠雪旺细胞对视网膜神经细胞成活及突起生长的影响。中山医科大学学报,2000,21:64-67。
    44. Temple S. The development of neural stem cells. Nature, 2001, 414: 112-117.
    45.蔡斌,侯铁胜,刘少君。诱导胚胎干细胞向神经元分化及其在中枢神经系统损伤中的应用。中国神经科学杂志,2001,17(2):153-157。
    46. Brustle O, Jones KN, Learish RD, et al. Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science, 1999, 285: 745-756.
    47.韩嵘,汤富酬,尚克刚。小鼠ES细胞可在体外诱导分化为神经元样细胞。北京大学学报(自然科学版),2002,38(2):192-196。
    48. Li Y, Field PM, Raisman G. Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science, 1997, 277: 2000-2002.
    49. Ramon-Cueto A, Plant GW, Avila J, et al. Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. J Neurosci, 1998,18: 3803-3815.
    50. Ramon-Cueto A, Cordero MI, Santos-Benito F, et al. Function recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron, 2000, 25: 425.
    51. Imaizumi T, Lankford KL, Burton WV, et al. Xenotransplantation of transgenic pig olfactory ensheating cells promotes axonal regeneration in rat spinal cord. Nat Biotechnol, 2000, 18(9): 949-953.
    52.黄红云,王洪美,修波,等。嗅鞘细胞移植治疗脊髓损伤临床试验的初步报告。海军总医院学报,2002,15(1):18-21。
    1. L. McKerracher, S. David, D.L. Jackson, V. Kottis, R.J. Dunn, P.E. Braun, Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth, Neuron 13 (1994) 805-811.
    2. T. GrandPre, F. Nakamura, T. Vartanian, S.M. Strittmatter, Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein, Nature 403 (2000) 439-444.
    3. K.C. Wang, V. Koprivica, J.A. Kim, R. Sivasankaran, Y. Guo, R.L. Neve, Z. He, Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth, Nature 417 (2002) 941-944.
    4. M. Domeniconi, Z. Cao, T. Spencer, R. Sivasankaran, K. Wang, E. Nikulina, N. Kimura, H. Cai, K. Deng, Y. Gao, Z. He, M. Filbin, Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth, Neuron 35 (2002) 283-290.
    5. A.A. Habib, L.S. Marton, B. Allwardt, J.R. Gulcher, D.D. Mikol, T. Hognason, N. Chattopadhyay, K. Stefansson, Expression of the oligodendrocyte-myelin glycoprotein by neurons in the mouse central nervous system, J Neurochem 70 (1998) 1704-1711.
    6. P. Vourc'h , S. Dessay , O. Mbarek , S. Marouillat Vedrine , J.P. Muh , C. Andres , The oligodendrocyte-myelin glycoprotein gene is highly expressed during the late stages of myelination in the rat central nervous system, Brain Res Dev Brain Res. 144 (2003) 159-168.
    7. D. Hunt, M.R. Mason, G. Campbell, R. Coffin, P.N. Anderson, Nogo receptor mRNA expression in intact and regeneration CNS neurons, Mol.Cell.Neurosic. 20 (2002) 537-552.
    8. Z.L. Hu, Y.Y. Liu, W.L. Jin, H.L. Liu, G. Ju, Distribution of Nogo-66 receptor in glial cells of white matter in adult rat spinal cord. J Fourth Mil Med Univ. 25 (2004)1444-1447.
    9. Q. Guo, S.R. Li, B.Y. Su, Nogo-A immunoreactivity in injured spinal cord of adult rats, Neuroscience Bulletin 21 (2005) 287-290.
    10. S. Tang, J. Qiu, E. Nikulina, M.T. Filbin, Soluble myelin-associated glycoprotein released from damaged white matter inhibits axonal regeneration, Mol Cell Neurosci.18 (2001) 259-269.
    11. P. Caroni, M.E. Schwab, Antidoby against myelin-associated inhibitor neurite growth neutralizes nonpermissive substrate properties of CNS white matter, Neuron 1 (1988) 85-96.
    12. A.E. Fournier, T. GrandPre, S.M. Strittmatter, Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration, Nature 409 (2001) 341-346.
    13. B.P. Liu, A. Fournier, T. GrandPre, S.M. Strittmatter, Myelin-associated glycoprotein as a function ligand for the Nogo-66 receptor, Science 297 (2002) 1190-1193.
    14. A. Mingorance, X. Fontana, M. Sole, F. Burgaya, J.M. Urena, F.Y. Teng, B.L. Tang, D. Hunt, P.N. Anderson, J.R. Bethea, M.E. Schwab, E. Soriano, J.A. del Rio, Regulation of Nogo and Nogo receptor during the development of the entorhino-hippocampal pathway and after adult hippocampal lesions, Mol Cell Neurosci 26 (2004) 34-49.
    15. E. Woodhall, A.K. West, J.C. Vickers, M.I. Chuah, Olfactory ensheathing cell phenotype following implantation in the lesioned spinal cord, Cell Mol Life Sci 60 (2003) 2241-2253.
    16. A. Josephson, A. Trifunovski, C. Scheele, J. Widenfalk, C. Wahlestedt, S. Brene, L. Olson, C. Spenger, Activity-induced and developmental downregulation of the Nogo receptor, J Cell Tissue Res 311 (2003) 333-342.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700