基于压电免疫生物传感器的大肠杆菌O157:H7检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大肠杆菌O157:H7作为食源性致病菌存在流行暴发的可能性和感染的严重性,急需研制一种快速准确的检测方法。本课题根据石英晶体微天平良好的质量响应特性,在QCM石英金电极表面采用四种不同的抗体固定方法,将抗体固定在电极表面,并通过两种分析方法来检测大肠杆菌O157:H7。根据不同浓度的菌体溶液响应值存在规律性来测定菌体浓度。建立了基于QCM的压电免疫生物传感器的微生物检测系统,能够快速准确的检测大肠杆菌O157:H7。
     本课题的主要研究内容和研究结果如下:
     1.采用四种抗体固定方法:硅烷固定法,聚乙烯亚胺固定法,3-巯基丙酸固定法和蛋白A固定法等将抗体固定于金电极表面,并通过两种分析方法:气相分析法和流动注射法来跟踪了解石英金电极表面每一步反应的频率变化。结果表明,蛋白A固定法与流动注射法联合使用是最佳的QCM检测大肠杆菌O157:H7方法。
     2.利用蛋白A固定法和流动注射法联合使用时,蛋白A浓度和抗体的浓度对结果有影响,实验证明蛋白A最佳浓度为0.5mg/mL,抗体最佳浓度为1.0mg/mL。
     3.选择最佳的抗体固定方法和分析方法,通过频率变化量的差异对不同浓度的大肠杆菌O157:H7溶液进行定量检测,检测限为7.33×10~3CFU/mL,检测范围为7.33×10~3CFU/mL~7.33×10~8CFU/mL,在此范围内,其频率变化值和浓度的响应方程式为:△f=6.9LogC-10.5。
     以上实验研究,为今后压电免疫生物传感器在食品致病菌的检测研究应用打下基础,为从事食品安全研究与检测提供相应的技术支撑。
Escherichia coli O157:H7 is one of highly harmful food-borne disease-caused bacteria, for the probability of epidemic outbreak and the danger of infection. It is in dire need of a rapid and accurate method for E.coli O157:H7 detection. This research investigated the mass response characteristic of QCM for detection of E.coli Ol 57: H7. Four different immobilization methods were used to immobilize the monoclonal antibody onto a 8MHz AT-cut quartz crystal's surface, and two analytical procedures namely dip-and-dry and flow injection methods were used to detect E.coli O157.H7. The binding of target bacteria onto the immobilized antibody decreased the sensor's resonant frequency, and the frequency shift was correlated to the bacterial concentration. The biosensor was characterized with high sensitivity, relatively rapid and reliable analysis.Main contents and results were as follows:Firstly, four types of antibody immobilization methods included silanized layer, MPA self-assembled monolayer (SAM), PEI polymer membrane and Protein A were applied in this study. And learned the frequency shift from chemical reaction on the electrode's surface by dip-and-dry and flow injection methods. The results showed that the Protein A-based antibody immobilization method and flow injection method offered the best ways to provide a sensitive fast and reproducible detection results.Secondly, the effects of concentration of protein A and antibody on the frequency shift were also discussed. The results showed that the best protein A concentration was 0.50mg/mL, and the best antibody concentration was 1.0mg/mL.Thirdly, the immunosensor could detect E.coli O157:H7 with a detection limit of 7.33×10~3CFU/mL, in a range of 7.33×10~3CFU/mL to 7.33×10~8CFU/mL. The system was quite specific to E.coli Ol57: H7 and applicable for repetitive use after a regeneration step employing NaOH, HC1 and Piranha reagent.
引文
[1] 徐建国.O157:H7大肠杆菌知识问答.北京:科学普及出版社,1997,7~44
    [2] 黄介枚.国外大肠杆菌O157感染的爆发流行近况与防治策略.广东卫生防疫,1997,23(1):89~92
    [3] 孙洋.肠出血性大肠杆菌O157多重PCR检测及其stx基因缺失突变株的研究:[硕士学位论文].长春:中国人民解放军军需大学,2002
    [4] 陈明栋,明贺田.肠出血性大肠杆菌O157:H7的研究进展.上海预防医学,2000,12(5):238~240
    [5] 刘江勋,黎锡流,唐清涛.大肠杆菌O157:H7及其在食品中的检测.食品与发酵工业,2001,28(1):64~67
    [6] Martina B, Herbert S, Almut C et al. Cattle can be a reservoir of sorbitol-fermenting shiga toxin-producing Escherichia coli O157: H-strains and a source of human diseases. J clin Microbiol, 2000, 38(9): 3470
    [7] 徐兆炜.英国(苏格兰)O157大肠杆菌干扰爆发流行.预防医学情报杂志,1997,13(1):61
    [8] 权太淑,徐建国,范天锐,等.首次从出血性肠炎病人中分离到O157:H7大肠杆菌.中华流行病学杂志,1988,9(特刊4号):24~27
    [9] 路昌峰.肠出血性大肠杆菌O_(157):H_7的流行病学和实验诊断.中华综合医学,2001,2(11):1042
    [10] 陈思.肠出血性大肠杆菌O157:H7的PCR与免疫学检测技术的研究:[硕士学位论文].北京:中国农业大学,2005
    [11] Konowalchuk J, Sperirs JI, Stavric S. Vero response to a cytotoxin of Escherichia coli. Infect Immun, 1977, 18: 775~779
    [12] O'Brien AD PH. Shiga and Shiga-like toxin. Microbiol Rev 1987, 51: 206~220
    [13] Su C LB. Escherichia coli O157: H7 infection in humans. Ann Interm Men 1995, 123: 698~714
    [14] Lindgren SW, Samuel JE, Schmitt CK et al. The specific activities of Shiga-like toxin type Ⅱ(SLT-Ⅱ) and SLY-Ⅱ-related toxins of enterohemorrhagic Escherichia coli differ when measured by Veto cell cytotoxieity but not by mouse Lethality. Infect Immun 1994, 62(2): 623~631
    [15] 罗霞.我国发现携带插入序列IS1203变种的志贺毒素2基因的大肠杆菌O157:H7:[硕士学位论文].大连:大连医科大学,2005
    [16] 赵红,王秉瑞.大肠杆菌O157:H7致病因子及其保护性免疫研究现状.微生物学免疫学进展,2002,30(2):77~81
    [17] 樊蕊,刘谦民.肠出血性大肠杆菌O157:H7研究进展.临床医药实践,2003,12(8):563~564
    [18] 聂青和.出血性大肠杆菌O157:H7感染.世界华人消化,2001,9(8):944~945
    [19] 孙贵娟,林毓宁.肠出血性大肠埃希氏菌致病性与检测方法研究进展.医学文选,2000,19(4):19~20
    [20] Thompson JS, Hodge DS, Borczyk AA. Rapid biochemical test to identify verocytotoxin-positive strains of Escherichia coli serotype O_(157). J Clin Microbiol, 1990, 28: 2165
    [21] 王静,邱茂锋,林修光.食品中大肠杆菌O157:H7快速分离培养方法的研究.卫生研究,2002,31(1):44~46
    [22] 姚斐,沙莎,陈刚,等.间接酶联免疫吸附技术检测活的非可培养状态的大肠杆菌O157:H7.青岛海洋大学学报,200131(2):211~214
    [23] Park CH, Vandel NM, Hixon DL. Rapid immunoassay for detection of Escherichia coli O157: H7 directly from stool specimens. J Clin Microbiol, 1996, 34: 988~990
    [24] Padhye NV, Doyle MP. Production and characterization of a monoclonai antibody specific for Enterohemorrhagic Escherichia coli of serotypes O157: H7 and O26: H11. J Clin Microbioi, 1991, 29: 99~103
    [25] 赵志品,刘秀梅.大肠杆菌O157多克隆抗体及食品中双抗ELISA测定方法的研究.卫生研究,2003,32(6):606~4509
    [26] 马娜,宋宏新.检测E.coli O157特异性IgY的间接ELISA方法的建立.中国动物检疫,2005,22(3):24~25
    [27] 徐建国,程伯鲲,冯丽萍,等.肠出血性大肠埃希菌O157:H7引起的溶血性尿毒综合征患者血清抗体调查.中华流行病学杂志.2002,23(2) 87~91
    [28] Gooding CM, Choudary PV. Rapid and sensitive immunomagnetic separation-polymerase chain reaction method for the detection of Escherichia coli O157: H7 in raw milk and ice-cream. J Dairy Res, 1997, 64(1): 87~93
    [29] 赵文彬,周克捷,李家富,等.应用免疫磁珠法分离大肠杆菌O_(157)H7.现代预防医学,2000,27(3):331~332
    [30] Tyler, S. D., W. M. Johnson, H. Lior, G. Wang et al. Identification of Verotoxin type 2 variant B subunit genes in Eshcerichia coli by the polymerase chain reaction and restriction fragment length polymorphism analysis. J. Clin. Microbiol, 1991, 29: 1339~1343
    [31] 周志江,黄上媛,郑明光,等.用PCR鉴定大肠杆菌O157:H7.中国兽医学报,1999,19(3):248~250
    [32] 徐建国,黄力保,吴纪民.一种出血性大肠埃希氏菌的PCR检测方法.中华医学检验杂志,1995,18(4):225~228
    [33] Fields P. I., K. Blom, H. J. Hughes et al. Molecular characterization of the gene encoding H antigen in Escherichia coli and development of a PCR restriction fragment length polymorphism test for identification of E. coli O157 and O157: NM. J. Clin. Microbiol, 1997, 35: 1066~1070
    [34] 李君文,史秀全,晁福寰,等.肠道致病菌PCR检测与鉴定研究.中华微生物学和免疫学杂志,2000,20(3):269~272
    [35] Fratamico PM, Sackitey SK, Wiedmann M, et al. Detection of Escherichia coli O157: H7 by multiplex PCR. J Clin Microbiol, 1995, 33: 2188~2191.
    [36] 金慧英,陶开华,李越希,等.PCR检测肠出血性大肠杆菌O157:H7.中国公共卫生,2003,19(4):394~395
    [37] Bhagwat AA. Simultaneous detection of Escherichia coli O157: H7, Lesteria monocytogenes and Salmonella strains by real-time PCR. International journal of food microbiology, 2003, 84(2): 217~224
    [38] 司士辉.生物传感器.北京:化学工业出版社,2002:1~78
    [39] 长孙东亭,罗素兰.生物传感器.生物学通报 2001,36(11):10~11
    [40] 郭亚银,屈涛涛,李忠彦.生物传感器在食品工业中的应用.中国食物与营养,2003(12):45~47
    [41] 许牡丹,张嫱.生物传感器在食品安全检测中的应用.食品研究与开发,2004,25(4):128~130
    [42] Elizabeth A. H. Hali. Biosensors. Open University Press Milton Keynes, 1991: 20~21
    [43] 王锋,樊先平,王民权.光学生物传感器的研究进展,材料导报,2004,18(7):1~4
    [44] Dmitri Ivnitski, Ihab Abdel-Hamid, Plamen Atanasov et al. Biosensors for detection of pathogenic bacteria. Biosensors & Bioelectronics 1999(14): 599~624
    [45] 向四海,崔大付,蔡浩原.利用表面等离子体谐振技术检测金黄色葡萄球菌肠毒素B.中国实验诊断学,2003,7(3):190~194
    [46] Koubova. V, Brynda. E, Karasova. L, et al. Detection of foodborne pathogens using surface plasmon resonance biosensors. Sensors and Actuators B: Chemical, 2001, 74: 100~105
    [47] Slavik. R, Homola. J, Brynda. E. A miniature fiber optic surface plasmon resonance sensor for fast detection of staphylococcal enterotoxin B, Biosensors and Bioelectronics, 2002, 17: 591~595
    [48] 葛晶,殷涌光,王凯.使用SPR生物传感器快速检测大肠杆菌E.Coli O157:H7.吉林大学学报(工学版),2005,35(2):214~218
    [49] 陈国平,寿文德.光纤生物传感器.中国医疗器械杂志,2002,26(2):119~123
    [50] Cao LK, Anderson GP, Ligler FS, et al. Detection of Yersinia pestis fraction 1 antigen with a fiber optic biosensor. J Clin Microbiol, 1995, 33(2): 336~341
    [51] Anderson GP, Jacoby MA, Ligler FS, et al. Effectiveness of protein A for antibody immobilization for a fiber optic biosensor. Biosens Bioelectron, 1997, 12(4): 329~336
    [52] DR DeMarco, EW Saaski, DA McCrae, et al. Rapid detection of Escherichia coli O157: H7 in ground beef using a fiber-optic biosensor. J Food Prot, 1999, 62(7): 711~716
    [53] 孟艳丽,王战会,靳刚.A蛋白定向同定抗体用于椭偏光学生物传感器免疫检测.生物工程学报,2004,20(1):111~114
    [54] Enric Garcia-Caurel, Jacqueline Nguyen, Laurent Schwartz, et al. Application of FTIR ellipsometry to detect and classify microorganisms. Thin Solid Films 2004: 722~725
    [55] Yongcheng Liu, Yihua Che, Yanbi Li. Rapid detection of Salmonella typhimurium using immunomagnetic separation and immuno-optical sensing method.Sensors and Actuators B, 2001, 72: 214~218
    [56] 蔡新霞,李华清,饶能高,等.电化学生物传感器.微纳电子技术,2003,40(7):359~361
    [57] Brooks J.L., Mirhabibollahi B., Kroll R.G. Sensitive enzyme-amplified electrical immunoassay for protein A-bearing Staphylococcus aureus in food. Appl. Environ. Microbiol.56, 3278~3284
    [58] Brooks J.L., Mirhabiboilahi B., Kroll R.G. Experimental enzyme-linked amperometric immunosensors for the detection of Salmonella in foods. J.Appl. Bacteriol. 73, 189~196
    [59] Dill Kilian, Stanker Larry H, Young Colin R. Detection of salmonella in poultry using a silicon chip-based biosensor. Journal of Biochemical and Biophysical Methods, 1999, 41(1): 61~67
    [60] Liu Yongcheng, Che Yihua, Li Yanbin. Rapid detection of Salmonella typhimurium using immunomagnetic separation and immuno-optical sensing method. Sensors and Actuators B: Chemical, 2001, 72(3): 214~218
    [61] Che Yihua, Li Yanbin, Slavik Michael. Detection of Campylobacter jejuni in poultry samples using an enzyme-linked immunoassay coupled with an enzyme electrode. Biosensors and Bioelectronics, 2001, 16: 791~797
    [62] Liu Yongcheng, Li Yanbin. Detection of Escherichia coli O157: H7 using immunomagnetic separation and absorbance measurement. Journal of Microbiological Methods, 2002, 51(3): 369~377
    [63] Ruan Chuanmin, Yang Liju, Li Yanbin. Rapid detection of viable Salmonella typhimurium in a selective medium by monitoring oxygen consumption with electrochemical cyclic voltammetry. Journal of Electroanalytical Chemistry, 2002, 519: 33~38
    [64] Yang Liju, Ruan Chuanmin, Li Yanbin. Detection of viable Salmonella typhimurium by impedance measurement of electrode capacitance and medium resistance. Biosensors and Bioelectronics, 2003, 19(5): 495~502
    [65] Yang Liju, Li Yanbin, Griffis Carl L., et al. Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium. Biosensors and Bioelectronics, 2004, 19(10): 1139~1147
    [66] Sauerbrey GZ. Use of a quartz vibrator for weighing thin layers on a microbalance. Z Physik, 1959, 155: 206
    [67] Shorts A, Dorman F, Nagarian J. An immunospecific microbalance. J Biomed Mater Res, 1972, 6(6): 565~570
    [68] Davis K A, Leafy T R. Continuous liquid-phase piezoelectric biosensor for kinetic immunoassays. Anal Chem, 1989, 61: 1227
    [69] Nivens DA, Zhang Y, Angel SM. A fiber-optic pH sensor prepared using a base-catalyzed organo-silica sole-gel. Anal Chem Acta, 1998, 376: 235~245
    [70] Ebato H, Gentry C A, Herron J N, Muller W, et al. Anal Chem, 1994, 66(10): 1683~1689
    [71] Skladal P, Kalab T. A Disposable Amperometric Iimmumosensor for 2.4-Dichlorophenoxyacetic Acid. Anal. Chim. Acta, 1995, 304: 361~368
    [72] Ebersole R C, Ward M D. Piezoelectric specific binding assay with mass amplified reagents. US patent: 5501986, 1996
    [73] Muramatsu H, Kimura K, Ataka T. Computation of equivalent circuit parameters of quartz crystal in contact with liquid and study of liquid properties. Anal Chem, 1988, 60: 2141
    [74] Carter RM, Mekalanos J J. Quartz crystal microbalance detection of vibro cholerase O139 serotype. Jacobs M B. Immuno J. Methods, 1995, 187(1): 121~125
    [75] Harteveld J, Nieuwenhuizen M S, Wils E R. Detection of staphylococcal enterotoxin employing a piezoelectric crystal immunosensor. Biosensor & Bioelectronics, 1997, 12 (7): 661~665
    [76] Park In-seon, Kim Namsoo. Thiolated Salmonella Antibody Immobilization onto the Gold Surface of Piezoelectric Quartz Crystal. Biosensors & Bioelectronics, 1998, 13: 1091~1097
    [77] Park In-Seon, Kim Woo-Yeon, Kim Namsoo. Operational characteristics of an antibody-immobilized QCM system detecting Salmonella spp. Biosensors and Bioelectronics, 2000, 15(3-4): 167~172
    [78] Xiao-Li Su, Yanbin Li. A self-assembled monolayer-based piezoelectric immunosensor for rapid detection of Escherichia coli O157: H7. Biosensors and Bioelectronics, 2004, 19: 563~574
    [79] 吕丰,许鑫华,许岳剑,等.基于生物素-亲和素系统的酶固定化及纳米金增效的研究.高技术讯,2005,15(2):51~54
    [80] 曾辉,王桦,陈方平,等.一种新型的压电免疫传感器在急性白血病免疫分型中的应用.中国实验血液学杂志,2004,12(4):508~512
    [81] 陈国良,林珩.电化学石英晶体微天平原理及其应用.漳州师范学院学报(自然科学版),2001,14(1):45~51
    [82] 张德印.石英晶体振荡器.邢台师范高专学报,2002,17(2):45~47
    [83] 任杰,何永红,高志贤.压电生物传感器研究进展.生物技术通讯,2004,15(5):519~522
    [84] 姚守拙.压电生物传感.生命科学研究,1998,2(1):1~5
    [85] 魏传宁.QCM甲醛传感器的有机敏感薄膜研究:[硕士学位论文].大连:大连理工大学,2005
    [86] Nomura R, Minemura A. Behaviour of a piezoelectric quartz crystal in aqueous solution and application to determination of minute amounts of cyanide. Nippon Kagaku Kaishi, 1980, 10: 1621~1625
    [87] Kanazawa K K, Gordon J G. Frequency of a quartz microbalance in contact with liquid. Analytical Chemistry, 1985, 57: 1770~1771
    [88] 陈昕.压电生物传感器研究与应用:[博士学位论文].安徽:中国科学技术大学,2003
    [89] 张灯.检测大肠杆菌的电化学阻抗谱免疫生物传感器研究:[硕士学位论文].浙江:浙江大学,2005
    [90] CHI440an石英晶体微天平使用说明书,上海辰华仪器公司
    [91] 董永贵.电化学石英晶体微天平(EQCM)原理及应用中的几个问题.测控技术,2004,23(3):15~17
    [92] 李丹.基于单分子膜自组装技术的压电免疫传感器的研究:[硕士学位论文].湖南:湖南大学,2001
    [93] Thompson M, Arthur CI, Dhaliwal KG. Liquid-phase piezoelectric and acoustic transmission studies of interfacial immunochemistry. Anal Chem 1986, 58: 1206~1209
    [94] R. D. Vaughan, C. K. O'Sullivan, G. G. Guilbauit. Development of a quartz crystal microbalance (QCM) immunosensor for the detection of Listeria monocytogenes. Enzyme and Microbial Technology, 2001, 29: 635~638

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700