1.Guattegaumerine对H_2O_2合并血清剥夺诱导的培养大鼠皮质神经元损伤的保护作用研究 2.Betulinic acid对ApoE Knock Out小鼠脑缺血再灌注损伤的保护作用及作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分Guattegaumerine对H_2O_2合并血清剥夺诱导的培养大鼠皮质神经元损伤的保护作用研究
     目的:建立方便有效的培养的大鼠皮质神经元拟缺血性损伤模型,观察Guattegaumerine的神经细胞保护作用并初步探讨其作用机制。方法:原代Wistar大鼠乳鼠皮质神经元培养,不同浓度的H_2O_2和谷氨酸在无血清低糖培养基中与细胞共孵育24h后检测细胞活力(MTT法)和乳酸脱氢酶(lactate dehydrogenase,LDH)释放量。1.25μmol/L与2.5μmol/L Guattegaumerine与皮质神经元预孵育30min,随后加入含6.25μmol/L H_2O_2的无血清低糖培养基,继续培养24h后检测细胞活力及LDH释放量,细胞总抗氧化能力(total antioxidative capatity,TAC)及脂氧化产物MDA生成量;膜连蛋白(Annexin v)-FITC/碘化丙啶(propidium iodide,PI)双染流式细胞仪检测神经元的凋亡和坏死,及免疫组化检测细胞Bax与Bcl-2蛋白表达;钙荧光探针Fura-2AM检测H_2O_2在含钙及无钙细胞外液中诱发的胞内钙浓度变化及KCl诱导胞内钙浓度变化,并观察不同浓度Guattegaumerine对H_2O_2和KCl诱发的胞内钙浓度升高的影响。结果:6.25μmol/L~200μmol/L H_2O_2及12.5μmol/L~50μmol/L谷氨酸合并血清剥夺与神经元孵育24h后,使神经元的生长能力降低,LDH漏出量增加。Guattegaumerine能抑制6.25μmol/L H_2O_2合并血清剥夺诱导的皮质神经元损伤,表现为提高细胞活力,减少LDH漏出量,提高细胞TAC的活力,减少MDA生成量,并抑制细胞凋亡,抑制Bax及促进Bcl-2蛋白表达;抑制含钙细胞外液试验中H_2O_2及KCl诱导的胞内钙浓度升高,高浓度guattegaumerine还能抑制无钙外液试验中H_2O_2诱导的胞内钙浓度升高。结论:6.25μmol/L~200μmol/L H_2O_2及12.5μmol/L~50μmol/L谷氨酸合并血清剥夺与神经元孵育24h是两种方便有效的诱导神经元拟缺血性损伤模型的方法。Guattegaumerine对6.25μmol/L H_2O_2合并血清剥夺诱导的皮质神经元损伤有保护作用,其作用机制可能与其通过提高抗氧化酶活性,抑制脂质过氧化反应,调节凋亡相关基因及拮抗胞内钙超载有关。Guattegaumerine的钙拮抗作用可能与其阻断膜上电压依赖性钙通道及受体门控型钙通道,抑制钙库钙释放有关。
     第二部分Betulinic acid对ApoE knock ont小鼠脑缺血再灌注损伤的保护作用及作用机制研究
     目的:大脑中动脉栓塞法建立ApoE基因敲除(ApoE KO)小鼠的局灶性脑缺血再灌注损伤模型,并观察betulinic acid对脑缺血再灌注损伤的保护作用并初步探讨其作用机制。方法:50mg/kg betulinic acid灌胃给药,1次/天,共7天。灌胃结束后,左侧大脑中动脉栓塞2h复灌22h诱导ApoE KO小鼠的脑缺血再灌注损伤模型,脑组织切片TTC染色测定脑梗死体积;缺血侧及缺血对侧脑组织mRNA提取qRT-PCR检测NAPDH氧化酶亚型NOX1、NOX2、NOX4、p22phox,及NO合成酶eNOS、iNOS和nNOS的mRNA的表达;缺血侧及缺血对侧脑组织蛋白质提取western-blot检测NO合成酶eNOS和nNOS,及蛋白质的氧化产物酪氨酸硝基化蛋白的表达。结果:左侧大脑中动脉栓塞2h复灌22h能稳定地诱导ApoE KO小鼠脑缺血再灌注损伤,缺血侧脑组织NOX2、NOX4,nNOS及iNOS基因表达升高,蛋白质氧化产物生成量增多。50mg/kg betulinic acid灌胃给药能降低脑梗死体积,增加脑组织eNOS mRNA及蛋白质的表达,降低缺血侧脑组织nNOS mRNA及蛋白质的表达,同时降低缺血侧脑组织iNOS,NOX2的mRNA的表达。50mg/kg betulinic acid灌胃给药亦降低缺血侧脑组织酪氨酸硝基化蛋白质水平。结论:50mg/kg betulinic acid对ApoE KO小鼠脑缺血再灌注损伤有保护作用,其作用机制可能与其抑制NOX2、nNOS及iNOS基因表达从而抑制活性氧和活性氮的产生,抑制脑缺血再灌注后氧化应激损伤有关。
First Part Protective Effects of Guattegaumerine Against HydrogenPeroxide Concomitant with Serum Deprivation Incuced Injury inPrimary Cultured Cortical Neurons
     Aims: To establish the convenient and effective model of ischemia induced injury inprimary cultured neurons, and evaluate the neuroprotective effects of guattegaumerine onrat primary cultured cortical neurons. Methods: Research on primary cultured corticalneurons of Wistar rats, different concentrations of H_2O_2 and Glutamate (Glu) expoured tocells in serum free and low glucose medium for 24h and cell viability determined by3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay and lactatedehydrogenase (LDH) leakage were detected. 1.25μmol/L and 2.5μmol/L guattegaumerinewere added 30 min before cells exposure to 6.25μmol/L H_2O_2 in serum free and lowglucose medium for 24h, then cell viability、LDH leakage、malondialhehyde (MDA) andtotal antioxidative capacity (TAC) were observred. Cells apoptosis and necrosis weremeasured by Annexin V/Propidium iodide double staining assay using flow cytometry, andBax, Bcl-2 protein expression were detected by immunohistochemistry. The calciumfluorescent label fura-2 AM was used to measure the intracellular calcium concentrationinduced by H_2O_2 and KC1, and the effects of guattegaumerine on the increased intracellularcalcium stimulated by H_2O_2 and KC1. Results: 6.25μmol/L~200μmol/L H_2O_2 and12.5μmol/L~50μmol/L Glu could decreased cell viability and increased leakage of LDH.Preincubation of guattegaumerine dramatically improved the cell viability and inhibitedLDH release. Preincubation of guattegaumerine also dramatically inhibited MDAproduction and elevated TAC in cells. Results of flow cytometry andimmunohistochemistry showed that preaddition of guattegaumerine interrupted theapoptosis of the neurons, reversed the up regulation of the pro-apoptotic gene (Bax) and thedown regulation of the anti-apoptotic gene (Bcl-2). Furthermore, guattegaumerinesuppressed the increase of intracellular calcium concentration ([Ca~(2+)]_i) stimulated by eitherH_2O_2 or KC1 in Ca~(2+)-containing extracellular solution, and high concentration of guattegaumerine also suppressed the increase of [Ca~(2+)]_i induced by H_2O_2 in Ca~(2+)-freesolution. Conclusions: 6.25μmol/L~200μmol/L H_2O_2 and 12.5μmol/L~50μmol/L Glu aretwo convenient and effective models to induce ischemic injury in neurons.Guattegaumerine protects cultured cortical neurons against 6.25μmol/L H_2O_2 concomitantwith serum deprivation incuced injury, which may relate to its inhibition of lipidperoxidation, regulation of apoptotic related gene expression and prevention of intracellularcalcium elevation by blocking the selective and non-selective calcium channels on the cellmembrane, and the release of calcium from ER.
     Second Part Betulinic Acid Protects against CerebralIschemia/Reperfusion Injury in ApoE Knock Out icem
     Aims: To establish focal cerebral ischemia-reperfusion injury by middle cerebral arteryocclusion in ApoE knock out (KO) mice, and investigate the neuroprotective potential ofbetulinic acid against brain ischemia-reperfusion. Methods: ApoE KO mice were treatedwith 50mg/kg betulinic acid via gavage per day for 7days, then subjected to 2h of the leftmiddle cerebral artery occlusion (MCAO) followed by 22h of reperfusion. Brain infarctionwas indicated by TTC staining. NADPH oxidase (NOX) subunits (NOX1、NOX2、NOX4and p22phox) and nitric oxide synthase (NOS) subunits (nNOS、iNOS and eNOS) mRNAexpression were measured by qRT-PCR, and NOS subunits (nNOS and eNOS) andnitrotyrosine protein expression were measured by western-blot. Results: Inatherosclerosis-prone apolipoprotein E knockout (ApoE-KO) mice, 2h of middle cerebralartery occlusion (MCAO) followed by 22h of reperfusion led to an enhanced expression ofseveral NADPH oxidase subunits (NOX2, NOX4 and p22phox) and an up-regulation ofNOS isoforms (nNOS and iNOS) in the ischemic hemisphere. This was associated withelevated levels of 3-nitrotyrosine, an indicator of peroxynitrite-mediated oxidative proteinmodification. Pretreatment of the mice with betulinic acid (50 mg/kg/day for 7 days via gavage) prior to MCAO reduced infarct volume. In addition, treatment of betulinic acidresulted in a reduction of the ischemia/reperfusion-induced up-regulation of NOX2, nNOSand iNOS. Moreover, treatment with betulinic acid enhanced the expression of endothelialNOS (eNOS), both in the ischemic and non-ischemic hemispheres. In parallel, betulinicacid reduced the levels of 3-nitrotyrosine. Conclusions: these results suggest theneuroprotective potential of BA in cerebral ischemia-reperfusion injury, the mechanismsmay involve inhibiting of both superoxide and NO·production via down-regulated NOX2,iNOS and nNOS gene expression, leading to decreased oxidative stress injury duringcerebral ischemia-reperfusion.
引文
1. Wang W, Gao C, Hou XY,et al. Activation and involvement of JNK1/2 in hydrogen peroxide-induced neurotoxicity in cultured rat cortical neurons. Acta Pharmacol Sin ,2004,25(5):630-636.
    2. Cao HY, Jiang YW, Liu ZW, et al. Effect of recurrent epileptiform discharges induced by magnesium-free treatment on developing cortical neurons in vitro. Developmental Brain Research,2003,142:1-6.
    3. Lobner D. Comparison of the LDH and MTT assays for quantifying cell death validity for neuronal apoptosis? Journal of Neuroscience Methods,2000,96:147-152.
    4. Koh TY,Choi DW. Quantitative determination of Glutamate mediated-cortical neuronal injury in cell culture by lactate dehydrogenaser efflux assay.J Neurosci Meth,1987,20:83-90.
    5. HanY, Wu D, Xiao X, et al.Protection against ischemic Injury in primary cultured astrocytes of mouse cerebral Cortex by bis97-tacrine,a novel anti-Alzheimer's agent.Neurosci Lett,2000,288(2):95-98.
    6. Kim JH, Park SM, Ha HJ, et al. Opuntia ficus-indica attenuates neuronal injury in in vitro and in vivo models of cerebral ischemia. Journal of Ethnopharmacology,2006,104:257-262.
    7. Li L, Wu Q, Jiang QS, et al. Establishing of an ischemia-induced injury model in primary culture neurons. Acta Academiae Medicin ZUNYI, 2004, 27(5):441-444.
    1. Mariani E, Polidori MC, Cherubini A, Mecocci P: Oxidative stress in brain aging,neurodegenerative and vascular diseases: an overview. J Chromatogr B Analyt Technol Biomed Life Sci 2005;827:65-75.
    2. Pan XP: Pharmaceutical studies on Phenolic alkaloids from Menispermum dauricum DC,a new antiarrhythmia drug. Postdoctor's work report 1998; the library of HuBei Province.
    3. Kong XY, Gong PL: Effect of phenolic alkaloids of Menispermum dauricum on thrombosis and platelet aggregation. Yao Xue Xue Bao 2005;40:916-919.
    4. Wang F, Qu L, Lv Q, Guo LJ: Effect of phenolic alkaloids from Menispermum dauricum on myocardial-cerebral ischemia-reperfusion injury in rabbits. Acta Pharmacol Sin 2001 ;22:1130-1134.
    5. Zhang XJ, Guo LJ, Qu L, Lu Q: Protective effects of phenolic alkaloids from Menispermum dauricum on inflammatory injury following focal cerebral ischemia-reperfusion in rats. Yao Xue Xue Bao 2004;39:661-665.
    6. Leclercq J, Quetin J, De Pauw-Gillet MC, Bassleer R, Angenot L. Antimitotic and cytotoxic activities of guattegaumerine, a bisbenzylisoquinoline alkaloid. Planta Med 1987;53:116-117
    7. Chen SJ, Xiao Z, Pan XP, Lin XH, Liu ZY, Zeng FD, Hu CJ: RP-HPLC Analysis of Several Alkaloids of Menispermum dauricum DC. From Different Districts. Journal of pharmaceutical analysis 1999; 19:79-81.
    8. Ming YL, Zhang H, Long LH, Wang F, Chen JG, Zhen XC.Modulation of Ca2+ signals by phosphatidylinositol-linked novel D1 dopamine receptor in hippocampal neurons. J Neurochem 20006; 98:1316-1323.
    9. Lobner D. Comparison of the LDH and MTT assays for quantifying cell death validity for neuronal apoptosis? J Neurosci Methods 2000; 96:147-152.
    10. Koh TY, Choi DW. Quantitative determination of Glutamate mediated-cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J Neurosci Methods 1987; 20:83-90.
    11. Gutteridge JM, Halliwell B. The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochem Sci 1990;15:129-134.
    12. Lapenna D, Cuccurullo F. TBA test and "free" MDA assay in evaluation of lipid peroxidation and oxidative stress in tissue systems. Am J Physiol 1993;265:H1030-H1032.
    13. Ceconi C, Cargnoni A, Pasini E, Condorelli E, Curello S, Ferrari R. Evaluation of phospholipid peroxidation as malondialdehyde during myocardial ischemia and reperfusion injury. Am J Physiol. 1991 Apr; 260(4 Pt 2):H1057-61.
    14. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem 1996; 239:70-76.
    15. Boersma AW, Nooter K, Oostrum RG, Stoter G. Quantification of apoptotic cells with fluorescein isothiocyanate-labeled annexin V in Chinese hamster ovary cell cultures treated with cisplatin. Cytometry 1996; 24:123-130.
    16. Oancea M, Mazumder S, Crosby ME, Almasan A. Apoptosis assays. Methods Mol Med 2006; 129:279-290.
    17. Chu XP, Wemmie JA, Wang WZ. Subunit-dependent high-affinity zinc inhibition of acid-sensing ion channels. J Neurosci 2004; 24:8678-8689.
    18. Godkar PB, Gordon RK, Ravindran A, Doctor BP. Celastrus paniculatus seed oil and organic extracts attenuate hydrogen peroxide- and glutamate-induced injury in embryonic rat forebrain neuronal cells. Phytomedicine 2006;13:29-36.
    19. Naval MV, Go'mez-Serranillos MP, Carretero ME, Villar AM. Neuroprotective effect of a ginseng (Panax ginseng) root extract on astrocytes primary culture. J Ethnopharmacol 2007; 112:262-270.
    20. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 1997;275:1132-1136.
    21. Zamzami N, Susan S A,Marchetti P, Hirsch T, Gomez-Monterrey I, Castedo M, Kroemer G. Mitochondrial control of nuclear apoptosis. J Exp Med 1996;183:1533-1544.
    22. Krajewskj S, Krajawska M, Shabaik A, Miyashita T, Wang HG, Reed JC.Immunohistochemical determination of in vivo distribution of Bax, a dominant inhibitor of Bcl-2. Am J Pathol 1994; 145:1323-1336.
    23. Reed JC.Bcl-2 and the regulation of programmed cell death. J Cell Biol 1994;124:1-6.
    24. Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med 1997; 3:614-620.
    25. Yang E, Korsmeyer SJ. Molecular thanatopsis: a discourse on the BCL2 Family and Cell Death. Blood 1996; 88:386-401.
    26. Yan Y, Du JR, Wang CY, Qian ZM. Protection against hydrogen peroxide-induced injury by Z-ligustilide in PC 12 cells. Exp Brain Res 2008 ; 184:307-312.
    27. Won SJ, Kim DY, Gwag BJ. Cellular and molecular pathways of ischemic neuronal death. J Biochem Mol Biol 2002; 35:67-86.
    28. Shi ZQ, Davison AJ, Tibbits GF. Effects of active oxygen generated by DTT/Fe2? on cardiac Na~+/Ca~(2+) exchange and membrane permeability to Ca2?. J Mol Cell Cardiol 1989; 21:1009-1016.
    29. Robert V, Ayoub S, Berson G. Effects of hydroxyl radicals on ATPase and protein structure of myofibrils from rat heart. Am J Physiol 1991;261:H1785-H1790.
    30. Huang Z, Shi G, Gao F, Zhang Y, Liu X, Christopher TA, Lopez B, Ma X. Effects of N-n-butyl haloperidol iodide on L-type calcium channels and intracellular free calcium in rat ventricular myocytes. Biochem Cell Biol 1007; 85:182-188.
    31.Lu YM, Fro~-stl W, Dreessen J, Kno"pfel T. P-type calcium channels are blocked by the alkaloid daurisoline. NeuroReport 1994; 5:1489-1492.
    32. Li SN, Zhang KY. Effects of dauricine on action potentials and slow inward currents of guinea pig ventricular papillary muscles. Zhongguo Yao Li Xue Bao 1992;13:535-537.
    33. Wang ZX, Zhu JQ, Zeng FD, Hu CJ, Ma YL, Zhong SM. Effects of daurisoline on intracellular Ca~(2+) Activity in myocardium. Zhongguo Yao Li Xue Bao1996;17:248-251.
    1. Hou ST, MacManus JP: Molecular mechanisms of cerebral ischemia-induced neuronal death, bit Rev Cytol 2002, 221:93-148.
    2. Saito A, Maier CM, Narasimhan P, Nishi T, Song YS, Yu F, Liu J, Lee YS, Nito C,Kamada H et al:Oxidative stress and neuronal death/survival signaling in cerebral ischemia. Mol Neurobiol 2005, 31(1-3): 105-116.
    3. Shi H, Liu KJ: Cerebral tissue oxygenation and oxidative brain injury during ischemia and reperfusion. Front Biosci 2007, 12:1318-1328.
    4. Babior BM, Lambeth JD, Nauseef W: The neutrophil NADPH oxidase. Arch Biochem Biophys 2002, 397(2):342-344.
    5. Lassegue B, Clempus RE: Vascular NAD(P)H oxidases: specific features, expression,and regulation. Am J Physiol Regul Integr Comp Physiol 2003, 285(2):R277-297.
    6. Hong H, Zeng JS, Kreulen DL, Kaufman DI, Chen AF: Atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in ischemic stroke. Am J Physiol Heart Circ Physiol 2006, 291 (5):H2210-2215.
    7. Miller AA, Drummond GR, Schmidt HH, Sobey CG: NADPH oxidase activity and function are profoundly greater in cerebral versus systemic arteries. Circ Res 2005,97(10):1055-1062.
    8. Ibi M, Katsuyama M, Fan C, Iwata K, Nishinaka T, Yokoyama T, Yabe-Nishimura C:NOX1/NADPH oxidase negatively regulates nerve growth factor-induced neurite outgrowth. Free Radic Biol Med 2006, 40(10): 1785-1795.
    9. Tejada-Simon MV, Serrano F, Villasana LE, Kanterewicz BI,Wu GY, Quinn MT,Klann E: Synaptic localization of a functional NADPH oxidase in the mouse hippocampus. Mol Cell Neurosci 2005, 29(1):97-106.
    10. Vallet P, Charnay Y, Steger K, Ogier-Denis E, Kovari E, Herrmann F, Michel JP, Szanto I: Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. Neuroscience 2005, 132(2):233-238.
    11. Mungrue IN, Bredt DS, Stewart DJ, Husain M: From molecules to mammals: what's NOS got to do with it? Ada Physiol Scand 2003, 179(2): 123-135.
    12. Moro MA, Cardenas A, Hurtado O, Leza JC, Lizasoain I: Role of nitric oxide after brain ischaemia. Cell Calcium 2004, 36(3-4):265-275.
    13. Goldstein S, Merenyi G: The chemistry of peroxynitrite: implications for biological activity. Methods Enzymol 2008, 436:49-61.
    14. Yogeeswari P, Sriram D: Betulinic acid and its derivatives: a review on their biological properties. Curr Med Chem 2005, 12(6):657-666.
    15. Alakurtti S, Makela T, Koskimies S, Yli-Kauhaluoma J: Pharmacological properties of the ubiquitous natural product betulin. Eur J Pharm Sci 2006, 29(1):1-13.
    16. Fulda S, Debatin KM: Betulinic acid induces apoptosis through a direct effect on mitochondria in neuroectodermal tumors. Med Pediatr Oncol 2000,35(6):616-618.
    17. Kashiwada Y, Chiyo J, Ikeshiro Y, Nagao T, Okabe H, Cosentino LM, Fowke K,Morris-Natschke SL, Lee KH: Synthesis and anti-HIV activity of 3-alkylamido-3-deoxy-betulinic acid derivatives. Chem Pharm Bull (Tokyo) 2000,48(9):1387-1390.
    18. Zuco V, Supino R, Righetti SC, Cleris L, Marchesi E, Gambacorti-Passerini C,Formelli F: Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Lett 2002, 175(1):17-25.
    19. Yamashita K, Lu H, Lu J, Chen G, Yokoyama T, Sagara Y, Manabe M, Kodama H:Effect of three triterpenoids, lupeol, betulin, and betulinic acid on the stimulus-induced superoxide generation and tyrosyl phosphorylation of proteins in human neutrophils.Clin Chim Acta 2002, 325(l-2):91-96.
    20. Szuster-Ciesielska A, Kandefer-Szerszen M: Protective effects of betulin and betulinic acid against ethanol-induced cytotoxicity in HepG2 cells. Pharmacol Rep 2005,57(5):588-595.
    21. Steinkamp-Fenske K, Bollinger L, Xu H, Yao Y, Horke S, Forstermann U, Li H:Reciprocal regulation of endothelial nitric-oxide synthase and NADPH oxidase by betulinic acid in human endothelial cells. J Pharmacol Exp Ther 2007, 322(2):836-842.
    22. Udeani GO, Zhao GM, Geun Shin Y, Cooke BP, Graham J, Beecher CW, Kinghorn AD,Pezzuto JM: Pharmacokinetics and tissue distribution of betulinic acid in CD-I mice.Biopharm Drug Dispos 1999, 20(8):379-383.
    23. Crack PJ, Taylor JM, Flentjar NJ, de Haan J, Hertzog P, Iannello RC, Kola I: Increased infarct size and exacerbated apoptosis in the glutathione peroxidase-1 (Gpx-1) knockout mouse brain in response to ischemia/reperfusion injury. J Neurochem 2001,78(6):1389-1399.
    24. Hattori K, Lee H, Hum PD, Crain BJ, Traystman RJ, DeVries AC: Cognitive deficits after focal cerebral ischemia in mice. Stroke 2000, 31(8):1939-1944.
    25. Belayev L, Busto R, Zhao W, Fernandez G, Ginsberg MD: Middle cerebral artery occlusion in the mouse by intraluminal suture coated with poly-L-lysine: neurological and histological validation. Brain Res 1999, 833(2): 181-190.
    26. Ashwal S, Tone B, Tian HR, Cole DJ, Liwnicz BH, Pearce WJ: Core and penumbral nitric oxide synthase activity during cerebral ischemia and reperfusion in the rat pup.Pediatr Res 1999, 46(4):390-400.
    27. Guenin S, Mauriat M, Pelloux J, Van Wuytswinkel O, Bellini C, Gutierrez L:Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J Exp Bot 2009, 60(2):487-493.
    28. Ahn K, Huh JW, Park SJ, Kim DS, Ha HS, Kim YJ, Lee JR, Chang KT, Kim HS:Selection of internal reference genes for SYBR green qRT-PCR studies of rhesus monkey (Macaca mulatta) tissues. BMC Mol Biol 2008,9:78.
    29. Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25(4):402-408.
    30. Satoh M, Fujimoto S, Arakawa S, Yada T, Namikoshi T, Haruna Y, Horike H, Sasaki T,Kashihara N: Angiotensin Ⅱ type 1 receptor blocker ameliorates uncoupled endothelial nitric oxide synthase in rats with experimental diabetic nephropathy. Nephrol Dial Transplant 2008, 23(12):3806-3813.
    31. Vinas JL, Sola A, Hotter G: Mitochondrial NOS upregulation during renal I/R causes apoptosis in a peroxynitrite-dependent manner. Kidney international 2006,69(8): 1403-1409.
    32. Laskowitz DT, Sheng H, Bart RD, Joyner KA, Roses AD, Warner DS: Apolipoprotein E-deficient mice have increased susceptibility to focal cerebral ischemia. J Cereb Blood Flow Metab 1997, 17(7):753-758.
    33. Walder CE, Green SP, Darbonne WC, Mathias J, Rae J, Dinauer MC, Curnutte JT,Thomas GR: Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 1997, 28(11):2252-2258.
    34. Huang Z, Huang PL, Ma J, Meng W, Ayata C, Fishman MC, Moskowitz MA: Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-L-arginine. J Cereb Blood Flow Metab 1996, 16(5):981-987.
    35. Iadecola C, Zhang F, Casey R, Nagayama M, Ross ME: Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene.J Neurosci 1997, 17(23):9157-9164.
    36. Kriegsfeld LJ, Eliasson MJ, Demas GE, Blackshaw S, Dawson TM, Nelson RJ, Snyder SH: Nocturnal motor coordination deficits in neuronal nitric oxide synthase knock-out mice. Neuroscience 1999, 89(2):311-315.
    37. Holtz ML, Craddock SD, Pettigrew LC: Rapid expression of neuronal and inducible nitric oxide synthases during post-ischemic reperfusion in rat brain. Brain Res 2001,898(1):49-60.
    38. Niwa M, Inao S, Takayasu M, Kawai T, Kajita Y, Nihashi T, Kabeya R, Sugimoto T,Yoshida J: Time course of expression of three nitric oxide synthase isoforms after transient middle cerebral artery occlusion in rats. Neurol Med Chir (Tokyo) 2001,41(2):63-72; discussion 72-63.
    39. Beckman JS: The double-edged role of nitric oxide in brain function and superoxide-mediated injury.J Dev Physiol 1991, 15(1):53-59.
    40. Choi IY, Lee SJ, Ju C, Nam W, Kim HC, Ko KH, Kim WK: Protection by a manganese porphyrin of endogenous peroxynitrite-induced death of glial cells via inhibition of mitochondrial transmembrane potential decrease. Glia 2000, 31(2): 155-164.
    41. Guittet O,Decottignies P, Serani L, Henry Y, Le Marechal P, Laprevote O,Lepoivre M:Peroxynitrite-mediated nitration of the stable free radical tyrosine residue of the ribonucleotide reductase small subunit. Biochemistry 2000, 39(16):4640-4648.
    42. Roberts ES, Lin H, Crowley JR, Vuletich JL, Osawa Y, Hollenberg PF:Peroxynitrite-mediated nitration of tyrosine and inactivation of the catalytic activity of cytochrome P450 2B1.Chem Res Toxicol 1998, 11(9): 1067-1074.
    43. Batthyany C, Souza JM, Duran R, Cassina A, Cervenansky C, Radi R: Time course and site(s) of cytochrome c tyrosine nitration by peroxynitrite. Biochemistry 2005,44(22):8038-8046.
    44. Fukuyama N, Takizawa S, Ishida H, Hoshiai K,Shinohara Y, Nakazawa H:Peroxynitrite formation in focal cerebral ischemia-reperfusion in rats occurs predominantly in the peri-infarct region. J Cereb Blood Flow Metab 1998,18(2):123-129.
    45. Suzuki M,Tabuchi M,Ikeda M, Tomita T: Concurrent formation of peroxynitrite with the expression of inducible nitric oxide synthase in the brain during middle cerebral artery occlusion and reperfusion in rats. Brain Res 2002, 951(1): 113-120.
    1. Deng Y, Snyder JK: Preparation of a 24-nor-l,4-dien-3-one triterpene derivative from betulin: a new route to 24-nortriterpene analogues. J Org Chem 2002,67(9):2864-2873.
    2. Zhao G, Yan W, Cao D: Simultaneous determination of betulin and betulinic acid in white birch bark using RP-HPLC. J Pharm Biomed Anal 2007, 43(3):959-962.
    3. Kim YK, Yoon SK, Ryu SY: Cytotoxic triterpenes from stem bark of Physocarpus intermedius. Planta Med 2000, 66(5):485-486.
    4. Alakurtti S, Makela T, Koskimies S, Yli-Kauhaluoma J: Pharmacological properties of the ubiquitous natural product betulin. Eur J Pharm Sci 2006, 29(1):1-13.
    5. Udeani GO, Zhao GM, Geun Shin Y, Cooke BP, Graham J, Beecher CW, Kinghorn AD, Pezzuto JM: Pharmacokinetics and tissue distribution of betulinic acid in CD-I mice. Biopharm Drug Dispos 1999, 20(8):379-383.
    6. Fulda S: Betulinic Acid for cancer treatment and prevention.Int J Mol Sci 2008,9(6): 1096-1107.
    7. Fulda S: Betulinic acid: a natural product with anticancer activity. Mol Nutr Food Res 2009, 53(1):140-146.
    8. Schmidt ML, Kuzmanoff KL, Ling-Indeck L, Pezzuto JM: Betulinic acid induces apoptosis in human neuroblastoma cell lines. Eur J Cancer 1997, 33(12):2007-2010.
    9. Cichewicz RH, Kouzi SA: Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection.Med Res Rev 2004, 24(1):90-114.
    10. Jeremias I, Steiner HH, Benner A, Debatin KM, Herold-Mende C: Cell death induction by betulinic acid, ceramide and TRAIL in primary glioblastoma multiforme cells. Acta Neurochir (Wien) 2004, 146(7):721-729.
    11. Ehrhardt H, Fulda S, Fuhrer M, Debatin KM, Jeremias I: Betulinic acid-induced apoptosis in leukemia cells. Leukemia 2004,18(8): 1406-1412.
    12. Noda Y, Kaiya T, Kohda K, Kawazoe Y: Enhanced cytotoxicity of some triterpenes toward leukemia L1210 cells cultured in low pH media: possibility of a new mode of cell killing. Chem Pharm Bull (Tokyo) 1997, 45(10): 1665-1670.
    13. Wachsberger PR, Burd R, Wahl ML, Leeper DB: Betulinic acid sensitization of low pH adapted human melanoma cells to hyperthermia.Int J Hyperthermia 2002,18(2):153-164.
    14. Zuco V, Supino R, Righetti SC, Cleris L, Marchesi E, Gambacorti-Passerini C,Formelli F: Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Lett 2002, 175(1): 17-25.
    15. Fulda S, Debatin KM: Sensitization for anticancer drug-induced apoptosis by betulinic Acid. Neoplasia 2005, 7(2): 162-170.
    16. Pisha E, Chai H, Lee IS, Chagwedera TE, Farnsworth NR, Cordell GA, Beecher CW,Fong HH, Kinghorn AD, Brown DM et ah Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat Med 1995,l(10):1046-1051.
    17. Sawada N, Kataoka K, Kondo K, Arimochi H, Fujino H, Takahashi Y, Miyoshi T,Kuwahara T, Monden Y, Ohnishi Y: Betulinic acid augments the inhibitory effects of vincristine on growth and lung metastasis of B16F10 melanoma cells in mice. Br J Cancer 2004, 90(8):1672-1678.
    18. Fulda S, Jeremias I, Debatin KM: Cooperation of betulinic acid and TRAIL to induce apoptosis in tumor cells. Oncogene 2004, 23(46):7611-7620.
    19. Selzer E, Pimentel E, Wacheck V, Schlegel W, Pehamberger H, Jansen B, Kodym R:Effects of betulinic acid alone and in combination with irradiation in human melanoma cells. J Invest Dermatol 2000, 114(5):935-940.
    20. Galgon T, Wohlrab W, Drager B: Betulinic acid induces apoptosis in skin cancer cells and differentiation in normal human keratinocytes. Experimental dermatology 2005,14(10):736-743.
    21. Raghuvar Gopal DV, Narkar AA, Badrinath Y, Mishra KP, Joshi DS: Betulinic acid induces apoptosis in human chronic myelogenous leukemia (CML) cell line K-562 without altering the levels of Bcr-Abl. Toxicology letters 2005, 155(3):343-351.
    22. Liu WK, Ho JC, Cheung FW, Liu BP, Ye WC, Che CT: Apoptotic activity of betulinic acid derivatives on murine melanoma B16 cell line. European journal of pharmacology 2004, 498(1-3):71-78.
    23. Solary E, Bettaieb A, Dubrez-Daloz L, Corcos L: Mitochondria as a target for inducing death of malignant hematopoietic cells. Leukemia & lymphoma 2003, 44(4):563-574.
    24. Khosravi-Far R, Esposti MD: Death receptor signals to mitochondria. Cancer Biol Ther 2004, 3(11):1051-1057.
    25. Jin Z, El-Deiry WS: Overview of cell death signaling pathways. Cancer Biol Ther 2005,4(2):139-163.
    26. Costantini P, Jacotot E, Decaudin D, Kroemer G: Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst 2000, 92(13):1042-1053.
    27. Fulda S, Scaffidi C, Susin SA, Krammer PH, Kroemer G, Peter ME, Debatin KM:Activation of mitochondria and release of mitochondrial apoptogenic factors by betulinic acid. J Biol Chem 1998, 273(51):33942-33948.
    28. Dathe S, Paasch U, Grunewald S, Glander HJ: [Mitochondrial damage in human sperm caused by the antineoplastic agent betulinic acid]. Hautarzt 2005, 56(8):768-772.
    29. Fulda S, Debatin KM: Betulinic acid induces apoptosis through a direct effect on mitochondria in neuroectodermal tumors. Med Pediatr Oncol 2000, 35(6):616-618.
    30. Tan Y, Yu R, Pezzuto JM: Betulinic acid-induced programmed cell death in human melanoma cells involves mitogen-activated protein kinase activation. Clin Cancer Res 2003, 9(7):2866-2875.
    31. Mullauer FB, Kessler JH, Medema JP: Betulinic acid induces cytochrome c release and apoptosis in a Bax/Bak-independent, permeability transition pore dependent fashion.Apoptosis 2009, 14(2): 191-202.
    32. Jung GR, Kim KJ, Choi CH, Lee TB, Han SI, Han HK, Lim SC: Effect of betulinic acid on anticancer drug-resistant colon cancer cells. Basic Clin Pharmacol Toxicol 2007,101(4):277-285.
    33. Fulda S, Jeremias I, Pietsch T, Debatin KM: Betulinic acid: a new chemotherapeutic agent in the treatment of neuroectodermal tumors. Klin Padiatr 1999, 211(4):319-322.
    34. Liby K, Honda T, Williams CR, Risingsong R, Royce DB, Suh N, Dinkova-Kostova AT, Stephenson KK, Talalay P, Sundararajan C et ah Novel semisynthetic analogues of betulinic acid with diverse cytoprotective, antiproliferative, and proapoptotic activities. Mol Cancer Ther 2007, 6(7):2113-2119.
    35. Kasperczyk H, La Ferla-Bruhl K, Westhoff MA, Behrend L, Zwacka RM, Debatin KM,Fulda S: Betulinic acid as new activator of NF-kappaB: molecular mechanisms and implications for cancer therapy. Oncogene 2005, 24(46):6945-6956.
    36. Chowdhury AR, Mandal S, Mittra B, Sharma S, Mukhopadhyay S, Majumder HK: Betulinic acid, a potent inhibitor of eukaryotic topoisomerase Ⅰ: identification of the inhibitory step, the major functional group responsible and development of more potent derivatives. Med Sci Monit 2002, 8(7):BR254-265.
    37. Ganguly A, Das B, Roy A, Sen N, Dasgupta SB, Mukhopadhayay S, Majumder HK: Betulinic acid, a catalytic inhibitor of topoisomerase Ⅰ, inhibits reactive oxygen species-mediated apoptotic topoisomerase I-DNA cleavable complex formation in prostate cancer cells but does not affect the process of cell death. Cancer research 2007, 67(24):11848-11858.
    38. Wada S, Tanaka R: Betulinic acid and its derivatives, potent DNA topoisomerase Ⅱ inhibitors, from the bark of Bischofia javanica. Chemistry & biodiversity 2005, 2(5):689-694.
    39. Huang L, Ho P, Lee KH, Chen CH: Synthesis and anti-HIV activity of bi-functional betulinic acid derivatives. Bioorg Med Chem 2006, 14(7):2279-2289.
    40. Gerrish D, Kim IC, Kumar DV, Austin H, Garrus JE, Baichwal V, Saunders M, McKinnon RS, Anderson MB, Carlson R et al: Triterpene based compounds with potent anti-maturation activity against HIV-1. Bioorganic & medicinal chemistry letters 2008, 18(24):6377-6380.
    41. DaFonseca S, Blommaert A, Coric P, Hong SS, Bouaziz S, Boulanger P: The 3-O-(3',3'-dimethylsuccinyl) derivative of betulinic acid (DSB) inhibits the assembly of virus-like particles in HIV-1 Gag precursor-expressing cells. Antiviral therapy 2007, 12(8):1185-1203.
    42. Kashiwada Y, Chiyo J, Ikeshiro Y, Nagao T, Okabe H, Cosentino LM, Fowke K, Morris-Natschke SL, Lee KH: Synthesis and anti-HIV activity of 3-alkylamido-3-deoxy-betulinic acid derivatives. Chem Pharm Bull (Tokyo) 2000, 48(9):1387-1390.
    43. Qian K, Nakagawa-Goto K, Yu D, Morris-Natschke SL, Nitz TJ, Kilgore N, Allaway GP, Lee KH: Anti-AIDS agents 73: structure-activity relationship study and asymmetric synthesis of 3-O-monomethylsuccinyl-betulinic acid derivatives. Bioorg Med Chem Lett 2007, 17(23):6553-6557.
    44. Li F, Goila-Gaur R, Salzwedel K, Kilgore NR, Reddick M, Matallana C, Castillo A,Zoumplis D, Martin DE, Orenstein JM et al: PA-457: a potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing. Proceedings of the National Academy of Sciences of the United States of America 2003,100(23):13555-13560.
    45. Yu D, Wild CT, Martin DE, Morris-Natschke SL, Chen CH, Allaway GP, Lee KH:The discovery of a class of novel HIV-1 maturation inhibitors and their potential in the therapy of HIV. Expert Opin Investig Drugs 2005, 14(6):681-693.
    46. Zhou J, Huang L, Hachey DL, Chen CH, Aiken C: Inhibition of HIV-1 maturation via drug association with the viral Gag protein in immature HIV-1 particles. J Biol Chem 2005, 280(51):42149-42155.
    47. Li F, Zoumplis D, Matallana C, Kilgore NR, Reddick M, Yunus AS, Adamson CS,Salzwedel K, Martin DE, Allaway GP et al: Determinants of activity of the HIV-1 maturation inhibitor PA-457. Virology 2006, 356(1-2):217-224.
    48. De Clercq E: The emerging role of fusion inhibitors in HIV infection. Drugs R D 1999,2(5):321-331.
    49. Lai W, Huang L, Ho P, Li Z, Montefiori D, Chen CH: Betulinic acid derivatives that target gp120 and inhibit multiple genetic subtypes of human immunodeficiency virus type 1.Antimicrob Agents Chemother 2008, 52(1):128-136.
    50. Huang L, Yuan X, Aiken C, Chen CH: Bifunctional anti-human immunodeficiency virus type 1 small molecules with two novel mechanisms of action. Antimicrob Agents Chemother 2004, 48(2):663-665.
    51. Nguemfo EL, Dimo T, Dongmo AB, Azebaze AG, Alaoui K, Asongalem AE, Cherrah Y, Kamtchouing P: Anti-oxidative and anti-inflammatory activities of some isolated constituents from the stem bark of Allanblackia monticola Staner L.C (Guttiferae).Inflammopharmacology 2009, 17(1):37-41.
    52. Yun Y, Han S, Park E, Yim D, Lee S, Lee CK, Cho K, Kim K: Immunomodulatory activity of betulinic acid by producing pro-inflammatory cytokines and activation of macrophages. Arch Pharm Res 2003, 26(12): 1087-1095.
    53. Yamashita K, Lu H, Lu J, Chen G, Yokoyama T, Sagara Y, Manabe M, Kodama H:Effect of three triterpenoids, lupeol, betulin, and betulinic acid on the stimulus-induced superoxide generation and tyrosyl phosphorylation of proteins in human neutrophils.Clin Chim Acta 2002, 325(1-2):91-96.
    54. Szuster-Ciesielska A, Kandefer-Szerszen M: Protective effects of betulin and betulinic acid against ethanol-induced cytotoxicity in HepG2 cells. Pharmacol Rep 2005,57(5):588-595.
    55. Steinkamp-Fenske K, Bollinger L, Xu H, Yao Y, Horke S, Forstermann U, Li H:Reciprocal regulation of endothelial nitric-oxide synthase and NADPH oxidase by betulinic acid in human endothelial cells. J Pharmacol Exp Ther 2007, 322(2):836-842.
    56. Takada Y, Aggarwal BB: Betulinic acid suppresses carcinogen-induced NF-kappa B activation through inhibition of I kappa B alpha kinase and p65 phosphorylation: abrogation of cyclooxygenase-2 and matrix metalloprotease-9. J Immunol 2003,171(6):3278-3286.
    57. Rabi T, Shukla S, Gupta S: Betulinic acid suppresses constitutive and TNFalpha-induced NF-kappaB activation and induces apoptosis in human prostate carcinoma PC-3 cells. Molecular carcinogenesis 2008, 47(12):964-973.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700