12CaO·7Al_2O_3和γ-2CaO·SiO_2渣系氧化铝溶出性能及机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝土矿和铁矿资源在我国属于紧缺资源,目前,这两种矿石储量不足的问题日益突出,而高铁铝土矿的合理综合利用可大大缓解这一问题。就当前较为合理可行的处理该矿的“烧结—高炉冶炼—提取氧化铝”工艺来看,尚存在一些问题有待于进一步完善。这些亟待解决的问题是:实际铝酸钙炉渣的氧化铝溶出率低、溶出时间长、碳碱浓度高等。基于上述问题,本文针对铝酸钙渣系的两种主要物相组成12CaO·7Al203和γ-2CaOSiO2进行了系统研究,主要研究结果如下。
     研究了12CaO·7Al203的合成条件及溶出性能,结果表明:当CaO:Al2O3摩尔比12:7、合成温度1773K和保温时间120min时,可得到纯度较高和氧化铝溶出率较高的12CaO·7Al203;溶出温度是影响12CaO·7Al203的氧化铝溶出性能的主要因素,其次为溶出时间和碳碱浓度,且二者的影响程度基本相同;12Ca0·7Al203的最佳溶出条件为:溶出温度363K、溶出时间120min和碳碱浓度120g·L-1,相应的氧化铝溶出率为98.69%。
     对1773K下保温60min以上合成的12Ca0·7Al203的微观结构和表面形貌进行了研究,利用Bragg方程和立方晶系晶格常数计算公式计算了晶格常数,通过相关公式计算了晶体的择优取向因子,采用Scherrer公式计算了平均晶粒大小和通过SEM研究了晶体的表面形貌,结果表明晶格常数随着保温时间的延长而增大,420晶面的择优取向因子随着保温时间延长而减小,平均晶粒大小不受保温时间的影响,表面形貌随着保温时间的延长逐渐出现较多和较大的孔洞结构。
     γ-2CaO·SiO2的自粉性和稳定性对铝酸钙炉渣溶出性能有较大影响,因此本文对γ-2CaO·SiO2的合成及其稳定性进行了研究,结果表明CaO:SiO2的摩尔比为2:1的混合物料在1773K下保温60min以上,可获得自粉良好的γ-2CaO·SiO2;γ-2CaO·SiO2在富含碳碱的铝酸钠溶液中有一定程度的分解反应,通过二次回归正交试验法得出了其分解率与碳碱浓度、分解温度、分解时间以及氧化铝浓度之间的关系式。
     在CaO-Al2O3-SiO2三元体系中合成了12CaO·7Al203和γ-2CaO·SiO2的混合物料,最佳合成条件为:CaO:Al2O3:SiO2摩尔比2.38:1:0.77,合成温度1773K,出炉温度373K,保温时间30min。合成产物除12CaO·7Al203和γ-2CaO·SiO2外基本不含其它物相,将该混合物料简称为CAS烧结产物。通过研究12Ca0·7Al203和γ-2CaO·SiO2的机械混合物料与CAS烧结产物的溶出性能差异,借助EDS分析,初步确定了烧结产物中12CaO·7Al203和γ-2CaO·SiO2各自以独立物相形式存在。采用二次回归正交试验法研究了CAS烧结产物的溶出性能,得出了氧化铝溶出率与溶出温度、碳碱浓度、溶出时间和液固比的关系式。通过研究CAS溶出渣的物相组成,初步探讨了溶出过程中的二次反应机理:当溶出时间较短,溶出温度和碳碱浓度(Na20C)较低时生成水化石榴石和钠硅渣;当溶出时间较长,溶出温度和碳碱浓度较高时水化石榴石被分解成钠硅渣或硅酸钙水合物。
     采用超声波强化溶出方式和二段溶出方式研究了12CaO·7Al2O3和CAS烧结产物的溶出性能,研究发现两种方式均可起到强化溶出的效果。达到相同的氧化铝溶出率时,单频超声波作用可降低12CaO·7A1203的溶出用液的碳碱浓度40g·L-1和溶出温度10K,双频协同的超声波作用方式可降低CAS烧结产物的溶出用液的碳碱浓度60g·L-1或溶出温度30K;采用二段溶出时,当溶出过程中的溶出时间分别为15min和20min,碳碱浓度为60g·L-1时,可使12CaO·7Al203和CAS烧结产物的氧化铝溶出率均达95%以上,并使溶出液中氧化铝含量分别升高约7g·L-1和16g·L-1。
     研究了12CaO·7Al203、CAS烧结产物和超声波作用下CAS烧结产物的溶出动力学,得出了各自的宏观动力学方程、表观活化能,对于CAS烧结产物及其超声波作用下的动力学还得出了频率因子、扩散方程和有效扩散系数。结果表明12Ca0·7Al203的溶出过程受表面化学反应控制,CAS烧结产物及其在超声波作用下的溶出过程受固膜内扩散控制。通过计算三个溶出过程中的表观活化能和推导溶出速率与溶出温度的关系对所得结论进行了验证。
     结合超声波作用前后溶液的拉曼光谱、电导率和有无超声波作用时溶出渣的表面形貌的研究,给出了超声波强化溶出的机理:超声波的作用加强了溶液中离子运动和C032-的伸缩振动和反对称伸缩振动,超声波空化作用强化了机械搅拌,阻碍了颗粒之间的团聚,促进了液固传质的进行,超声波提高了有效扩散系数,降低了反应的表观活化能,使固相扩散更顺利进行。此外,超声波也能在一定程度上抑制CAS烧结产物中γ-2CaO·SiO2的分解。
Bauxite and iron ore resources are short in China, and this problem become increasingly serious. The reasonable and comprehensive utilization of high-iron bauxite will relief the problem greatly. The reasonable process to deal with the high-iron bauxite is "sintering-blast furnace smelting-alumina leaching"process, but there are some problems need to be improved, such as lowing alumina leaching ratio, long leaching time and high concentration of sodium carbonate. So this thesis studied the main phases of calcium aluminate slag,12CaO·7Al2O3 and y-2CaO·SiO2. The results are as follows.
     Synthesizing and leaching property of 12CaO·7Al2O3 were studied, and the results showed that 12CaO·7Al2O3 which doesn't have other phases but has high leaching alumina ratio can be obtained under 1773K for 120min from the mixture of CaO:Al2O3=12:7(mol ratio). The main factor which affect alumina leaching ratio is leaching temperature and the next two are leaching time and sodium carbonate concentration, what's more, the degree of the two factors' effects are similar. The optimum conditions for leaching 12CaO·7Al2O3 are leaching temperature 363K, leaching time 120min and sodium carbonate concentration 120 g·L-1, the alumina leaching ratio that obtained under these conditions is 98.69%.
     Micro-structure and surface morphology of 12CaO·7Al2O3 synthesized under 1773K during more than 60min were researched. Bragg equation and calculating formula of lattice constant in cubic system were used to calculate the lattice constants. Related formula was used to calculate crystal's preferred orientation factor. Scherrer formula was used to calculate the average grain size. SEM was used to study crystal's surface morphology. The results are: lattice constants increase, preferred orientation factors of 420 crystal face decrease and surfaces appear more and bigger lacunal structure as holding time become longer. But the average grain sizes don't change with holding time.
     The self-disintegrating property and stability ofγ-2CaO·SiO2 are important to leaching property of calcium aluminate slag, so the synthesizing and stability of it were studied. The results showed thatγ-2CaO·SiO2 which has better self-disintegrating property can be obtained under 1773K for more than 60min from mixture of CaO:SiO2=2:1(mol ratio). y-2CaO·SiO2 will react in sodium aluminate solution which is rich in sodium carbonate and the relationship between decomposition ratio and sodium carbonate concentration, temperature, time and alumina concentration was obtained.
     The mixture of 12CaO·7Al2O3 and y-2CaO·SiO2 were obtained from CaO-Al2O3-SiO2 system. The optimal conditions for synthesizing are CaO:Al2O3:SiO2=2.38:1:0.77(mol ratio), synthesizing temperature 1773K, tapping temperature 373K and holding time 30min. The product doesn't have other phases except 12CaO·7Al2O3 and y-2CaO·SiO2, and this mixture is called CAS sinter for short.12CaO·7Al2O3 and y-2CaO·SiO2 in CAS sinter were proved to be self-existent in basically by comparison of mechanically mixed mixture of 12CaO·7Al2O3 and y-2CaO·SiO2 and CAS sinter with the assistant of EDS. Relationship equation between alumina leaching ratio and leaching temperature, sodium carbonate concentration, leaching time and solid to liquid ratio was obtained by quadratic regression orthogonal method to study the leaching property of CAS sinter. Secondary reaction mechanism was also preliminary discussed by the phase research of slag after leaching. The research showed that the products are hydro-garnet and sodium-silicon residue when leaching time is short, leaching temperature and Na2Oc are low and that the hydro-garnet will transform to sodium-silicon residue and hydrate-calcium-silicate as leaching time become longer, temperature and Na2Oc become higher.
     Ultrasonic wave and two-stage leaching method were used to enhance leaching property of 12CaO·7Al2O3 and CAS sinter, and the results showed that both the two method are effective. When leaching time in the two-stage leaching method are 15min and 20min respectively and Na2Oc 60 g·L-1, the alumina leaching ratio of both 12CaO·7Al2O3 and CAS sinter can reach above 95% and alumina concentration in solution after leaching will be increased by about 7g·L-1and 16g·L-1. Na2Oc in the solution to leach 12CaO·7Al2O3 can be reduce by 40 g·L-1 and the temperature can be reduced by 10K with the action of single frequency ultrasonic wave, but 60 g·L-1 and 40K will be reduced by under double frequency collaborative ultrasonic wave when alumina leaching ratio is the same with the traditional method.
     Leaching dynamics of 12CaO·7Al2O3 and CAS sinter both with and without ultrasonic wave were researched. Macro-kinetics equation and apparent active energy were obtained. As to CAS sinter's leaching dynamics both with and without ultrasonic wave, frequency factors, diffusion equations and effective diffusion coefficients were also obtained. The results showed that 12CaO·7Al2O3's leaching is controlled by surface chemical reaction, CAS sinter's leaching both with and without ultrasonic wave are controlled by solid film inter diffusion.The conclusion was validated by calculation of apparent active energy and derivation of leaching ratio and temperature.
     The mechanism of enhancement of ultrasonic wave was concluded with the assistant of Raman spectra, conductivity research before and after ultrasonic wave and surface appearance (SEM) both with and without ultrasonic wave. The mechanism can be described as follows: irons' movement and CO32-'s stretching vibration and stretch vibration are enhanced, mechanical stirring was strengthened so that agglomeration of grains was hindered to promote transformation between liquid and solid, effective diffusion coefficient was increased and apparent active energy was reduced to facilitate solid diffusion in dynamics. Besides, decomposing of y-2CaO·SiO2 in CAS sinter is inhibited by little degree.
引文
[1]穆新和.我国铝土矿资源合理开发利用的探讨[J].矿产与地质,2002,16(5):313-315.
    [2]孙志伟,鹿爱莉.我国铝土矿资源开发利用现状、问题与对策[J].中国矿业,2008,17(5):13-15.
    [3]崔萍萍,黄肇敏,周素莲.我国铝土矿资源综述[J].轻金属,2008(2):6-9.
    [4]芮华.氧化铝产能迅速扩大铝土矿进口隐患亟待解决[J].中国石油和化工,2007(20):17.
    [5]邹健.当今国内外铁矿资源供给的新态势[J].矿业工程,2004,2(1):1-7.
    [6]詹朝阳,崔彬,欧阳瑜华.论我国铁矿资源的进口依赖形势[J].中国国土资源经济,2004(1):16-19.
    [7]赵翠娥,王一霆,李沛林.冷静分析正确对待铁矿石涨价[J].冶金财会,2005(6):7-11.
    [8]李培亮,柴君,张修志,谢英亮.如何有效利用国外铁矿石资源[J].冶金矿山设计与建设,2002,34(6):18-22.
    [9]本刊编辑部.2005世界粗钢产量生产状况[J].鄂钢科技,2006(2):12.
    [10]本刊编辑部.2007年世界钢铁业十大要闻[J].鞍钢技术,2008(1):61-62.
    [11]李慧中.2006年世界钢铁企业粗钢产量排名简析[J].冶金管理,2007(3):25-29.
    [12]刘中凡.世界铝土矿资源综述[J].轻金属,2001(5):7-11.
    [13]周汝国.世界铝土矿资源[J].中国金属通报,2005(25):29-30.
    [14]郭鉴镜.谁来保证国内铝土矿供应[J].中国通报,2006(42):2-4.
    [15]陈德.广西贵港三水铝土矿综合利用[C].第八届全国氧化铝学术会议暨.中国,山西.1996:8-10,317-318.
    [16]佟志芳.广西贵港高铁铝土矿综合利用的研究[D].博士学位论文,沈阳,东北大学.2005:53.
    [17]Pedersen H. Norwegian Patent.43415,1924.
    [18]Barr L E. Alumina prouction from andalusite by the Pedersen prosess[M].Swedsen: University of lund,1977:64-70.
    [19]Grymek J. Some physicochemical properties of 12CaO multiplied by (times) 7Al2O3 phase in relation to Al2O3 production from self-disintiegrating sinters[C]. Light Metals.1987:91-97.
    [20]Grymek J. Complex production of aluminium oxide and iron from laterite raw materials applying the calcium aluminates polymorphism[C]. Light Metals.1985:87-99.
    [21]Grymek J. Way of weathered basalt enrichment for alumina and titanium-ferric concentrate recovery[C]. Light Metals.1989:61-67.
    [22]毕诗文,杨毅宏,李殷泰等.从高炉铝酸钙渣提取氧化铝的研究[J].轻金属,1992(6):7.
    [23]佟志芳,毕诗文,杨毅宏.微波辐射加热下高炉铝酸钙炉渣的浸出性能[J].东北大学学报(自然科学版),2005,26(2):148-150.
    [24]关琦,柯淑琴.采用两段溶出工艺提高氧化铝质量和生产率[J].世界有色金属,1999(10):22-24.
    [25]范晓慧,姜涛,邱冠周等.铝土矿焙烧-碱浸脱硅新工艺[J].矿冶工程,2002,22(3):83-85.
    [26]张江娟,邓佐国,徐廷华.赤泥酸浸的试验研究[J].轻金属,2005(2):13-15.
    [27]沈王庆,薛茹君,李国琴.溶出条件对煤系高岭土脱硅率的影响[J].中国非金属矿工业导刊,2005(3):20.
    [28]朱海军.从粗铜渣中提取铜、铅、锑试验研究[J].有色矿冶,2005,21(3):29.
    [29]孙凤芹.难选低品位铜镍矿细菌浸出的研究[J].矿冶工程,2000,9(2):58-59.
    [30]德瓦西亚P著,陈谦译.细菌生长条件和细菌吸附在氧化铁硫杆菌生物浸出黄铜矿中的作用[J].国外金属矿选矿,1999(2):28-30.
    [31]Carrarza F. Silver catalyzed IBES process application to a Spanish copper-zinc sulphide concentrate[J].Hydrometallurgy,1997 (44):29-42.
    [32]Ballester A. The use of catalytic ions bioleaching[J].Hydrometallurgy,1992,29:145-160.
    [33]丘康奎.制取锌产品溶液浸出流程的改造[J].有色金属,2000(4):15-16.
    [34]蓝德均,张旭,沈庆峰.锌湿法冶金厂产高钴渣处理新方法研究[J].四川有色金属,2002(4):25-26.
    [35]付运康.硫酸浸出锌浮渣制取高纯氧化锌[J].湿法冶金,1996(2):51-52.
    [36]刘红卫,蔡江松,王红军等.低品位氧化锌矿湿法冶金新工艺研究[J].有色金属(冶炼部分)2005(5):29-30.
    [37]王凤琴.国内外氧化锌矿处理方法[J].有色矿冶,1994(1):311.
    [38]郎家重.国外锌冶炼工艺发展状况[J].有色矿冶,1999(4):31.
    [39]巫汉泉.两段吸附在堆浸工艺中的应用[J].黄金,2003,24(1):36-38.
    [40]刘爱勤.冶炼含砷金精矿产生的废液处理工艺探讨[J].山东环境,2002(110):45.
    [41]李卫锋,王光忠,翟爱平等.湿法氯化提金中废水少排新工艺的应用研究[J].黄金,2003(2):45-48.
    [42]李卫锋.黄金矿山实用技术荟萃[M].沈阳:东北工学院出版社,1993:56.
    [43]王育慷.超声波原理与现代应用探讨[J].贵州大学学报(自然科学版),2005,22(3):287-290.
    [44]王建立,何静华,王庆伟.超声波在一水硬铝石型铝土矿溶出过程中的应用研究[J].轻金属,2003(7):16.
    [45]冯若,李化茂编.声化学及其应用[M].合肥:安徽科学技术出版社,1992:95-105.
    [46]郭志超,王静康,李鸿等.超声波对结晶过程部分热力学和动力学性质的影响[J].河北化工,2003(2):1.
    [47]Suslick K S, Hyeon T, Fang M, et.al. Sonochemical Synthesis of Nanostructured Catalysts[J].Mater. Sci. Eng.,1995,204 (1-2):186-192.
    [48]李延盛,尹其光.超声化学[M].北京:科学出版社,1995:45.
    [49]孙家寿,罗惠华,齐振龙.超声波作用下FeCl3浸出硫化铜精矿的研究[J].湿法冶金,1999(1):22-24.
    [50]李俊.超声波对浸出过程的影响[J].云南冶金,2001,30(2):29.
    [51]Sukla L B, Swamy K M, Narayana K L, et al. Bioleaching of Sukinda Laterite Using Ultrasonics[J].Hydrometallurgy,1995,37 (3):387-391.
    [52]Swamy K M, Sukla L B, Narayana K L, et al. Use of Ultrasound in Microbial Leaching of Nickel from Laterites[J].Ultrasonics Sonochemistry,1995,2 (1):5-9.
    [53]Sayan E, Bayramoglu M. Statistical Modeling and Optimization of Ultrasonic-assited Sulfuric Acid Leaching of TiO2 from Red Mud [J].Hydrometallurgy,2004,71 (3-4):397-401.
    [54]张通,张志全,张冬艳等.硫化铜矿超声波预处理提高细菌浸铜浸出率[J].过程工程学报,2001,1(3):316-317.
    [55]孙家寿.声化学效应在矿物化学处理中的应用[J].化工生产与技术,1998(3):12-14.
    [56]Mason T J. Advances in Sonochemistry[M].Greenwicth:Jai Press Ltd.,1990:89.
    [57]应学福.超声学[M].北京:科学出版社,1990:131-136.
    [58]克洛福德著,杜连耀等译.超声工程[M].北京:科学出版社,1959:181-229.
    [59]秦炜,原永辉,戴猷元.超声场对化工分离过程的强化[J].化工进展,1995(1):1-5.
    [60]Slaczka A S. Effect of Ultrasound on Ammonium Leaching of Zinc from Galmei Ore [J].Ultrasonics Sonochemistry,1986,24 (1):53-55.
    [61]范兴祥,彭金辉,张力波等.超声波强化锌浮渣浸出的研究[J].昆明理工大学学报(理工版),2003,28(1):9-11.
    [62]范兴祥,彭金辉,张利波等.超声波强化草酸浸出氧化锌精矿[J].有色金属,2003,55(1):52-53.
    [63]陈玉明,张培科,张丽珠等.金精矿超声波强化硝酸预氧化工艺研究[J].黄金,2004,25(11):39.
    [64]袁明亮,邱冠周,王淀佐.细粒嵌布锰银矿浸取中的超声强化作用[J].过程工程学 报,2002,2(1):23-24.
    [65]沈耀亚,赵德智,许凤军.功率超声在化工领域的应用现状和发展趋势措施[J].现代化工,2000,20(10):14-18.
    [66]袁明亮,赵国魂,邱冠周.砷金矿与锰银矿同时浸出中的超声强化作用[J].过程工程学报,2003,3(5):411.
    [67]符剑刚,钟宏,黄永平等.Mn3+/Mn2+间接电氧化法分解辉钼矿[J].中南大学学报(自然科学版,2004,35(5):800-801.
    [68]唐淑贞,张荣良,丘克强.超声波强化HCl-NaCl浸出高铅锑吹渣[J].过程工程学报,2006,6(2):210-213.
    [69]刘金刚,刘浏,王新华.超声波在钢铁冶金中的应用[J].铁合金,2006(1):31-34.
    [70]Hatanaka S,Taki T, Kuwabara M, et al. Effect of process parameters on ultrasonic separation of dispersed particles in liquid[J] Jpn J Appl Phys,1999,138:3096-3100.
    [71]Kobayashi M,Kamata C, Ito K. Cold mold experiments of removal from molten by an irradiation of ultrasonic waves[J].ISIJ International,1997,37(1):9-15.
    [72]Hatanaka S, Kuwababa M, Asai S. Design of ultrasonic field in liquid metal process[J].Testu-to-Hagane,2000 (9):55-62.
    [73]苑文颖,丁庭华,赵淑霞等.北京市工业固体有害废物浸出毒性研究[J].环境工程,2001,19(6):50-52.
    [74]余萍,林健弟.可吸入颗粒物中阴离子浸出实验[J].环境与开发,2000,15(4):52-53.
    [75]Zhao Y Y, BaoCG, Feng R, et.al.Ultrasonics[J].Sonochemistry,1995,2 (2):99.
    [76]Pollet B. The effect of ultrasonic frequency and intensity upon electrode kinetic parameters for the Ag(S2O3)23-/Ag redox couple[J] Journal of Applied Electrochemistry,1999,29(12): 1359-1366.
    [77]Park S H. Electrochemical properties of layered LiNi2Mn2O2 cathode material synthesised by ultrasonic spray pyrolysis[J].Journal of Applied Electrochemistry,2003,33 (12):1169-1173.
    [78]甘雪萍,戴曦,张传福.超声空化及其在电化学中的应用[J].四川有色金属,2001(3):24-26.
    [79]梁斌,杨锐.大蒜油提取方法及其研究进展[J].固原师专学报(自然科学版),2002,23(3):28-30.
    [80]肖文军,龚志华,肖力争等.超声波技术在绿茶浸提中的应用研究[J].天然产物研究与开发,2006(18):130-133
    [81]肖文军,唐和平,龚志华等.茶叶超声波辅助浸提研究[J].茶叶科学,2005,26(1):54-58.
    [82]王贞平,徐国财,杜虹.超声技术在制备金属纳米粒子中的应用[J].金属功能材料,2005, 12(6):36-39.
    [83]陈维平,叶国杰,李元元.超声波在纳米金属粉末制备中的应用与发展[J].新技术新工艺,2005(8):52-54.
    [84]佟志芳.广西贵港高铁铝土矿综合利用研究[D].博士学位论文,辽宁,沈阳,东北大学,2005:90.
    [85]毕诗文,于海燕.氧化铝生产工艺[M].北京:化学工业出版社,2005:254.
    [86]阿格拉诺夫斯基著A A,沈阳铝镁设计院氧化铝专业组译.氧化铝生产手册[M].北京:冶金工业出版社,1974:181.
    [87]山东铝厂研究所.氧化铝生产试验研究分析规程[M].淄博:山东铝厂,1997:310.
    [88]王丹.Er掺杂12CaO·7Al203的制备及关学性质研究[D].硕士学位论文,吉林,长春,东北师范大学,2007:1-2.
    [89]Matsuishi S, Miyakawa M, Kim S W, et.al. Fabrication of room temperature-stable 12CaO·7Al203 electride:a review[J].J Mater Sci:Mater Electron 2007,18:s5-s14.
    [90]Hayashi K, Hosono H, Hirano M. Active anion manipulation for emergence of active functions in the nanoporous crystal 12CaO·7Al203:a case study of abundant element strategy[J].J Mater Sci.,2007,42:1872-1883.
    [91]天津大学无机化学教研室.无机化学[M].北京:高等教育出版社,2002:33.
    [92]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1994:260-298.
    [93]Grzymek A.D, Grzymek J, Konik Z, et.al. The new way of alumina lixiviation from sinters containing 12CaO·7Al2O3 in J.Grzymek's method[C]. Light metals.1988:129-131.
    [94]高爱梅.NOx储存-还原催化剂C12A7/M (M=K, Na, Mg)和Ba-Zr-O的性能及机理研究[D].博士学位论文,安徽,合肥,中国科学技术大学,2006:23-25.
    [95]王丹.Er掺杂12CaO·7Al203的制备及关学性质研究[D].硕士学位论文,吉林,长春,东北师范大学,2007:21.
    [96]Grzymek A.D, Grzymek J, Konik Z, et.al. The new way of alumina lixiviation from sinters containing 12CaO·7Al2O3 in J.Grzymek's method[J].Light metals,1988:132.
    [97]Bartl H, Scheller T. Zur Struktur des 12CaO·7Al2O3[J].N. Jb. Miner. Mh.,1970,35: 547-552.
    [98]Imlach J A, Glasser L S D, Glasser F P, et.al.Cement Cone. [J].Res.,1971,1:57-61.
    [99]Mizukami F, Chatterjee A, Nishioka M. A periodic first principle study to design microporous crystal 12MO,7A12O3 for selective and active O- radicals encaging[J].Chemical Physics Letters 2004,390:335-339.
    [100]Peter V, Sushko, Alexander L, et.al. Localisation assisted by the lattice relaxation and the optical absorption of extra-framework electrons in 12CaO·7Al2O3[J].Materials Science and Engineering,2005, C25:722-726.
    [101]Kim S W, Hosono H, Miyakawa M, et.al. Thin film and bulk fabrication of room-temperature-stable electride C12A7:e- utilizing reduced amorphous 12CaO·7Al2O3(C12A7)[J].Journal of Non-Crystalline Solids,2008,354:2772-2776.
    [102]李北星,峰修吉,闵新民.铝酸盐水泥矿物结构与性能的量子化学计算研究[J].计算物理,1998(6):758.
    [103]顾秉林,王喜坤.固体物理学[M].北京:清华大学出版社,1989:201-202.
    [104]杨丽娟.锂离子电池正极材料尖晶石LiMn2O4合成与掺杂研究[D].硕士学位论文,北京,北京工业大学,2006:51.
    [105]闫景辉,李中田,曹杰等.水热微乳液法合成BaLiF3:Er3+纳米微粒及表征[J].中国稀土学报,2007,25(3):285.
    [106]潘孝军,张振兴,王涛等.溅射制备纳米晶GaN:Er薄膜的室温发光特性[J].物理学报,2008,57(6):3787.
    [107]贾元智,魏尊杰,马明臻等.FeCoNbSiBCu大块非晶和金的热稳定性与晶化过程研究[J].材料工程,2008(6):35.
    [108]李秋玉,李中田,祁芸芸等.NaMgF3:Ce3+纳米粒子的制备与光谱性质研究[J].长春理工大学学报(自然科学版),2008,31(2):70.
    [109]冯秋元.Ni-Al2O3纳米复合镀层制备及性能研究[D].博士学位论文,辽宁,大连,大连理工大学,2008:41.
    [110]刘红日.BiFeO3薄膜的溶胶凝胶方法的制备、掺杂及电磁性质的研究[D].博士学位论文,湖北,武汉,华中科技大学,2006:47.
    [111]张鼐,张大江,张水昌等.在-170℃盐溶液阴离子拉曼特征及浓度定量分析[J].中国科学D辑,2005,35(12):1166-1172.
    [112]李淑玲.二氧化碳—水体系的拉曼光谱研究[J].岩矿测试,1998,17(3):178-179.
    [113]王亚静,翟玉春,田彦文等.铝酸钠和含硅铝酸钠溶液的红外光谱和拉曼光谱[J].中国有色金属学报,2003,13(1):271-274.
    [114]李敏,郑海飞.常温高压下水的拉曼谱峰标定压力的研究[J].高压物理学报,2004,18(4):374-376.
    [115]李睿华,蒋展鹏.阴离子对水的羟基伸缩振动拉曼光谱的影响[J].物理化学学报,2007,23(1):103-106.
    [116]邵济安,臧启家,韩庆军等.橄榄石流体包裹体中分子水的发现[J].岩石学报,2000,16(1):127-131.
    [117]陈勇,周瑶琪,章大港.几种盐水溶液拉曼工作曲线的绘制[J].光散射学报,2008,14(4):217-222.
    [118]葛毅.高能量密度存储材料LiNixMn(2-x) O4的制备及X射线表征[D].硕士,长春,吉林大学,2004:73.
    [119]葛毅.高能量密度存储材料LiNixMn(2-x) O4的制备及X射线表征[D].硕士,长春,吉林大学,2004:66.
    [120]朱自莹,顾仁傲,陆天虹.拉曼光谱在化学中的应用[M].沈阳:东北大学出版社,1998:13.
    [121]候怀宇,尤静林,吴永全等.碱金属碳酸盐的拉曼光谱研究[J].光散射学报,2001,13(3):162-166.
    [122]赵之平,陈澄华.超声传质机理[J].化工设计,1997(6):30-33.
    [123]毕诗文,于海燕.氧化铝生产工艺[M].北京:化学工业出版社,2005:260.
    [124]毕诗文,于海燕.氧化铝生产工艺[M].北京:化学工业出版社,2006:252.
    [125]陈滨,李小斌,徐华军等.氧化铝熟料溶出过程二次反应的热力学讨论[J].北京化工大学学报,2007,34(2):189-192.
    [126]刘桂华,刘云峰,李小斌等.拜耳法溶出过程中降低赤泥碱耗[J].中国有色金属学报,2006,16(3):355-359.
    [127]毕诗文,于海燕.氧化铝生产工艺[M].北京:化学工业出版社,2006:254.
    [128]刘桂华,张亚莉,彭志宏等.钠硅渣中的氧化铝回收工艺[J].中国有色金属学报,2004,14(3):499-503.
    [129]赵喆,孙培梅,薛冰等.石灰石烧结法从粉煤灰提取氧化铝的研究[J].金属材料与冶金工程,2008,36(2):16-18.
    [130]薛冰,孙培梅,童军武等.从粉煤灰中提取氧化铝烧结过程铝硅反应行为的研究[J].湖南有色金属,2008,24(3):9-13.
    [131]谢稼苹.烧结法生产氧化铝炉料中a'-2CaO·SiO2的形成条件及其对熟料质量的影响[J].轻金属,1997(5):14-18.
    [132]丘泰球,杨日福,丁彩梅.双频超声交替强化超临界流体萃取装置的设计与应用[J].应用声学,2006,25(1):41.
    [133]华一新.冶金过程动力学[M].北京:冶金工业出版社,2004:191-193.
    [134]莫鼎成.冶金动力学[M].长沙:中南工业大学出版社,1987:93.
    [135]肖兴国.冶金反应工程学[M].沈阳:东北工学院出版社,1989:156-158.
    [136]Sohn H Y, Wadsworth M E著,郑蒂基译.提取冶金速率方程[M].北京:冶金工业出版社,1984:35-50.
    [137]华一新.冶金过程动力学导论[M].北京:冶金工业出版社,2004:30-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700