人IFN-α基因修饰NK细胞系的建立以及人IFN-α/人IL-15基因修饰NK细胞抗肿瘤功能机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     恶性肿瘤严重危害人类健康,其死亡人数约占世界总死亡人数的四分之一,且死亡率常年居高不下。目前用于恶性肿瘤治疗的手段主要包括手术、化疗、放疗、内分泌治疗和射频消融治疗等,由于缺乏特异性和靶向性,在杀伤肿瘤细胞的同时,机体正常细胞的功能也遭到破坏,从而导致患者免疫功能受损,生存质量下降。近来,随着免疫学、分子生物学和细胞生物学的交融和发展,以机体免疫细胞为主体的细胞免疫治疗,以其强大的抗肿瘤作用和较低的毒副作用,逐步成为肿瘤治疗研究的新方向。
     自然杀伤(Natural killer,NK)细胞作为机体天然免疫系统中不可或缺的组成部分,是机体抵抗肿瘤和病毒感染细胞的第一道天然防线,也是连接天然免疫和获得性免疫之间的桥梁。基于NK细胞的抗肿瘤免疫治疗以其独特的抗肿瘤效果引起人们的高度重视,现己进入临床试验阶段,主要包括白体NK细胞的活化,同种异体NK细胞的输注,体外扩增NK细胞的输注以及NK细胞系的过继转输等。由于体外NK细胞的纯化和大规模培养仍具有较高的技术难度,NK细胞系以其易于体外扩增和大规模培养、具有较强的细胞毒作用等优点,克服了自体以及同种异体NK细胞治疗的局限性,具有广阔的应用前景。NK细胞系在体外生长状态良好,能够通过基因修饰等手段增强抗肿瘤活性。
     在众多活化NK细胞的细胞因子中,IFN-α占有非常重要的地位。IFN-α属于I型干扰素家族,广泛应用于造血系统肿瘤和某些实体肿瘤的治疗中,并且能够通过下调癌基因的表达,诱导肿瘤抑制基因进而影响肿瘤细胞的功能,还能够促进免疫细胞,比如T细胞,DC,NK细胞的分化和活化,介导IFN诱导的抗肿瘤免疫活性。IFN-α现已被广泛应用于DC的基因修饰,使其适应肿瘤过继免疫治疗的要求
     白细胞介素-15(IL-15)是由Grabstein等于1994年在猴肾表皮细胞系cv21/EBVA的培养上清中发现,早期被定义为T细胞生长因子,在自体内环境的稳定,调节天然免疫和获得性免疫方面发挥多重作用。IL-15与IL-2在功能上有许多相似之处,均可以诱导CD34+的细胞分化为NK细胞,但IL-15在NK细胞的分化和功能上发挥了更为重要的作用,实验证实,在IL-15Rα-1-和IL-15-/-小鼠中,NK细胞无法正常发育、成熟并发挥功能。
     本研究选用了两种对NK细胞发育、分化、功能等起关键作用的细胞因子IL-15和IFN-α,对NK细胞系NKL进行基因修饰。建立了hIFN-a基因修饰的NKL细胞,证实修饰后的细胞能够有效抑制肝癌的生长,并探讨了作用机制。前期实验中建立了hIL-15基因修饰的NKL细胞系,并证实了其在体外对肝癌细胞的杀伤效果,本研究进一步确证了hIL-15修饰后NKL细胞在体内对肝癌的治疗效果,并初步探讨了其作用机制。同时研究了hIL-15基因修饰后的NKL细胞对白血病的抑制效果和作用机制。结果证实,修饰后的NKL细胞具有更为显著地抗肿瘤作用,更加符合肿瘤过继免疫治疗的要求。
     研究方法
     首先,我们建立了hIFN-a基因修饰的NKL细胞,并研究其对肝癌的抑制作用和杀伤机制。通过PT-PCR方法从外周血PBMC中扩增hIFN-α1基因全长,插入pSecTagB真核表达载体中;通过电穿孔技术将hIFN-a基因转染入NKL细胞中;通过RT-PCR方法检测hIFN-a基因转染后,NKL细胞IFN-a的mRNA水平,和肝癌细胞上凋亡相关分子Fas、Mcl-1、Bcl-xl的表达水平;通过RNAi技术,下调HepG2细胞上Fas的表达水平;通过Real-time PCR检测NK细胞杀伤相关分子的mRNA水平;通过流式细胞术,检测NK细胞杀伤相关分子和HepG2细胞Fas的蛋白水平;通过MTT法检测NK细胞对肝癌细胞系以及原代肝癌细胞的杀伤;通过抗体阻断实验,检测IFN-γ和TNF-α在NKL-IFNa细胞对HepG2细胞杀伤过程中的作用;利用皮下注射和腹腔注射两种不同荷瘤方式建立裸鼠荷瘤模型,通过检测荷瘤小鼠瘤体积和小鼠生存期来验证NKL-IFNα细胞的治疗效果。
     其次,我们验证了hIL-15基因修饰的NKL细胞对肝癌的治疗作用,并探讨其作用机制。利用皮下注射和腹腔注射两种不同荷瘤方式建立裸鼠荷瘤模型,通过检测荷瘤小鼠脾重、肝重、瘤重、脾脏淋巴细胞数和小鼠生存期来验证NKL-IL15细胞的治疗效果;通过ELISA检测NK细胞上清中IFN-y和TNF-a的分泌水平;通过流式细胞术检测NK细胞杀伤相关分子NKp80、颗粒酶B、Perforin、TRAIL和HepG2细胞上NKG2D配体的表达水平;通过细胞计数法检测与NKL-IL15细胞共培养后,HepG2细胞的增殖能力;通过MTT法检测NK细胞对肝癌细胞的杀伤活性;通过抗体阻断实验,检测NKG2D、IFN-y和TNF-a在NKL-IL15细胞对HepG2细胞杀伤过程中的作用。
     最后,我们探讨了hIL-15基因修饰的NKL细胞对白血病的治疗作用。通过MTT法检测NK细胞对白血病细胞系以及原代白血病细胞的杀伤活性;通过ELISA检测NK细胞上清中IFN-y和TNF-a的分泌水平;通过流式细胞术检测NK细胞杀伤相关分子NKp80、颗粒酶B、Perforin和K562细胞上NKG2D配体的表达水平;通过通过细胞计数法检测与NKL-IL15细胞共培养后,K562细胞的增殖能力;通过抗体阻断实验,检测NKG2D、IFN-y和TNF-a在NKL-IL15细胞对K562细胞杀伤过程中的作用;利用皮下注射和腹腔注射两种不同荷瘤方式建立NOD/SCID鼠荷瘤模型,通过检测荷瘤小鼠瘤体积、瘤重和小鼠生存期来验证NKL-IL15细胞的治疗效果。
     结果
     结果一:hIFN-a基因修饰NKL细胞系的建立及其抗肝癌功能与机制研究
     1.构建hIFN-a基因修饰的NKL细胞系我们已经成功建立了hIFN-a基因修饰的NKL细胞系,NKL-IFNa细胞能够分泌大量的IFN-α。
     2IFN-a基因修饰能够增强NKL细胞对HCC的杀伤活性NKL-IFNa细胞对肝癌细胞系HepG2、H7402细胞和原代肝癌细胞的杀伤活性显著增强。特别是,IFN-α基因修饰亦能增强NKL细胞对HBV+肝癌肿瘤细胞HepG2.2.15细胞的杀伤效果。
     3.IFN-α基因修饰增强NKL细胞的活性hIFN-α基因修饰能够上调NKL细胞中杀伤相关分子TNF-α、IFN-γ、perforin、Granzyme B和FasL的表达,从而增强NKL细胞对HCC的细胞毒性。
     4.NKL-IFNa细胞诱导的Fas表达能够增强对HCC的杀伤敏感性HCC表面Fas的表达在NKL-IFNa细胞介导的细胞毒性反应中起到主导作用。阻断HepG2细胞表面Fas的表达,会使NKL-IFNa细胞所介导的杀伤效果显著下降。
     5NKL-IFNa细胞通过分泌TNF-a和IFN-y诱导HCC细胞上Fas的表达阻断TNF-α和IFN-γ能够降低HepG2表面Fas的表达,进而抑制了NK细胞介导的细胞毒性作用。说明,NKL-IFNa细胞对HCC的杀伤是Fas依赖的,TNF-α和IFN-γ介导的。
     6.IFN-α基因修饰能够增强NKL细胞在小鼠体内抑制肝癌的效果NKL-IFNα细胞能够在腹腔荷瘤和皮下荷瘤小鼠模型中,抑制小鼠体内肝癌细胞的生长,延长小鼠的生存期。
     结果二:hIL-15基因修饰的NKL细胞系在小鼠体内抗HCC作用及机制研究
     1.在小鼠荷瘤模型中,IL-15基因修饰的NKL细胞具有显著抗HCC作用NKL-IL15细胞治疗能够有效抑制腹腔和皮下荷瘤两种荷瘤小鼠模型中肝癌细胞在荷瘤小鼠体内的生长,延长小鼠的生存期,发挥良好的治疗效果。
     2.IL-15基因修饰能够增强NKL细胞对HCC细胞的应答IL-15基因修饰后的NKL细胞,对HepG2细胞的刺激更加敏感,能够上调杀伤相关分子的表达,从而增强对HCC的杀伤效果。
     3.IL-15基因修饰的NKL细胞能够抑制HCC细胞的增殖IL-15基因修饰的NKL细胞能够通过分泌细胞因子,抑制HCC的增殖,增强抗肿瘤功效。
     4.IL-15基因修饰的NKL细胞通过分泌TNF-α和IFN-γ上调HCC细胞上NKG2D配体的表达NKL-IL15细胞通过分泌TNF-a和IFN-y上调HCC细胞上NKG2D配体的表达,进而增强HCC对NK细胞的杀伤敏感性。
     5.NKL-IL15细胞杀伤功能的增强依赖于NKG2D的识别和TNF-α的分泌NKG2D的识别和TNF-α的分泌,在NKL-IL15介导的HCC杀伤过程中起到非常重要的作用。
     结果三:hIL-15基因修饰NKL细胞的抗白血病功能及机制研究
     1.hIL-15基因修饰能够增强NKL细胞对白血病细胞的杀伤功能hIL-15基因修饰能够增强NKL细胞对白血病细胞系和原代白血病细胞的杀伤功能。
     2.IL-15基因修饰的NKL细胞能够抑制白血病细胞的增殖,诱导白血病细胞上NKG2D配体的表达IL-15基因修饰的NKL细胞能够通过分泌细胞因子抑制白血病细胞的增殖,同时诱导白血病细胞表面NKG2D配体的表达,促进了NKL细胞对白血病细胞的杀伤。
     3.IL-15基因修饰促进了NKL细胞的活化IL-15基因修饰能够增强NKL细胞杀伤相关受体和分子的表达,进而增强NKL细胞对白血病细胞的杀伤功能。
     4.IL-15基因修饰NKL细胞杀伤功能的增强依赖于NKG2D和IFN-y NKG2D的识别和IFN-y的分泌,在NKL-IL15介导的白血病细胞杀伤过程中起到非常重要的作用。
     5.IL-15基因修饰能够增强NKL细胞在小鼠体内的抗肿瘤效果NKL-IL15细胞能够抑制小鼠体内白血病细胞的生长,延长小鼠的生存期。
     6.NKL-IL15细胞能够活化hPBMC,增强其对白血病细胞的杀伤NKL-IL15细胞具有对hPBMC的活化作用。
     结论
     1.构建hIFN-α基因修饰NKL细胞,在体内和体外实验中均证实其对肝癌的抑制作用,且NKL-IFNa细胞通过分泌TNF-α和IFN-y诱导HCC细胞上Fas的表达,依赖Fas/FasL途径发挥细胞毒作用。
     2.验证前期构建的hIL-15基因修饰的NKL细胞,在小鼠体内对肝癌的抑制作用,其杀伤作用依赖于NKG2D的识别和’TNF-α的分泌。
     3.探讨hIL-15基因修饰的NKL细胞对白血病的治疗作用,初步研究其杀伤机制是依赖于NKG2D和IFN-γ。
     基因修饰的NK细胞系,可以通过细胞因子IL-15和IFN-α的修饰,增强细胞毒作用,使其适用于肿瘤的过继免疫治疗。基因修饰NK细胞系的应用,能够为疾病治疗带来新的思路。
Object
     As a frequently occurring disease, malignant tumors have a great threat to human health. The death of malignant tumors accounts for about1/4of total deaths in the world, and shows an increasing trend in death rate. There are many treatment methods for malignant tumors, including surgery, chemotherapy, radiotherapy, endocrine therapy and radiofrequencyablation therapy, but most of them are lack of specificity and targeting, as they could not only kill tumor cells but also destroy normal cells, leading to a serious decline in immune function of tumor patients. In recent years, immunotherapy based the cutting-edge science of immunology, cell biology and molecular biology, has become the latest anti-cancer biological science and technology in the21st century. Regarding immune effector cells as main body's, immunotherapy is attempting to stimulate the immune system to reject and destroy tumors.
     Natural killer (NK) cells are a key component of the innate immune system, and characterized by a strong cytolytic activity against various types of tumor cells and virus-infected cells via non-major histocompatibility complex (MHC)-restricted and non-T-cell receptor (TCR)-restricted mechanisms. NK cell-based immunotherapy has been in development, and can potentially be implemented through the administration of cytokines or immunomodulatory drugs to activate endogenous NK cells, or the adoptive transfer of induced alloreactive NK cells developed from allogeneic stem cells, ex vivo expanded autologous NK cells or donor-derived allogenic NK cells. By comparison, there are some limitations as to the efficacy of the reinfusion of ex vivo expanded autologous or allogeneic NK cells.Clinical use of human permanent NK cell lines would overcome some of the limitations, which are more cytotoxic and can be easily expanded and maintained invitro without contamination by other lymphocytes.
     IFN-a, a pleiotropic type I IFN (Interferon), is one of the most important cytokines which activates NK cells. IFN-a is extensively used in the treatment of patients with hematological malignancies or certain solid tumors, such as melanoma and renal carcinoma. IFN-a not only affects tumor cell function, for example by downregulating oncogene expression and inducing tumor suppressor genes, but can also promote the differentiation and activity of host immune cells, including T cells, dendritic cells and NK cells, resulting in IFN-a-induced antitumor immunity. IFN-a has also been widely used in the gene-modification of DCs (Dendritic cells) for cancer immunotherapy.
     IL-15is the major physiologic growth factor responsible for NK cell ontogeny; additionally, it is a potent regulator for NK cell proliferation, survival and cytolytic activity, and there are no functional NK cells in IL-15Rα-/-and IL-15-/-mice.
     On this basis, we used electroporation technology to genetically modify NKL cells with the human IFN-a gene and human IL-15gene, and explored the potential of these gene-modified NKL cells for adaptive immunotherapy.
     Methods
     Firstly, we established human IFN-a gene-modified NKL cells and explored the potential of NKL-IFNa cells for HCC adaptive immunotherapy. Electroporation, RT-PCR, Flow cytometry, ELISA, MTT, RNAi methods were performed for gene-modification, molecular expression, cytokines secretion, cytotoxicity assays and mechanism discussion. Different therapeutic schedules were investigated in a xenograft model of HCC in nude mice, to assess the application of gene-modified NKL cells in adoptive cellular immunotherapy.
     Secondly, to further assess the applicability of NKL-IL15cells in adoptive cellular immunotherapy, in present study, we further investigated their natural cytotoxicity against HCC in vivo. HCC xenograft nude mice were established by intraperitoneal or subcutaneous injection with HepG2cells, and then treated with irradiated NKL cells. Flow cytometry, ELISA, cell counting and MTT methods were performed for molecular expression, cell proliferation and cytotoxicity assays.
     At last, to further confirm the applicability of NKL-IL15cells in leukemia, we evaluated the efficiency of NKL-IL15cells against leukemia. Leukemia xenograft NOD/SCID mice were established by intraperitoneal or subcutaneous injection with K562cells, and then treated with irradiated NK cells. Flow cytometry, ELISA, cell counting and MTT methods were performed for molecular expression, cell proliferation and cytotoxicity assays.
     Results
     Part1:hIFN-alpha gene modification augments human natural killer cell line anti-human hepatocellular carcinoma function
     1.Establishment of the hIFN-a gene-modified NKL cell line We had successfully established a hIFN-α gene-modified NKL cell line.
     2.IFN-a gene-modification enhances NKL cell-mediated natural cytotoxicity against human hepatocarcinoma cells The enhanced natural cytotoxicity of NKL-INFa cells against human HCC cells is mediated directly by IFN-a acting on the NKL cells, rather than IFN-a acting on the tumor cells.
     3.IFN-a gene-modification increases the activation of NKL cells hlFN-a gene modification altered the expression of cytotoxicity-associated genes, which in turn enhanced the natural cytotoxicity of NKL cells against HCC cells.
     4.Elevated Fas on HCC cells contributes to the augmented sensitivity of HCC cells to NKL-IFNa-mediated cytolysis Fas expressed on HCC cells plays a critical role in NKL-IFNa cell-mediated cytolysis.
     5.TNF-a and IFN-y secreted by NKL-IFNa cells induce the expression of Fas on HCC cells Cytokines produced by IFN-a gene-modified NKL cells, such as TNF-a and IFN-y, are also involved in NKL-IFNa cell-mediated cytolysis, possibly by inducing increased expression of Fas on the target cells.
     6.IFN-a gene-modified NKL cells exert an augmented anti-tumor effect in a xenograft model of HCC in nude mice Treatment with NKL-IFNa cells is effective in suppressing the tumor growth and prolonging the survival time of mice bearing HCC xenograft tumors.
     Part2. hIL-15gene modified human natural killer cells exerted augmented anti-human hepatocellular carcinoma effect in vivo
     1. Immunotherapy of IL-15gene-modified NKL cells in HCC xenograft mouse models The treatment of NKL-IL15cells were effective in suppressing tumor growth and prolonging the survival time of HCC bearing mice in different tumor-bearing models.
     2. IL-15gene-modification promoted the activation of NKL cells IL-15gene-modified NKL cells showed more sensitive to HepG2cells stimulation, companied with the up-regulation of cytolysis-related molecules, thereby augmenting NKL cell cytotoxicity activity against HCC cells.
     3. The products of IL-15gene-modified NKL cells decreased the proliferation of HCC cells IL-15gene-modified NKL cells could decrease the proliferation of HCC cells, and some cytokines produced by NKL-IL15might be involved in this process.
     4. The expression of NKG2D ligands in HCC cells were up-regulated by TNF-a and IFN-y produced by IL-15gene-modified NKL cells TNF-a and IFN-y secreted by NKL-IL15cells promoted the expression of NKG2D ligands, which would increase the sensitivity of HCC to NK cell cytolysis.
     5. The enhanced cytotoxicity of NKL-IL15cells was mainly dependent on NKG2D recognition and TNF-a secretion NKG2D recognition and TNF-a production were important for NKL-IL15cells-mediated cytolysis against HepG2cells. Part3. hIL-15gene modified human natural killer cells (NKL-IL15) anti-human leukemia function1. hIL-15gene-modification enhanced NKL cell-mediated natural cytotoxicity against human leukemia cells hIL-15gene modification of NKL cells could enhance the natural cytotoxicity against human leukemia cells.2. The products of IL-15gene-modified NKL cells decreased the proliferation of leukemia cells and induced the expression of NKG2D ligands in leukemia cells IL-15gene-modified NKL cells decreased the proliferation and up-regulated the expression of NKG2D ligands in leukemia cells by secreting some certain factors, which promoted the natural cytotoxicity of NKL cells against human leukemia cells.
     3. IL-15gene-modification mediated the enhancement of NKL cell cytotoxicity was dependent on NKG2D and IFN-γ The high cytotoxicity mediated by NKL-IL15cells against K562cells depended on NKG2D and IFN-γ.
     4. IL-15gene-modification improved the antitumor effects of NK cells in vivo The treatment of NKL-IL15cells was effective in suppressing tumor growth and prolong the survival time of leukemia-bearing mice.
     5. NKL-IL15cells activated hPBMCs and enhanced the natural cytotoxicity against leukemia IL-15gene-modified NK cells could display active effects on hPBMCs cells.
     Conclusion
     Firstly, IFN-α gene-modified NKL cells could be suitable for the development of cell-based immunotherapeutic strategies for hepatocellular carcinoma.
     Secondly, hIL-15gene-modified human natural killer cells exerted augmented anti-human hepatocellular carcinoma and anti-leukemia effect in vivo. The results suggested that hIL-15gene-modified NKL cells could be a promising new candidate for adoptive immunotherapy in the future.
     We could gene-modified NK cell lines with cytokines which could induce the cytotoxicity effect to be suitable for the use of adoptive immunotherapy. The use of gene-modified NK cell lines may represent a novel and potential immunotherapeutic strategy in the future.
引文
1. Rosenberg EB, McCoy JL, Green SS, et al. Destruction of human lymphoid tissue culture cell lines by human peripheral lymphocytes in 51Cr release cellular cytotoxicity assays. J Natl Cancer Inst.1974; 52:345-352.
    2. Herberman RB, Nunn ME, Lavrin DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer.1975; 16:216-229.
    3. Cooper MA, Fehniger TA, Caligiuri MA:The biology of human natural killer-cell subsets. Trends Immunol.2001; 22:633-640.
    4. Cooper MA, Fehniger TA, Fuchs A, et al. NK cell and DC interactions. Trends Immunol.2004; 25:47-52.
    5. Vivier E, Tomasello E, BaratinM, et al. Functions of natural killer cells. Nat Immunol.2008; 9:503-510.
    6. Terme M, Ullrich E, Delahaye NF, et al. Natural killer cell-directed therapies: moving from unexpected results to successful strategies. Nat I mmunol.2008; 9: 486-494.
    7. Lanier LL. Evolutionary struggles between NK cells and viruses. Nat Rev Immunol. 2008; 8 (4):259-268.
    8. Schwartzberg PL, Mueller KL, Qi H, et al. SLAM receptors and SAP influence lymphocyte interactions, development and function. Nat Rev Immunol.2009; 9: 39-46.
    9. Ljunggren HG, Malmberg KJ. Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol.2007; 7(5):329-339.
    10. Tawadros S,Jensen M,Sedlacek HH, et al.NK cell depletion diminish tumour-specific B cell responses.Immunol Lett.2004; 93:205-10.
    11. Cooper MA, Fehniger TA, Fuchs A, et al. NK cell and DC interactions. Trends Immunol.2004; 25(1):47-52.
    12. Moretta A. Natural killer cells and dendritic cells:rendezvous in abused tissues. Nat Rev Immunol.2002; 2:957-963.
    13. Raulet D. Interplay of natural killer cells and their receptors with the adaptive immune responses. Nat Immunol.2004; 5(10):996-1002.
    14. Zitvogel L. Dendritic and Natural killer cells cooperate in the control/switch of innate immunity. J Exp Med.2002; 195(3):9214.
    15. Moretta L, Ferlazz o G, Mingari MC, et al. Human natural killer cell function and their interactions with dendritic cells. Vaccin.2003; 21:38-42.
    16. Zhang R, Wei H, Li J, et al. Human NK cells positively regulate immune response ofy 8T cells to Mycobacterium tuberculosis (Mtb) stimulation by cell2to2cell contact. The American Ass ociation of Immunologists 90th Anniversary Meeting.2003; No. 1071.
    17. Lanier LL. Up on the tightrope:natural killer cell activation and inhibition. Nat Immunol.2008; 9(5):495-502.
    18. Farag SS, Fehniger TA, Ruggeri L, et al. Natural killer cell receptors:new biology and insights into the graft-versus-leukemia effect. Blood September.2002; 100:1935-1947.
    19. Farag SS, Fehniger TA, Becknell B, et al. New directions in natural killer cell-based immunotherapy of human cancer. Expnert Opin Biol Ther.2003,3:237-250.
    20. Jamieson AM, Diefenbach A, McMahon CW, et al. The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity.2002; 17(1): 19-29.
    21. Ogasawara K, Lanier LI. NKG2D in NK and T cell-mediated immunity. J Clin Immunol.2005; 25(6):534-540.
    22. Champsaur M, Lanier LL. Effects of NKG2D ligand expression on host immune responces. Immunol Rev.2010; 235:267-285.
    23. Billadeau DD, Upshaw JL, Schoon RA, et al. NKG2D-DAP10 triggers human NK cell-mediated killing via a Syk-independent regulatory pathway. Nat Immunol.2003; 4:557-564.
    24. Veillette A. NK cell regulation by SLAM family receptors and SAP-related adapters. Immunol Rev.2006; 214:22-34.
    25. Yokoyama WM. Inhibitory receptors signal activation. Immunity.2008; 29(4): 515-517.
    26. Kim HS, Das A, Gross CC, et al. Synergistic signals for natural cytotoxicity are required to overcome inhibition by c-Cbl ubiquitin ligase. Immunity.2010; 32(2): 175-186.
    27. Ljunggren HG, Karre K. In search of the "missing self":MHC molecules and NK cell recohnition. Immunol Today.1990; 11:237-244.
    28. Wu J, Song Y, Bakker AB, et al. An activating Immunoreceptor complex formed by NKG2D and DAP 10. Science.1999; 285:730-732.
    29. Gilfillan S, Ho EL, Cella M, et al. NKG2D recruits two distinct adapters to trigger NK cell activation and costimulation. Nat Immunol.2002; 3:1150-1155.
    30. Long EO. Versatile signaling through NKG2D. Nat Immunol.2002; 3:1119-1120.
    31. Trambas CM, Griffiths GM. Delivering the kiss of death. Nat Immun 2003; 4: 399-403.
    32. Haddad EK, Wu X, Hammer JA, et al. Defective granule exocytosis in Rab27a-deficient lymphocytes from Ashen mice. J Cell Biol.2001; 152:835-842.
    33. Smyth MJ, Thia KY, Cretney E, et al. Perforin is a major contributor to NK cell control of tumor metastasis. J Immunol.1999; 162:6658-6662.
    34. Pardo J, Balkow S, Anel A, et al. Granzymes are essential for natural killer cell-mediated and perf-facilitated tumor control. Eur J Immunol.2002; 32: 2881-2887.
    35. Browne KA, Blink E, Sutton VR, et al. Cytosolic delivery of granzyme B by bacterial toxins:evidence that endosomal disruption, in addition to transmembrane pore formation, is an important function of perforin. Mol Cell Biol.1999; 19: 8604-15.
    36. Shresta S, Heusel JW, Macivor DM, et al. Granzyme B plays a critical role in cytotoxic lymphocyte-induced apoptosis. Immunol Rev.1995; 146:211-21.
    37. Screpanti V, Wallin RP, Ljunggren HG, et al. A central role for death receptor-mediated apoptosis in the rejection of tumors by NK cells. J Immunol.2001; 167:2068-2073.
    38. Kashii Y, Giorda R, Herberman RB, et al. Constitutive expression and role of the TNF family ligands in apoptotic killing of tumor cells by human NK cells. J Immunol, 1999; 163:5358-5366.
    39. Wiley SR. Schooley K, Cmolak PJ, et al. Identification and characterization of a new member of the TNF family that induce apoptosis. Immunity.1995; 6:673-682.
    40. Kayagaki N, Yamaguchi N, Nakayama M, et al. Expression and function of TNF-related apoptosis-inducing ligand on murine activated NK cells. J Immunol. 1999; 163:1906-1913.
    41. Cretney E, Takeda K, Yagita H,et al. Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J Immunol. 2002; 168:1356-1361.
    42. Loza MJ, Zamai L, Azzoni L, et al. Expression of type 1 (interferon gamma) and type 2 (interleukin-13, interleukin-5) cytokines at distinct stage of natural killer cell differentiation from progenitor cells. Blood.2002; 99:1273-1281.
    43. Hayakawa Y, Takeda K, Yagita H, et al. IFN-gamma-mediated inhibition of tumor angiogenesis by natural killer T-cell ligand, alpha-galactosylceramide. Blood.2002; 100:1728-1733.
    44. Yao L, Sgadari C, Furuke K, et al. Cont ribution of natural killer cells to inhibition of angiogenesis by interleukin-12. Blood,1999,93:1612-1621.
    45. Seliger B, Maeurer MJ, Ferrone S. Antigen-processing machinery breakdown and tumor growh. Immunol Today.2000; 21:455-464.
    46. Smyth MJ,Godfrey D.Trapani JA, et al. A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol.2001; 2:293-299.
    47. Vyas YM, Mehta KM, Morgan M, et al. Spatial organization of signal transduction molecules in the NK cell immune synapses during MHC class I-regulatednoncytolytic and cytolytic interactions. J Immunol.2001; 167:4358-4367.
    48. Zhang JG, Xu GS. Suppression of FasL expression in tumor cells and preventing tumor necrosis factor a-induced apoptosis by adenovirus 14.7K is an effective escape mechanism for immune cells. Cancer Genetics and Cytogenetics.2007; 179:112-117.
    49. Ryan AE, ShanahanF, O'Connell J, et al. Fas ligand promotes tumor immune evasion of colon cancer in vivo. Cell Cycle.2006; 5:246-249.
    50. Zhang YL, XT, et al. Fas signal promotes lung cancer growth by recruiting Myeloid-DerieveSuppressor Cell via cancer cell-derived PGE2. J Immunol.2009; 182: 3801-3808.
    51. Miller J:The biology of natural killer cells in cancer, infection, and pregnancy. Exp. Hematol.2001; 29:1157-1168.
    52. Ljunggren HG, Karre K:Host resistance directed selectively against H-2-deficient lymphoma variants. Analysis of the mechanism. J Exp Med.1985; 162:1745-1759.
    53. Karre K, Ljunggren H, Piontek G, Kiessling R:Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature.1986; 319:675-678.
    54. Smyth MJ, Thia KY, Cretney E, et al. Perforin is a major contributor to NK cell control of tumour metastasis. J Immunol.1999; 162:6658-6662.
    55. Smyth MJ, Hayakawa Y, Takeda K, et al. New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer.2002; 2:850-861.
    56. Soiffer RJ, Murray C, Gonin R, et al. Effect of low-dose interleukin-2 on disease relapse after T-cell-depleted allogeneic bone marrow transplantation. Blood.1992; 84:964-971.
    57. Lim SH, Newland AC, Kelsey S, et al. Continuous intravenous infusion of high-dose recombinant interleukin-2 for acute myeloid leukaemia-a Phase II study. Cancer Immunol Immunother.1992; 34:337-342.
    58. Cortes JE, Kantarjian HM, O'brien S, et al. A pilot study of interleukin-2 for adult patients with acute myelogenous leukemia in first complete remission. Cancer.1999; 85:1506-1513.
    59. Sheridan C. First-in-class cancer therapeutic to stimulate natural killer cells. Nat Biotechnol.2006; 24:597.
    60. Mackinnon S, Hows JM, Goldman JM. Induction of in vitro graft-versus-leukemia activity following bone marrow transplantation for chronic myeloid leukemia. Blood. 1990; 76:2037-2045.
    61. Zeis M, Uharek L, Glass B, et al. Induction of the graft-versus-leukemia (GVL) activity in murine leukemia models after IL-2 pretreatment of syngeneic and allogeneic bone marrow grafts. Bone Marrow Transplant.1994; 14:711-715.
    62. Zeis M, Uharek L, Glass B, et al. Allogeneic MHC-mismatched activated natural killer cells administered after bone marrow transplantation provide a strong graft-vs-leukemia effect in mice. Br J Haematol.1997; 96:757-761.
    63. Murphy WJ, Longo DL. The potential role of NK cells in the separation of graft-versus-host disease after allogeneic bone marrow transplantation. Immunol Rev. 1997; 157:167-176.
    64. Ruggeri L, Capanni M, Casucci M, et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood.1999; 94: 333-339.
    65. Ruggeri L, Capanni M, Urbani, et al.:Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science.2002; 295: 2097-2100.
    66. Hsu KC, Taylor CA, O'reilly RJ, et al. AML patients lacking KIR ligand for donor KIR exhibit increased overall survival in HLA-identical sibling transplants. Biol Blood Marrow Transplant.2004; 10:7.
    67. Shilling HG, Mcqueen KL, Cheng NW, et al. Reconstitution of NK cell receptor repertoire following HLA-matched hematopoietic cell transplantation. Blood.2003; 101:3730-3740.
    68. Shlomchik WD, Couzens MS, Tang CB, et al. Prevention of graft-versus-host disease by inactivation of host antigen presenting cells. Science.1999; 285:412-415.
    69. Terme M, Ullrich E, Delahaye NF, et al. Natural killer cell-directed therapies: moving from unexpected results to successful strategies. Nat Immunol.2008; 9: 486-94.
    70. Trinchieri G, Matsumoto-Kobayashi M, Clark SC, et al. Response of resting human peripheral blood natural killer cells to interleukin 2. J Exp Med.1984; 160: 1147-69.
    71. London L, Perussia B, Trinchieri G. Induction of proliferation in vitro of resting human natural killer cells:IL 2 induces into cell cycle most peripheral blood NK cells, but only a minor subset of low density T cells. J Immunol.1986; 137:3845-54.
    72. Lanier LL, Buck DW, Rhodes L, et al. Interleukin 2 activation of natural killer cells rapidly induces the expression and phosphorylation of the Leu-23 activation antigen. J Exp Med.1988; 167:1572-85.
    73. Robertson MJ, Manley TJ, Donahue C, et al. Costimulatory signals are required for optimal proliferation of human natural killer cells. J Immunol.1993; 150: 1705-14.
    74. Srivastava S, Lundqvist A, Childs RW. Natural killer cell immunotherapy for cancer:a new hope. Cytotherapy.2008; 10:775-83.
    75. Alici E, Sutlu T, Bjorkstrand B, et al. Autologous antitumor activity by NK cells expanded from myeloma patients using GMP-compliant components. Blood.2008; 111:3155-62.
    76. Miller JS, Oelkers S, Verfaillie C, et al. Role of monocytes in the expansion of human activated natural killer cells. Blood.1992; 80:2221-9.
    77. Perussia B, Ramoni C, Anegon I, et al. Preferential proliferation of natural killer cells among peripheral blood mononuclear cells cocultured with B lymphoblastoid cell lines. Nat Immun Cell Growth Regul.1987; 6:171-88.
    78. Harada H, Saijo K, Watanabe S, et al. Selective expansion of human natural killer cells from peripheral blood mononuclear cells by the cell line, HFWT. Jpn J Cancer Res.2002; 93:313-9.
    79. Luhm J, Brand JM, Koritke P, et al. Large-scale generation of natural killer lymphocytes for clinical application. J Hematother Stem Cell Res.2002; 11:651-7.
    80. Condiotti R, Zakai YB, Barak V, et al. Ex vivo expansion of CD56+cytotoxic cells from human umbilical cord blood. Exp Hematol.2001; 29:104-13.
    81. Boissel L, Tuncer HH, Betancur M, et al. Umbilical cord mesenchymal stem cells increase expansion of cord blood natural killer cells. Biol Blood Marrow Transplant. 2008; 14:1031-8.
    82. Phillips JH, Lanier LL. A model for the differentiation of human natural killer cells. Studies on the in vitro activation of Leu-11+ granular lymphocytes with a natural killer-sensitive tumor cell, K562. J Exp Med.1985; 161:1464-82.
    83. Drexler HG, Matsuo Y. Malignant hematopoietic cell lines:in vitro models for the study of natural killer cell leukemia-lymphoma. Leukemia.2000; 14:777-82.
    84. Yoneda N, Tatsumi E, Kawano S, et al. Detection of Epstein-Barr virus genome in natural-killer-like cell line, YT. Leukemia.1992; 6(2):136-141.
    85. Tsuchiyama J, Yoshino T, Mori M, et al. Characterization of a novel human natural killer-cell line (NK-YS) established from natural killer cell lymphoma/ leukemia associated with Epstein-Barr virus infection. Blood.1998; 92:1374-1383.
    86. Kagami Y, Nakamura S, Suzuki R, et al. Establishment of an IL-2-dependent cell line derived from nasal-type NK/T-cell lymphoma of CD2+, sCD3-, CD3e+, CD56+ phenotype and associated with the Epstein-Barr virus. Br J Haematol.1998; 103(3): 669-677.
    87. YagitaM, Huang CL, Umehara H, et al. A novel natural killer cell line (KHYG-1) from a patient with aggressive natural killer cell leukemia carrying a p53 point mutation. Leukemia.2000; 14(5):922-930.
    88. Gong JH, Maki G, Klingemann HG, et al.Chrarcterization of a human cell line (NK-92) with phenotypical and functional characterizaristics of activated natural killer cells. Leukemia.1994; 8:652-658.
    89. Tonn T, Becker S, Esser R, et al. Cellular immunotherapy of malignancies using the clonal natural killer cell line NK-92. J Hematother Stem Cell Res.2001; 10: 535-44.
    90. Tam YK, Miyagawa B, Ho VC, et al. Immunotherapy of malignant melanoma in a SCID mouse model using the highly cytotoxic natural killer cell line NK-92. J Hematother.1999; 8(3):281-290.
    91. Klingemann HG, Wong E, Maki G. A cytotoxic NK-cell line (NK-92) for ex vivo purging of leukemia from blood. Biol Blood Marrow Transplant.1996; 2:68-75.
    92. Klingemann HG, Miyagawa B. Purging of malignant cells from blood after short ex vivo incubation with NK-92 cells. Blood.1995; 87:4913-4.
    93. Yan Y, Steinherz P, Klingemann HG, et al. Antileukemia activity of a natural killer cell line against human leukemias. Clin Cancer Res.1998; 4:2859-68.
    94. Maki G, Klingemann HG, Martinson JA, et al. Factors regulating the cytotoxic activity of the human natural killer cell line, NK-92. J Hematother Stem Cell Res. 2001; 10:369-83.
    95. Arai S, Kindy K, Swearingen M, et al. Phase I study of adoptive immunotherapy using the cytotoxic natural killer (NK) cell line, NK-92, for treatment of advanced renal cell carcinoma and malignant melanoma. Blood.2003; 102:2566.
    96. Robertson MJ, Cochran KJ, Cameron C, et al. Characterization of a cell line, NKL derived from an aggressive human natural killer cell leukemia. Exp Hematol.1996 Feb;24(3):406-15.
    97. Zhang C, Zhang J, Niu J, et al. Interleukin-15 improves cytotoxicity of natural killer cells via up-regulating NKG2D and cytotoxic effector molecule expression as well as STAT1 and ERK1/2 phosphorylation. Cytokine.2008; 42(1):128-136.
    98. Suck G, Branch DR, Smyth MJ, et al. KHYG-1, a model for the study of enhanced natural killer cell cytotoxicity. Exp Hematol.2005; 33(10):1160-1171.
    99. Cheng M, Ma J, Chen Y, et al. Establishment, characterization and successful adaptive therapy against human tumors of NKG cell, a new human NK cell line. Cell Transplant.2011; 7:1731-1746.
    100. Kershaw MH, Teng MW, Smyth MJ, et al. Supernatural T cells:genetic modification of T cells for cancer therapy. Nat Rev Immunol.2005; 5:928-940.
    101. Xu Y, Darcy PK, Kershaw MH. Tumor-specific dendritic cells generated by genetic redirection of Toll-like receptor signaling against the tumor-associated antigen, ErbB2. Cancer Gene Ther.2007; 14:773-780.
    102. Biglari A, Southgate TD, Fairbairn LJ, et al. Human monocytes expressing a CEA-specific chimeric CD64 receptor specifically target CEA-expressing tumour cells in vitro and in vivo. Gene Ther.2006; 13:602-610.
    103. Suck G. Novel approaches using natural killer cells in cancer therapy. Semin Cancer Biol.2006; 16:412-418.
    104. Lamers CH, van Elzakker P, Langeveld SC, et al. Process validation and clinical evaluation of a protocol to generate gene-modified T lymphocytes for imunogene therapy for metastatic renal cell carcinoma:GMP-controlled transduction and expansion of patient's T lymphocytes using a carboxy anhydrase Ⅸ-specific scFv transgene. Cytotherapy.2006; 8:542-553.
    105. Moeller M, Kershaw MH, Cameron R, et al. Sustained antigen-specific antitumor recall response mediated by gene-modified CD4+T helper-1 and CD8+T cells. Cancer Res.2007; 67:11428-11437.
    106. Brentjens RJ, Latouche JB, Santos E, et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med.2003; 9:279-286.
    107. Nagashima S, Mailliard R, Kashii Y, et al. Stable transduction of the interleukin-2 gene into human natural killer cell lines and their phenotypic and functional characterization in vitro and in vivo. Blood.1998; 91:3850-3861.
    108. Basse PH, Goldfarb RH, HErberman RB, et al. Accumulation of adoptively transferred A-NK cells in murine metastases:kinetics and role of interleukin-2. In Vivo.1994; 8:17-24.
    109. Vujanovic NL, Yasumura S, Hirabayashi H, et al. Antitumor activities of subsets of human IL-2-activated natural killer cells in solid tissues. J Immunol.1995; 154: 281-289.
    110. Tam YK, Maki G, Miyagawa B. et al. Characterization of genetically altered, interleukin 2-independent natural killer cell lines suitable for adoptive cellular immunotherapy. Hum Gene Ther.1999; 10:1359-1373.
    111. Konstantinidis KV, Alici E, Aints A, et al. Targeting IL-2 to the endoplasmic reticulum confines autocrine growth stimulation to NK-92 cells. Exp Hematol.2005; 33:159-164.
    112. Goding S, Yang Q, Mi Z, et al. Targeting of products of genes to tumor sites using adoptively transferred A-NK and T-LAK cells. Cancer Gene Ther.2007; 14: 441-450.
    113. Cooper MA, Bush JE, Fehniger TA, et al. In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood.2002; 100:3633-3638.
    114. Ranson T, Vosshenrich CA, Corcuff E, et al. IL-15 is an essential mediator of peripheral NK-cell homeostasis. Blood.2003; 101:4887-4893.
    115. Zhang J, Sun R, Wei H, et al. Characterization of interleukin-15 gene-modified human natural killer cells:implications for adoptive cellular immunotherapy. Haematologica.2004; 89:338-347.
    116. Jiang W, Zhang J,Tian Z. Functional characterization of interleukin-15 gene transduction into the human natural killer cell line NKL. Cytotherapy.2008; 10: 265-274.
    117. Benson DM Jr, Yu J, Becknell B, et al. Stem cell factor and interleukin-2/15 combine to enhance MAPK-mediated proliferation of human natural killer cells. Blood.2008; 113(12):2706-2714.
    118. Zhang J, Sun R, Wei H, et al. Characterization of stem cell factor gene-modified human natural killer cell line, NK-92 cells:implication in NK cell-based adoptive cellular immunotherapy. Oncol Rep.2004; 11:1097-1106.
    119.Muller T, Uherek C, Maki G, et al. Expression of a CD20-specific chimeric antigen receptor enhances cytotoxic activity of NK cells and overcomes NK-resistance of lymphoma and leukemia cells. Cancer Immunol Immunother.2008; 57:411-423.
    120. Goding SR, Yang Q, Knudsen KB, et al. Cytokine gene therapy using adenovirally transduced, tumor-seeking activated natural killer cells. Hum Gene Ther. 2007; 18:701-711.
    121. Tran AC, Zhang D, Byrn R, et al. Chimeric-receptors direct human natural killer (NK) effector function to permit killing of NK-resistant tumor cells and HIV-infected T lymphocytes. J Immunol.1995; 155:1000-1009.
    122. Roberts MR, Cooke KS, Tran AC, et al.Antigen-specific cytolysis by neutrophils and NK cells expressing chimeric immune receptors bearing or signaling domains. J Immunol.1998; 161:375-384.
    123. Imai C, Iwamoto S, Campana D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood.2005; 106:376-383.
    124. Pegram HJ, Jackson JT, Smyth MJ, et al. Adoptive transfer of gene-modified primary NK cells can specifically inhibit tumor progression in vivo. J Immunol.2008; 181:3449-3455.
    125. Plosker GL, Figgitt DP. Rituximab:a review of its use in non-Hodgkin's lymphoma and chronic lymphocytic leukaemia. Drugs 2003; 63:803-843.
    126. Boissel L, Betancur M, Wels WS, et al. Transfection with mRNA for CD19 specific chimeric antigen receptor restores NK cell mediated killing of CLL cells. Leuk Res.2009; 33:1255-9.
    127. Uherek C, Tonn T, Uherek B, et al. Retargeting of natural killer-cell cytolytic activity to ErbB2-expressing cancer cells results in efficient and selective tumor cell destruction. Blood.2002; 100:1265-1273.
    128. Basse PH, Goldfarb RH, HErberman RB, et al. Accumulation of adoptively transferred A-NK cells in murine metastases:kinetics and role of interleukin-2. In Vivo.1994; 8:17-24.
    129. Kruschinski A, Moosmann A, Poschke I, et al. Engineering antigen-specific primary human NK cells against HER-2 positive carcinomas. Proc Natl Acad Sci USA.2008; 105:17481-17486.
    130. Pegram HJ, Jackson JT, Smyth MJ, et al. Adoptive transfer of gene-modified primary NK cells can specifically inhibit tumor progression in vivo.2008; 181: 3449-55.
    1. Caldwell S, Park SH.The epidemiology of hepatocellular cancer:from theperspectives of public health problem to tumor biology. J Gastroenterol 44 Suppl.2009;19:96-101.
    2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, et al. Global cancer statistics. CA Cancer J Clin.2011; 61:69-90.
    3. Oosterhoff D, Sluijter BJ, Hangalapura BN, de Gruijl TD.The dermis as a portal for dendritic cell-targeted immunotherapy of cutaneous melanoma. Curr Top Microbiol Immunol.2012;351:181-220.
    4. Hanson L, Hermanson J, Lee J, Nickelson J, Sloan R. Helpful hints in caring for patients receiving biotherapy. Rigors associated with outpatient tumor necrosis factor administration. Oncol Nurs Forum.1990; 17:963.
    5. Tarhini AA, Cherian J, Moschos SJ, Tawbi HA, Shuai Y, et al. Safety and efficacy of combination immunotherapy with interferon alfa-2b and tremelimumab in patients with stage Ⅳ melanoma. J Clin Oncol.2012; 30:322-328.
    6. Hoshimoto S, Faries MB, Morton DL, Shingai T, Kuo C, et al. Assessment of prognostic circulating tumor cells in a phase Ⅲ trial of adjuvant immunotherapy after complete resection of stage IV melanoma. Ann Surg.2012; 255:357-362.
    7. Yawata M, Yawata N, McQueen KL et al. Predominance of group A KIR haplotypes in Japanese associated with diverse NK cell repertoires of KIR expression. Immunogenetics.2002; 54:542-50.
    8. Lanier LL. NK cell receptors. Annu Rev Immunol.1998; 16:359-93.
    9. Moretta A, Bottino C, Vitale M et al. Receptors for HLA class-Ⅰ molecules in human natural killer cells. Annu Rev Immunol.1996; 14:619-48.
    10. Biassoni R, Cantoni C, Marras D et al. Human natural killer cell receptors: insights into their molecular function and structure. J Cell Mol Med.2003; 74: 376-87.
    11. Biron CA, Nguyen KB, Pien GC et al. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol.1999; 17:189-220.
    12. Min Cheng, Jian Zhang, Wen Jiang, Yongyan Chen, Zhigang Tian. Natural killer cell lines in tumor immunotherapy. Front Med 2012; 6:56—66.
    13. Robertson MJ, Cochran KJ, Cameron C, Le JM, Tantravahi R, Ritz J. Characterization of a cell line, NKL, derived from an aggressive human natural killer cell leukemia. Exp Hematol 1996; 24:406-15
    14. Maasho K, Marusina A, Reynolds NM, Coligan JE, Borrego F. Efficient gene transfer into the human natural killer cell line, NKL, using the Amaxa nucleofection systemTM. J Immunol Methods 2004; 284:133-40.
    15. Smyth MJ, Hayakawa Y, Taked K, Yagita H. New aspects of natural-killercell surveillance and therapy of cancer. Nat Rev Cancer 2002; 2:850-861.
    16. Jiang W, Zhang J, Tian Z. Functional characterization of interleukin-15 gene transduction into the human natural killer cell line NKL. Cytotherapy 2008; 10: 265-74.
    17. Zhang J, Sun R, Wei H, Zhang JH, Tian ZG. Characterization of interleukin-15 gene-modified human natural killer cells:implications for adoptive cellular immunotherapy. Haematologica 2004; 89:338-47.
    18. Maria Ferrantini, Imerio Capone, Filippo Belardelli. Interferon-a and cancer: Mechanisms of action and new perspectives of clinical use. Biochimie 2007; 89: 884-893.
    19. Belardelli F, Gresser I. The neglected role of type I interferon in the T-cell response:implications for its clinical use. Immunol 1996; 17:369-372
    20. Gutterman JU. Cytokine therapeutics:lessons from interferon-alpha. Proc Natl Acad Sci USA 1994; 91:1198-1205.
    21. Federica Moschella, Brygida Bisikirska, Antonella Maffei, Kyriakos P, Papadopoulos, Donna Skerrett et al. Gene Expression Profiling and Functional Activity of Human Dendritic Cells Induced with IFN-a-2b:Implications for Cancer Immunotherapy. Clinical Cancer Research 2003; 9:2022-2031.
    22. Viard-Leveugle I, Gaide O, Jankovic D, Feldmeyer L, Kerl K, Pickard C et al. TNF-a and IFN-y Are Potential Inducers of Fas-Mediated Keratinocyte Apoptosis through Activation of Inducible Nitric Oxide Synthase in Toxic Epidermal Necrolysis. J Invest Dermatol 2012; e-pub ahead of print 20 Sep 2012; doi:10.1038/jid.2012.330.
    23. Moretta L, Ferlazzo G, Bottino C, Vitale M, Pende D, Mingari MC et al. Effector and regulatory events during natural killer-dendritic cell interactions. Immunol Rev 2006; 214:219-228.
    24. Ljunggren HG, Malmberg KJ. Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol 2007; 7:329-339.
    25. Chan JK, Hamilton CA, CheungMK, Karimi M, Baker J, Gall JM et al. Enhanced killing of primary ovarian cancer by retargeting autologous cytokine-induced killer cells with bispecific antibodies:a preclinical study. Clin Cancer Res 2006; 12:1859-1867.
    26. Nagashima S, Mailliard R, Kashii Y, Reichert TE, Herberman RB, Robbins P et al. Stable transduction of the interleukin-2 gene into human natural killer cell lines and their phenotypic and functional characterization in vitro and in vivo. Blood 1998; 91:3850-3861.
    27. Zhang J, Sun R, Wei H, Zhang J, Tian Z. Characterization of stem cell factor gene-modified human natural killer cell line, NK-92 cells:implication in NK cell-based adoptive cellular immunother-apy. Oncol Rep 2004; 11:1097-1106.
    28. Kamath AT, Sheasby CE, Tough DF. Dendritic Cells and NK Cells Stimulate Bystander T Cell Activation in Response to TLR Agonists through Secretion of IFN-ap and IFN-y. J Immunol 2005; 174; 161-116.
    29. Nguyen KB, Salazar-Mather TP, Dalod MY, Van Deusen JB, Wei XQ. Liew FY et al. Coordinated and Distinct Roles for IFN-a, IL-12, and IL-15 Regulation of NK Cell Responses to Viral Infection. J Immunol 2002; 169:4279-4287.
    30. Paquette RL, Hsu NC, Kiertscher SM, Park AN, Tran L, Roth MD et al. Interferon-alpha and granulocyte-macrophage colony-stimulating factor differentiate peripheral blood monocytes into potent antigen-presenting cells. J Leukocyte Biol 1998; 64:358-367.
    31. Luft T, Pang KC, Thomas E, Hertzog P, Hart DN, Trapani J et al. Type Ⅰ IFNs enhance the terminal differentiation of dendritic cells. J Immunol 1998; 161: 1947-1953.
    32. Santodonato L, D'Agostino G, Nisini R, Mariotti S, Monque DM, Spada M et al. Monocyte-derived dendritic cells generated after a shortterm culture with IFN-a and granulocyte-macrophage colony-stimulating factor stimulate a potent Epstein-Barr virus-specific CD8t T-cell response. J Immunol 2003; 170: 5195-5202.
    33. Tosi D, Valenti R, Cova A, Sovena G, Huber V, Pilla L et al. Role of cross-talk between IFN-a-induced monocyte-derived dendritic cells and NK cells in priming CD8t T-cell responses against human tumor antigens. J Immunol 2004; 172: 5363-5370.
    34. Xie Q, Shen HC, Jia NN, Wang H, Lin LY, An BY, et al. Patients with chronic hepatitis B infection display deficiency of plasmacytoid dendritic cells with reduced expression of TLR9 Microbes. Infect 2009; 11:515-523.
    35. Sun C, Fu B, Gao Y, Liao X, Sun R, Tian Z et al. TGF-β1 down-regulation of NKG2D/DAP10 and 2B4/SAP expression on human NK cells contributes to HBV persistence. PLoS Pathog 2012; 8(3).
    1. Roder JC, Pross HF. The biology of the human natural killer cell. J Clin Immunol. 1982;24:249-63.
    2. MILLER J. The biology of natural killer cells in cancer, infection, and pregnancy. Exp Hematol.2001;29:1157-68.
    3. Cerwenka A, Lanier LL. Natural killer cells, viruses and cancer. Nat Rev Immunol. 2001;1:41-9.
    4. Yokoyama WM. Mistaken notions about natural killer cells. Nat Immuno.2008; 19: 481-485.
    5. Raulet DH. Interplay of natural killer cells and their receptors with the adaptive immune response. Nat Immunol.2004; 5:996-1002.
    6. Robertson MJ, Ritz J. Biology and clinical relevance of human natural killer cells. Blood.1990; 76:2421-38
    7. Yawata M, Yawata N, McQueen KL et al. Predominance of group A KIR haplotypes in Japanese associated with diverse NK cell repertoires of KIR expression. Immunogenetics.2002; 54:542-50.
    8. Lanier LL. NK cell receptors. Annu Rev Immunol.1998; 16:359-93.
    9. Moretta A, Bottino C, Vitale M et al. Receptors for HLA class-I molecules in human natural killer cells. Annu Rev Immunol.1996; 14:619-48.
    10. Biassoni R, Cantoni C, Marras D et al. Human natural killer cell receptors: insights into their molecular function and structure. J Cell Mol Med.2003; 74: 376-87.
    11. Biron CA, Nguyen KB, Pien GC et al. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol.1999; 17:189-220.
    12. Soloski MJ. Recognition of tumor cells by the innate immune system. Curr Opin Immunol.2001; 132:154-62.
    13. Wu, J. and L.L.Lanier (2003).Natural killer cells and caneer. Ady Cancer Res. 90:127-56
    14. Hayakawa, Y. and M.J.Smyth (2006). Innate immune recognition and suppression of tumors. Ady Cancer Res 95:293-322.
    15. Malmberg, K.J., Y.T.Bryeeson, etal.(2008). "NK cell-mediated targeting of human cancer and possibilities for new means of immimotherapy. Cancer Immunol Immunother 57:1541-52.
    16. Ljunggren HG, Malmberg KJ. Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol 2007; 7(5):329-339
    17. Semino C,Martini L, Queirolo P, Cangemi G Costa R, Alloisio A, Ferlazzo G, Sertoli MR, Reali UM, Ratto GB, Melioli G. Adoptive immunotherapy of advanced solid tumors:an eight year clinical experience. Anricancer Res 1999; 19(6C): 5645-5649.
    18. Margolin KA. Interleukin-2 in the treatment of renal cancer. Semin Oncol 2000; 27(2):194-203.
    19. Rosenberg SA, Lotze MT, Yang JC, Topalian SL, Chang AE, Schwartzentruber DJ, Aebersold P, Leitman S, Linehan WM, Seipp CA, White DE, Steinberg SM. Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lympho-kine-activated killer cells for the treatment of patients with advanced cancer. J Natl Cancer Inst 1993; 85(8):622-632.
    20. Chan JK, Hamilton CA, CheungMK, Karimi M, Baker J, Gall JM, Schulz S, Thorne SH, Teng NN, Contag CH, Lum LG, Negrin RS. Enhanced killing of primary ovarian cancer by retargeting autologous cytokine-induced killer cells with bispecific antibodies:a preclinical study. Clin Cancer Res 2006; 12(6):1859-1867.
    21. Smyth, M.J., Y.Hayakawa, et al. (2002). New aspects of natural-killer-cell surveillance and therapy of cancer." Nat Rev Canceer 2:850-61.
    22. Drexler HG, Matsuo Y. Malignant hematopoietic cell lines:in vitro models for the study of natural killer cell leukemia-lymphoma. Leukemia 2000; 14:777-82.
    23. Tam, Y.K., J.A.Martinson, etal.(2003). Exvivo expansion of the highly cytotoxic human natural killer-92 cell line under current good manufacturing practice conditions for clinical adoptive cellular immunotherapy." Cytotherapy 5:259-72.
    24. Zhang C, Zhang JH, Niu JF et al. Interleukin-15 improves cytotoxicity of natural killer cells via up-regulating NKG2D and cytotoxic effector molecule expression as well as STAT1 and ERK1/2 phosphorylation. Cytokine.2008; 42:128-136.
    25. Robertson MJ, Cochran KJ, Cameron C et al. Characterization of a cell line, NKL, derived from an aggressive human natural killer cell leukemia. Exp Hematol.1996; 24:406-15.
    26. Maasho K, Marusina A, Reynolds NM et al. Efficient gene transfer into the human natural killer cell line, NKL, using the Amaxa nucleofection systemTM. J Immunol Methods.2004; 284:133-40.
    27. Marusina Al, Kim DK, Lieto LD et al. GATA-3 is an important transcription factor for regulating human NKG2A gene expression. J Immunol.2005; 174:2152-9.
    28. Gross C. Schmidt-Wolf IG, Nagaraj S et al. Heat shock protein 70-reactivity is associated with increased cell surface density of CD94/CD56 on primary natural killer cells. Cell Stress Chaperones.2003; 8:348-60.
    29. Jiang W, Zhang J, Tian Z. Functional characterization of interleukin-15 gene transduction into the human natural killer cell line NKL. Cytotherapy. 2008;l 0:265-74.
    30. Zhang J, Sun R, Wei H, Zhang JH, Tian ZG. Characterization of interleukin-15 gene-modified human natural killer cells:implications for adoptive cellular immunotherapy. Haematologica.2004;89:338-47.
    31. Nagashima S, Mailliard R. Kashii Y, Reichert TE, Herberman RB, Robbins P. et al. Stable transduction of the interleukin-2 gene into human natural killer cell lines and their phenotypic and functional characterization in vitro and in vivo. Blood. 1998;91:3850-61.
    32. Zhang J, Sun R, Wei H, Zhang J, Tian Z. Characterization of stem cell factor gene-modified human natural killer cell line, NK-92 cells:implication in NK cell-based adoptive cellular immunother-apy. Oncol Rep.2004; 11:1097-106.
    33. Grabstein KH, Eisenman J. Shanebeck K et al. Cloning of a T cell growth factor that interacts with the b chain of the interleukin-2 receptor. Science.1994; 264:965-8.
    34. Burton JD, Bamford RN, Peters C et al. A lymphokine, provisionally designated interleukin-T and produced by a human adult T-cell leukemia line, stimulates T-cell proliferation and the induction of lymphokine-activated killer cells. Proc Natl Acad Sci USA.1994; 91:4935-9.
    35. Carson WE, Giri JG, Lindemann MJ et al. Interleukin (IL)-15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J Exp Med.1994; 180:1395-403.
    36. Anderson DM, Abdieh M, Bertles J et al. Functional characterization of human interleukin-15 receptor a chain and close linkage of IL-15RA and IL-2RA genes. J Biol Chem.1995; 270:29862-9.
    37. Waldmann TA, Tagaya Y. The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu Rev Immunol.1999; 17:19-49.
    38. Mrozek E, Anderson P, Caligiuri MA. Role of interleukin-15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitor cells. Blood.1996; 87:2632-40.
    39. Bazan JF. Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci USA.1990; 87:6934-8.
    40. Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M, et al. Reversible defects in natural killer and memory CD8 T cell lineages in IL-15 deficient mice. J Exp Med.2000;191:771-80.
    41. Lodolce JP, Boone DL, Chai S, Swain RE, Dassopoulos T, Trettin S, et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity.1998;9:669-76.
    42. Kershaw MH, Teng MW, Smyth MJ, Darcy PK. Supernatural T cells:genetic modification of T cells for cancer therapy. Nat Rev Immunol.2005;5:928-40.
    43. Xu Y, Darcy PK, Kershaw MH. Tumor-specific dendritic cells generated by genetic redirection of Toll-like receptor signaling against the tumor-associated antigen, ErbB2. Cancer Gene Ther.2007;14:773-80.
    44. Biglari A, Southgate TD, Fairbairn LJ, Gilham DE. Human monocytes expressing a CEA-specific chimeric CD64 receptor specifically target CEA-expressing tumor cells in vitro and in vivo. Gene Ther.2006; 13:602-10.
    45. Suck G. Novel approaches using natural killer cells in cancer therapy. Semin Cancer Biol.2006;16:412-8.
    1. Moretta, A., Bottino, C., Vitale, M., Pende, D., Biassoni, R., Mingari, M.C. and Moretta, L. Receptors for HLA-class I molecules in human natural killer cells. Annu Rev Immunol.1996; 14:619-648.
    2. Lanier, L.L. NK cell receptors. Annu Rev Immunol.1998; 16:359-393.
    3. Long, E.O. Regulation of immune responses through inhibitory receptors. Annu Rev Immunol.1999; 17:875-904.
    4. Asai O, Longo DL, Tian ZG, Hornung RL, Taub DD, Ruscetti FW, et al. Suppression of graft-versus-host disease and amplification of graft-versus-tumor effects by activated natural killer cells after allogeneic bone marrow transplantation. J Clin Invest.1998; 101:1835-42.
    5. Passweg JR, Tichelli A, Meyer-Monard S, Heim D, Stern M, Kuhne T, et al. Purified donor NK-lymphocyte infusion to consolidate engraftment after haploidentical stem cell transplantation. Leukemia.2004; 18:1835-8.
    6. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood.2005; 105:3051-7.
    7. Robertson MJ, Cochran KJ, Cameron C. Le JM, Tantravahi R, Ritz J. Characterization of a cell line, NKL. derived from an aggressive human natural killer cell leukemia. Exp Hematol 1996; 24:406-15.
    8. Maasho K, Marusina A, Reynolds NM, Coligan JE, Borrego F. Efficient gene transfer into the human natural killer cell line, NKL, using the Amaxa nucleofection systemTM. J Immunol Methods 2004; 284:133-40.
    9. Jiang W, Zhang J, Tian Z. Functional characterization of interleukin-15 gene transduction into the human natural killer cell line NKL. Cytotherapy.2008; 10: 265-74.
    10. Zhang J, Sun R, Wei H, Zhang JH, Tian ZG. Characterization of interleukin-15 gene-modified human natural killer cells:implications for adoptive cellular immunotherapy. Haematologica.2004; 89:338-47.
    11. Nagashima S, Mailliard R, Kashii Y, Reichert TE, Herberman RB, Robbins P, et al. Stable transduction of the interleukin-2 gene into human natural killer cell lines and their phenotypic and functional characterization in vitro and in vivo. Blood.1998; 91:3850-61.
    12. Zhang J, Sun R, Wei H, Zhang J, Tian Z. Characterization of stem cell factor gene-modified human natural killer cell line, NK-92 cells:implication in NK cell-based adoptive cellular immunother-apy. Oncol Rep.2004; 11:1097-106.
    13. He YG, Mayhew E, Mellon J, Niederkorn JY. Expression and possible function of IL-2 and IL-15 receptors on human uveal melanoma cells. Invest Ophthalmol Vis Sci. 2004; 45:4240-6
    14. Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M, et al. Reversible defects in natural killer and memory CD8 T cell lineages in IL-15 deficient mice. J Exp Med.2000; 191:771-80.
    15. Carson WE, Giri JG, Lindemann MJ, Linett ML, Ahdieh M, Paxton R, Anderson D, Eisenmann J, Grabstein K, Caliguiri MA (1994) Interleukin (IL) 15 is a novel cytokine that acti-vates human natural killer cells via components of the IL-2 receptor. J Exp Med 180:1395-1403.
    16. Carson WE, Fehniger TA, Haldar S, Eckhert K, Lindemann MJ, Lai C-F, Croce CM, Baumann H, Caliguiri MA (1997) A potential role for interleukin-15 in the regulation of human natural killer cell survival. J Clin Invest 99:937-942.
    17. Tough, D.F., Borrow, P. and Sprent, J. (1996). Science,272,1947-1950.] [Tough, D.F., Sun, S. and Sprent, J. (1997) J. Exp. Med.,185,2089-2094.
    18. Zhang, X., Sun, S., Hwang, I., Tough, D.F. and and Sprent, J. (1998) Immunity,8, 591-599.
    19. Joyce S (2001) CD1d and natural T cells:how their properties jump-start the immune system. Cell Mol Life Sci 58:442-469.
    20. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295:2097-2101.
    21. A. Wodnar-Filipowicz, Christian P. Kalberer. Function of natural killer cells in immune defence against human leukaemia. SWISS MED WKLY 2006; 136:359-364.
    22. Romanski A, Bug G, Becker S, Kampfmann M, Seifried E, Hoelzer D et al. Mechanisms of resistance to natural killer cell-mediated cytotoxicity in acute lymphoblastic leukemia. Exp Hematol 2005; 33:344-352.
    23. Pende D, Spaggiari GM, Marcenaro S, Martini S, Rivera P, Capobianco A et al. Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias:evidence for the involvement of the Poliovirus receptor (CD155) and Nectin-2 (CD112). Blood 2005; 105:2066-2073.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700