德州深层地下水位降落漏斗演变机制与可调控性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海河平原第四系深层承压地下水(简称“深层水”,下同)超采问题,已经影响了区域经济社会又好又快发展,引起广泛关注。本文针对海河平原长期过量开采深层水导致地下水位不断下降,引发地面沉降等环境地质问题,选择德州深层水水位降落漏斗分布区作为重点研究区,以300~500m、500~800m和800~940m三个主要开采层位的深层水动态变化及其对应相关的粘性地层作为主要研究对象,应用地下水动力学、统计学方法和同位素技术,以深层水动态监测及其水化学组分和同位素采样测试分析作为获取源信息的主要技术手段,围绕“深层地下水位下降引起地面沉降的岩性及其结构和埋深阈值条件”和“大规模开采条件下深层承压水的补给来源与更新能力变化机制”这两个关键科学问题,重点开展了如下研究:①德州深层地下水漏斗区含水层概化的物理结构,包括含水层岩性特征、厚度变化、相互联系、空间分布规律;②德州深层地下水漏斗形成、演变过程及其与补给量、开采量与开采深度、地层岩性与结构之间关系;③人类活动对深层地下水补给及水位衰变影响机制与模式。研究取得如下主要认识和进展。
     1.德州深层地下水系统具有其典型性和特殊性,其开采层位包括6个含水层和7个粘性土层,地层结构复杂;开采深度为300~900m,最大开采深度达940m,是海河平原地下水开采最深的层位。目前,德州深层地下水位降落漏斗中心的水位已下降至-120m左右,水位埋深达140m。2005年在德州市范围内漏斗面积11068.8km~2,与北部的沧州深层地下水位降落漏斗、文安-大成漏斗、天津漏斗相联,形成区域性复合式深层地下水位降落漏斗分布区。区内已出现地面沉降和地下咸水界面下侵和南移等环境地质问题。
     2.德州深层地下水开采资是由侧向径流补给、越流补给、含水层的弹性释水和粘性土层的压密释水的四部分组成,其中20.6%的侧向-越流补给量来自深层地下水系统外部的区域径流补给,反映深层地下水的自然更新能力。同位素数据分析表明,德州深层地下水是末次冰期盛期的大气降水补给,具有淋滤水特征,在其循环过程中,受到蒸发的影响和咸水的侵染,后期又遭遇多次海进干扰。水化学类型以HCO_3-Na型水占优势,具有高氟、高碘、高钠、低钙、低硬度、偏碱性的地下水化学特征,其同位素特征是氢氧稳定同位素低,氚含量低。
     3.相关分析结果表明,人工超采是德州深层地下水降落漏斗形成和演变的主导因素,开采量与漏斗中心水位之间非线性关系,呈三次项曲线特征。
     4.德州深层地下水赋存地层,虽然历经较长时间固结,属于超固结土,然而一旦增加外荷失水,附加应力超过前期固结应力,则将产生新的压密固结和释水。地面沉降与深层地下水位下降具有良好的相关性。根据地面沉降与深层地下水回归方程计算,德州深层地下水临界水位为-51.12m,容许水位降深为70.24m。
     5.在合理调控开采量条件下,深层地下水位降落漏斗中心水位是可以恢复的。每年减少60×10~4~100×10~4m~3的开采量条件下,德州漏斗中心水位开始缓慢回升,至2020年前后德州漏斗中心消失。但是,深层地下水资源承载力具有不确定性和可变性,与开采技术条件、开采层位、地层结构之间关系较为密切。
     主要成果及创新点:①根据区内地层的埋藏深度、岩性、成因类型、沉积年代、土的物理力学性质、水力特征和水理性质,首次将800m以浅的地层划分为8个含水层、9个压缩层(弱透水层)和1个表土层,构建水-岩的水动力场研究体系,并将第三含水层至第五含水层及其间弱透水夹层概化为第Ⅲ含水岩组,将第六含水层至第八含水层及其间弱透水夹层概化为第Ⅳ含水岩组。第Ⅲ含水岩组和第Ⅳ含水岩组是德州深层水的主要开采层位。②初步查明德州主要开采层位的深层水储存资源主要形成于末次冰期盛期的大气降水补给,开采资源中20.6%的侧向径流补给和越流补给来自区域径流系统,含水层弹性释水和粘性土压密释水量分别占17.5%和61.9%。③揭示了德州深层水位降落漏斗形成和演变规律,并应用地学统计学方法识别和确定深层水位降落漏斗形成与变化的主导因素,为预测和制定合理调控对策研究奠定了坚实基础。④创建了德州深层水位降深漏斗变化与人类开采活动相关模型,并预测了不同开采条件下德州深层水位降深漏斗中心和漏斗分布区平均水位的变化趋势及可调控性;首次建立了德州地面沉降与深层水位之间关联关系,求得地面沉降的临界水位和容许水位降深,提出了德州深层地下水位降落漏斗的调控方案,为防控开采深层水引发环境地质灾害提供了重要的科学依据。
It is widespread concerned that over-exploitation of Quaternary deep confined water (referred to "deep water", the same below) in Haihe Plain has already affected development of regional economy and society. Aimed at continuous drawdown of water table for over-exploitation and other geo-environmental problems, like land subsidence, this thesis selected distribution area of deep groundwater depression cone in Dezhou City as focus area. And it took variation of deep groundwater table and corresponding clay layers in the three main exploitation layers of 300~500 m, 500~800 m and 800~940 m as study targets. There were two key scientific points which should be cleared fist. One was lithology and structure of the formation where land subsidence happened due to drawdown of deep groundwater table and threshold value of buried depth. The other was recharge source of deep confined water and mechanism of variation of regeneration ability under large-scale mining condition. In this thesis, information was mainly achieved from deep groundwater dynamic monitoring, water chemistry composition and isotopic samples analysis. Using groundwater dynamic methods and isotopic technology, the thesis made following research. First, the thesis studied physic structure of aquifers in Dezhou deep groundwater depression cone area, including lithology characteristics, variation of thickness, correlation relationship and spatial distribution rules. Second, it studied formation and evolution process of deep groundwater depression cone and the affection of recharge, exploitation quantity, exploitation depth, characteristics and structure of the aquifers. Third, it studied impact mechanism and pattern of human activities on recharge of deep groundwater. Through these researches, the thesis achieved main knowledge and advances as follows.
     1. Dezhou deep groundwater system was typical and specific. Its exploitation formation included six aquifers and seven clay layers so that the structure was very complex. Depth o f exploitation was from 300 m to 900 m, with the maximum amounting to 940 m, and it was the deepest layer for exploiting in Haihe Plain. At present, water table of central deep groundwater depression cone dropped to about -120 m, water buried depth reached 140 m. In 2005, depression cone area was 11068.8km~2 in Dezhou. And it connected with Cangzhou deep groundwater depression cone, Wen'an-Dacheng depression cone and Tianjin depression cone, which became a regional compositive depression cone. In study area, geo-environmental problems emerged, like land subsidence and interface of salt groundwater downward and southward.
     2. Exploitation resources of Dezhou deep groundwater was composed of four parts, such as lateral runoff recharge, crossflow recharge, elastic releasing water of aquifers and compression releasing water of clay layers. Lateral runoff recharge took 20.6% of the total recharge and it came from regional runoff of external deep groundwater systems, reflecting natural regeneration ability of deep groundwater. Isotopic data showed that Dezhou deep groundwater was from precipitation in the last glacial period. It had the characteristics of leaching, and affected by evaporation and invasion of salt water in the process of water cycle. Latter, it was interfered by seawater invasion for many times. HCO3-Na type of water was prior than any other type, with high fluorine, high iodine, high sodium, low calcium, low hardness and alkalescent, low concentration of hydrogen and oxygen steady isotope and low tritium content as well.
     3. Results of correlation analysis showed that artificial over-exploitation was the main factor that resulted in formation and evolution of deep groundwater depression cone. The relationship between exploitation and water table of central depression cone was non-linear, but was characteristics of cubic polynomial curve instead.
     4. Strata of filling deep groundwater in Dezhou were well consolidated. Although being a long period of time after consolidation, releasing water would happen when pressure and additional stress exceeding pre-consolation stress. Land subsidence and drawdown of water table of deep groundwater had a good correlation relationship. Based on regression calculation of land subsidence and deep groundwater table, threshold value of deep groundwater table was -51.12 m, allowable drop of water table was 70.24m.
     5. When exploitation regulated reasonably, water table of central deep groundwater depression cone was recoverable. Under the condition of reducing exploitation for 60×10~4~100×10~4m~3 one year, water table of central depression cone began to rise slowly, and it would disappear in the year about 2020. But bearing capacity of deep groundwater resources was uncertain and various, for it closely related to condition of exploitation, mining horizon and the structure of formation.
     The main results and innovation were as follows.①According to buried depth of formation in research area, lithology, types of causes, deposition time, physical and mechanical properties of soil, water power features and hydrological characteristics, strata above 800 m were first dived into 8 aquifers, 9 compression layers (aquitard) and one layer of surface soil, water-rock dynamic research system was also built. At the same time, formations between the third aquifer and the fifth aquifer as well as aquitard were generalized into III bearing formation group. Aquifers and aquitard between the sixth aquifer and eighth aquifer were generalized into IV bearing formation group. The III and IV bearing formation groups were the main exploitation layers in Dezhou.②Storage resources of deep groundwater in Dezhou were mainly from precipitation recharge in the last glacial period. Exploitation resources mainly included lateral runoff recharge and crossflow recharge, which were from regional runoff systems, with 17.5% of elastic releasing water and 61.9% of compression releasing water.③The thesis revealed formation and evolution of Dezhou deep groundwater depression cone, and identified and determined dominant factors inducing formation and evolution of depression cone, using geo-statistical methods. The results laid a solid foundation to predict and make reasonable regulation countermeasures.④The thesis created the model revealing relationship between variation of Dezhou deep groundwater depression cone and artificial exploitation. And it predicted water table of central depression cone and mean water table under different exploitation condition. The thesis also analyzed regulation characteristics of deep groundwater. Besides, the thesis established the correlation relationship between land subsidence and water table of deep groundwater for the first time, and it calculated the threshold water table and allowable drawdown of water table. At last, in order to better prevent geo-environment disasters, the thesis put forward regulation projects for controlling deep groundwater depression cone in Dezhou.
引文
[1]张宗祜,施德鸿,沈照理,钟佐燐,薛禹群.1997.人类活动影响下华北平原地下水环境的演化与发展[J].地球学报,18(4):337-344.
    [2]张宗祜,张光辉.2001.大陆水循环系统演化及其环境意义[J].地球学报,22(4):289-292.
    [3]张光辉,申建梅,聂振龙,王金哲,严明疆,郝明亮,2006.区域地下水功能及可持续利用性评价理论与方法[J].水文地质工程地质,2006(4):62-67.
    [4]张家诚.1999.水分循环与气候背景[J].水科学进展,10(3):265-300.
    [5]邢如楠.1999.大尺度海气相互作用与水分循环明[J].水科学进民10(3):271-277.
    [6]张光辉,赖勤波,费宇红等.2000.水文循环演化的信息熵及其应用[J].勘察科学技术,2000(1):26-29.
    [7]Downing R.A.,Edmunds W.M.& Gale I.N..1987.Regional groundwater flow in sedimentary basins in the U.K.Fluid Flow in United Kingdom Groundwater Basins,Geological Society,London,Special Publications;1987;ⅴ.34;105-125.
    [8]Keith R.Prince,Thomas E.Reilly and O.1989.Lehn Franke Analysis of the shallow groundwater flow system near Connetqout Brook,Long Island,New York,Journal of Hydrology,Volume 107,Issues 1-4,30 May 1989,pp:223-250.
    [9]Wassen,Matin.J.,A.Barendregt,PP.Schot & B.Beltman.1990.Dependency of local mesotrophic fens on a regional groundwater flow system in a poldered river plain in the Netherlands.Landscape Ecology 5(1):21-38.
    [10]Kloosterman F.H.,Stuurman R.J.and Meijden R.van der,Groundwater flow systems analysis on a regional and nation-wide scale in the netherlands;the use of flow systems analysis in wetland management,Water Science and Technology,Volume 31,Issue 8,1995,pp:375-378.
    [11]Dan,B.,Stefan B.,and Phil E.,2001,Flow systems in the Maunville Group in the east-central Athabasca area and implications for steam-assisted gravity drainage(SAGD) operations for in situ bitumen production,Bulletin of Canadian Petroleum Geology,,September 2001;ⅴ.49;no.3;p.376-392.
    [12]陈梦熊,马凤山.2002.中国地下水资源与环境[M].北京,地震出版社:385-417.
    [13]徐恒力.1992.地下水系统的进化[J].水文地质工程地质,19(1):58-60.
    [14]李文鹏,周宏春,周仰效,等.1995.中国西北典型干旱区地下水流系统[M].北京:地震出版社.1995.
    [15]张宗祜,施德鸿,任福弘等.1997.论华北平原第四系地下水系统之演化[J].中国科学(D辑),27(2):168-173.
    [16]武选民.2002.西北黑河下游额济纳盆地地下水系统研究[J].水文地质工程地凰,2002(129):16-20.
    [17]张光辉,刘少玉,谢悦波,等.2005.西北内陆黑河流域水循环与地下水形成演化模式[M].北京:地质出版社.
    [18]Rank,D.,Rahner,V.,Nussbaumer,W.,Papech W.,et.al,Study of the interrelationship between groundwater and lake water at neusiedler see,Austria.Isotopic hydrology 1983.international atomic energy agency,Vienna,1984:67-81.
    [19]Mook,W.G.Encironmental isotopes in the hydrological cycle principles and applications.UNESCO/IAEA.Series,2000a,Vienna/Paris.
    [20]Mook,K.G.,The dissolution-exchange model for dating groundwater with C-14,in interpretation of Environmental and Hydrochemical date in Groundwater Hydrology,IAEA,Vienna,1976,pp.212-225.
    [21]Abbott M.D.Lini a,bierman p.r.,δ~(18)O,D and 3H measurements constrain,groundwater recharge patterns in an upland fractured bed rock aquifer,Vermont,USA,Journal of Hydrology,2000,228:110-112.
    [22]关秉钧等.1995.用环境同位素氚、碳-14、碳-13探讨北京地区地下水运动规律[J].水文地质技术方法,第12辑:1-6.
    [23]刘存富.1990.地下水~(14)C年龄校正方法-以河北平原为例[J].水文地质工程地质,1990(3):4-8.
    [24]刘存富,王佩仪,周炼1997河北地下水氢、氧、碳、氯同位素组成的环境意义[J].地学前沿,4(1-2):267-274.
    [25]张之淦等.1987.河北平原第四系地下水年龄、水流系统及咸水成因初探-石家庄至渤海湾同位素水文地质剖面研究[J].水文地质工程地质,1987(4):1-6.
    [26]陈宗宇,张光辉,徐家明.1998.华北地下水古环境意义及古气候变化对地下水形成的影响[J].地球学报,19(4):338-345.
    [27]陈宗宇,张光辉,聂振龙,等.2002.中国北方第四系地下水同位素分层及其指示意义[J].地球科学,27(1):97-103.
    [28]聂振龙陈宗宇,申建梅,等.2005.应用环境同位素方法研究黑河源区水文循环特征[J].地理与地理信息科学.21(1):104-108.
    [29]陈宗宇,聂振龙,张荷生,等.2004.从黑河流域地下水年龄论其资源属性[J].地质学报,2004(4):560-567
    [30]文冬兆2002.用环境同位素论区域地下水资源属性[J].地球科学,27(5):532-533.
    [31]杨郧城,侯光才,马思锦.2004.鄂尔多斯盆地地下水中氚的演化及其年龄[J].西北地质,37(1):95-100.
    [32]Naoto Takahata,Yuji Sano.2002.Helium flux from a sedimentary basin[J].Applied Radiation and Isotopes,52(2000):985-992.
    [33]Lovelock J E.1971.Atmospheric fluorine compound as indicators of air movements[J].NaTure,1971:230-379.
    [34]Thompson G M,Hayes J M.1979.Trichloromethane in groundwater:A possible t racer and indicator of groundwater age[J].Water Resource Research,1979(15):546-554.
    [35]Busenberg E,et al.1992.Use of Chlorofluoromethanes(CCI3F and CC12F2) as hydrologic tracers and age2dating tools:Example2 The alluvium and terrace system of Central Oklahoma[J].Water Resources Research,1992(28):22-57.
    [36]Plummer L N,Rupert M G,Busenberg E,et al.2000.Age of irrigation water in groundwater from the Snake River Plain aquifer,South-Central Idaho[J].Groundwater,2000(38):264-283.
    [37]秦大军.2005.地下水CFC定年方法及应用[J].地下水27(6):435-437.
    [38]Piummer L N,Eric C.Prestemon and David L.Parkhurst.1994.An interactive code(NETPATH) for modeling Net geochemical reactions along a flow Path[J],U.S.Geological Survey,1994.
    [39]James D.Happell et al,Apparent CFC and ~3H/~3He age differences in water from Floridan Aquifer springs[J].Journal of Hydrology(2005)1-17.
    [40]郭永海,王驹,王志明,等.2006.CFCS在中国高放废物处置库预选区地下水研究中的应用[J].地球科学,27(3):253-258.
    [41]钱云平,林学钰,秦大军,王玲.2005.应用同位素研究黑河下游额济纳盆地地下水[J].干旱区地理,28(5):574-580.
    [42]秦大军.2004.影响地下水CFCS定年的主要因素[J].自然科学进展,14(10):1199-1202.
    [43]Munnich K.O.,Messugen des.1957.~(14)C-gehaltesvon hartem groundwasser[J].NaTurwisenschaf ten,1957(44):2853-2868.
    [44]董维红.2005.反向水文地球化学模拟技术在鄂尔多斯白垩系自流水盆地深层地下水~(14)C年龄校正中的应用[M].吉林:吉林大学.
    [45]P.Collon,W.Kuschera,H.H.Loosli,etc.2000.~(81)Kr in the Great Artesian Basin,Australia a new method for dating very old groundwater[J].Earth and Planetary Science Letters,182(2000)103-113.
    [46]董悦安,何明,蒋崧,等.2002.河北平原第四系深层地下水~(36)Cl同位素年龄的研究[J].地球科学——中国地质大学学报,27(1):105-109.
    [47]万军伟,刘存富,晁念英,等.2003.同位素水文学理论与实践[M].武汉:中国地质大学出版社.
    [48]张人权.2003.地下水资源特性及其合理开发利用[J].水文地质工程地质,2003(6):1-5.
    [49]胡志荣,曹万金,任清潮,等.1995.地下水超采及其环境影响研究[J].水资源保护,1995(2):37-41.
    [50]陆 铮,王金荣,等.1995.地下水超采引起的水环境变化[J].海河水利,1995(2):30-33.
    [51]周志芳,朱海生.2004.城市地质灾害中的地下水环境效应[J].地球科学进展,19(3):467-471
    [52]孙晓明,徐建国,杨齐青,等.2006.环渤海地区海(咸)水入侵特征与防治对策[J].地质调查与研究,29(3):203-211.
    [53]陈崇希.2000.关于地下水开采引发地面沉降灾害的思考[J].水文地质工程地质,2000(1):45-49.
    [54]郑铣鑫,武强,侯艳声,应玉飞.2002.关于城市地面沉降研究的几个前沿问题[J].地球学报,23(3):279-282。
    [55]邢忠信,李和学,张熟,郜洪强.2004.沧州市地面沉降研究及防治对策[J].地质调查与研究,27(3):157-163.
    [56]郭永海,王东胜,沈照理,等.1994.河北平原部分地区深层地下水开采的地沉效应及水资源属性再认识[J].中国地质灾害与防治学报,5(增):75-81.
    [57]石建省,郭娇,孙彦敏等.京津冀德深层地下水开采与地面沉降关系空间分析[J],地质论评,2006(6):804-809.
    [58]赵秀兰,陈宁生,等.2005.深层地下水开采引起的生态环境问题及其治理[J],地下水,2005,27(1):46-49.
    [59]赵复强.浅谈德州深层地下水资源的保护[J].山东水利,2005(9):20-21.
    [60]王世欢,梁庆柱,于凤芹.德州市水环境问题及对策探讨[J].山东水利,2006(1):6-7.
    [61]林学钰,王金生等.2006.地下水资源极其可更新能力研究[M].郑州:黄河水利出版社.
    [62]陈宗宇,陈京生,费宇红,等.2006.利用氚估算太行山前地下水更新速率.核技术,29(6):426-431.
    [63]张光辉,聂振龙谢悦波,等.2005.甘肃西部平原区地下水同位素特征及更新性[J].地质通报,24(2):149-155.
    [64]马致远,候光才.2005.技术在区域地下水资源补给及可更新性中的应用[J].工程勘察,2005(5):21-24.
    [65]苏小四,林学钰.2003.包头平原地下水循环模式及其可更新能力的同位素研究[J].吉林大学学报(地球科学版),33(4):503-508.
    [66]苏小四,林学钰.2004.银川平原地下水循环及其及其可更新能力的同位素证据[J].资源科学,26(6):27-33.
    [67]韩再生2004.世界地下水资源图介绍[J].水文地质工程地质,2004(3):115-116.
    [68]都基众,肖国强2005.地下水降落漏斗白勺控制与恢复[J].地质与资源,14(1):53-57.
    [69]殷跃平,张作辰,张开军.2005.我国地面沉降现状及防治对策研究[J].中国地质灾害与防治学报,16(2):1-8.
    [70]王贞国,王彦俊,等.2005.德州市深层地下水人工回灌试验浅探[J].山东国土资源,21(6-7):82-85.
    [71]单连斌.赵嵩堪,张聪璐.等.2003.地下回灌-污水回用的重要策略[J].环境保护科学,29(116):10-12.
    [72]贺屹,彭翠华,等.2006.试论深层地下水人工补给-SPD人工补给系统[J].水文地质工程地质,2006(1):69-79.
    [73]刘毅,张先林,万贵富,韩庆德.1998.上海市近期地面沉降形势与对策建议[J].中国地质灾害与防治学报,9(2):13-17.
    [74]李勤奋,王寒梅.2006.上海地面沉降研究[J].高校地质学报,12(12):169-178.
    [75]C.W.Fetter.AppfiedHydrogeology[M].New Youk,Prentice Hall,1994.
    [76]Tresott P.C,G.F.Pinder,S.P.Larson.Finite-diffrence model for aquifer simulation in two dimensions with results of numerical experimonts.U.S.Geological Survey Techniques:ofWater-Resources Investigations.Book 7.Chap.Cl,1976.
    [77]孙讷正.1981.地下水流的数学模型和数值方法[M].北京:地质出版社.
    [78]张蔚臻.1983.地下水非稳定流计算和地下水资源评价[M]北京:科学出版社.
    [79]薛禹群,谢春红.1980.水文地质学的数值法[M].北京:煤炭工业出版社.
    [80]陈崇希.1983.地下水不稳定井流计算方法[M].北京:地质出版社.
    [81]陈崇希.2003.“防止模拟失氨提高仿真性”是数值模拟的杨心[J].水文地质工程地质,2003(2):1-5.
    [82]薛禹群,吴吉春.1997.地下水数值模拟在我国一回顾与展望[J].水文地质工程地质,1997(4):21-24.
    [83]李杰.2000.用内点法反求水文地质参数[J].水文水资源,21(4):23-24.
    [84]Guo Xiaoniu.Chanmian Zhlang.2000.HydraulieGradient comparison method to estimateAquifer hydraulic parameters under steady -slate codition[J].Ground water,39(6):515-926.
    [85]Javandel I and Withespoon P A.1968.Applocation of the finite element method to transient flow in porous media.J Soe Petrol Eng.8(3):241-245
    [86]祝晓彬.2003.地下水模拟系统(GMS)软件[J].水文地质工程地质,30(5):53-55.
    [87]Sophoeleous,M.A.,The orgin and evolution of safe yield policies in the Kansas Groundwater Management Districts.Nat Resour Pes,2000c,9(2):99-110.
    [88]Clark,I,D.,Fritz,P.,Environmental isotopes in Hydrogeology,CRC Press LLC,1997.
    [89]王恒纯.1991.同位素水文地质概论[M].北京:地质出版社
    [90]Ferronsky,V.I.and Polyakoc.Environmental isotopes in the hydrosphere.Ney York:Wiley and stone,1982.
    [91]陈望和,丁惠生,曾渊深,等.1999.河北地下水[M].北京:地震出版社,184-196.
    [92]杨丽芝,刘春华,刘中业,等.2007.华北平原地下水可持续利用调查评价(山东)报告[R].济南:山东省地质调查院
    [93]冯小腊,沈孝宁.1991.饱和粘性士渗透固结特性及其微观机制的研究[J].水文地质工程地质,18(1):6-11.
    [94]刘毅.1998.确定大江大河防洪堤高度应考虑地面沉降因素[J].上海地质,1998(3):62-72.
    [95]Freeze R A.2000.Social decision making and land subsidence.Proc[R].6th Int.Symp.on Land Subsidence,2000:53-68
    [96]JOHNSON A I.An overview of international land subsidence due tofluid withdrawal[A].Hyatt Regency,Sacramento,California:AEG.GRA 1995 Annual Meeting[Z].1995.59.
    [97]薛禹群,张云,叶淑君,李勤奋.2003.中国地面沉降及其需要解决的几个问题[J].第四纪研究,23(6):585-593.
    [98]张宗祜,沈照理,薛禹群,等.2000.华北平原地下水环境演化[M],北京:地质出版社。
    [99]方云,林彤,谭松林,2003.土力学[M].武汉:中国地质大学出版社.
    [100]刘杜娟.2004.中国沿淘地区地面沉降问题思考[J].中国地质灾害与防治学报,15(4):87-90.
    [101]王秀艳,刘长礼.2003.深层黏性土渗透释水规律的探讨[J].岩土工程学报,25(3):308-312
    [102]阎世骏,王秀艳1992.软土地基堆载预压效果探讨[A].第四届全国工程地质大会论文集(二)[C]:875-880.
    [103]曹文炳,李克文.1998.水位升降引起黏性土层释水、吸水与越流过程的室内研究方法[J].勘察科学技术,1986(4):22-28.
    [104]张宏仁,2001.中国的淡水资源问题[J].上海地质,2001(3):1-9.
    [105]张忠胤,1980.结合水动力学[M].北京:地质出版社:40-100.
    [106]牛修俊.1998.地层的固结特性与地面沉降临界水位控沉[J].中国地质灾害与防治学报,9(2):68-73.
    [107]王秀艳,刘长礼,张云.2006.超固结粘性土变形特征及可持续开采水位降的室内试验确定方法[J].岩土力学,27(6):876-879.
    [108]严礼川.1998.城市地面沉降设防问题[J].上海地质,1998(1):57-64.
    [109]陈崇希.2000.关工夫地下水开采引发地面沉降灾害的思考[J].水文地质工程地凰2000(1):54-58.
    [110]杨丽芝,张光辉,刘春华,刘中业,卫政润,韩晔.2008.鲁北平原地下水劣变特征与可持续利用对策研究[J].地质通报.27(3):33-41.
    [111]Fontes J C,Scute M,Sehiosser P.et al.1993.Aquifers as archives of paleoclimate[J].EOSTrans AGC.1993.74:21-22
    [112]张光辉,王金哲.2002.海河流域中东部平原区深层地下水补给与释水机制探讨--兼谈深层地下水资源可利用性[J].水文,22(3):5-9.
    [113]林祚顶.2003.同位素技术在水资源领域的应用[J].水利水电技术34(4):6-8.
    [114]张鑫,王纪科,蔡焕杰王正兴.2001.区域地下水资源承载力综合评价研究[J].水土保持通报,21(3):24-27.
    [115]郑铣鑫.1990.人工回灌地下水对地面沉降控制的探讨[J].勘察科学技术,1990(5):27-32.
    [116]郭永海,沈照理.从地面沉降论河北平原深层地下水资源属性及合理评价[J].地球科学,1995,20(4):416-420.
    [117]王家兵,崔爱敏2007.天津深层地下水安全开采量[J],中国国土资源经济,2007(7):32-35.
    [118]王家兵,王亚斌张海潦控制地面沉降条件下天津深层地下水资源持续利用.水文地质工程地质,2007(4):74-78.
    [119]吴铁均,崔小东,牛俊修1998.天津市地面沉降研究和综合治理[J].水文地质工程地质,25(5):17-20.
    [120]薛禹群,张云,等.2003.中国地面沉降及其需要解决的几个问题[J].第四纪研究,23(6):585-593
    [121]张廉钧.1999.超采深层地下水引起地面沉降规律的探讨[J].华北水利水电学院学报,20(2):39-43.
    [122]王大纯,张人权,史毅虹等1994.水文地质学基础[M],北京:地质出版社.
    [123]籍传茂,王兆馨,1997.地下水资源的可持续利用[M].北京:地质出版社.
    [124]贾绍凤,周长青,燕华云,等.2004.西北地区水资源可利用量与承载能力估算[J].水科学进展,15(6):801-807.
    [125]万亮婷,刘愿英,史康立,等.2006.地下水人工回灌经济效益分析浅析[J].中国农学通报,22(9):479-482.
    [126]张学真.2005.地下水人工补给研究现状与前瞻[J].地下水,2005(1):25-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700