大豆种质和培养条件对大豆愈伤组织积累异黄酮的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆异黄酮(Soybean isoflavones,SI)是大豆等豆科植物生长过程中形成的一类次生代谢物。近年来研究表明,大豆异黄酮具有多种生物活性和药理功效,是次生代谢产物的研究热点之一。目前,大豆异黄酮主要从大豆粕、豆胚及加工过程的废水中提取,提取效率较低,在自然界中资源有限,为此国内外相继开展了植物组织培养合成大豆异黄酮的工作。
     本实验与HPLC相比较,通过优化电泳条件和采用內标分析,改进了测定大豆异黄酮含量的高效毛细管电泳方法;探讨了大豆种质异黄酮含量差异与其愈伤组织中异黄酮积累的相互关系,明确了组织培养过程中异黄酮的积累时期和关键酶PAL的动态变化,并在此基础上探索了影响愈伤组织积累异黄酮的培养条件。主要实验结果如下:
     1.通过优化电泳条件和采用內标分析,改进了测定大豆异黄酮含量的高效毛细管电泳方法(HPCE)。最终电泳条件为:含有5%甲醇的40mmol/L硼砂溶液(pH10.0)为电泳缓冲液,压力进样20s,柱温25℃、分离电压16.5kV,检测波长为254nm,以鹰嘴豆芽素A作为內标物。在此条件下,6种异黄酮组分的峰面积和迁移时间的相对标准偏差(RSD)分别在0.5%~2.4%之间和1.8%~3.8%之间,加样回收率在97.2%~103.3%之间,RSD值均小于4.0%,6种异黄酮组分可在21min內完全分离并具有良好的线性关系。HPCE与HPLC对大豆异黄酮分离均较好,测定结果无明显差异。HPCE是一种检测异黄酮成分较为理想的方法。
     2.不同大豆品种诱导形成的愈伤组织,其生物量、异黄酮含量和产量的差异均达极显著水平;大豆品种与外植体的互作对愈伤组织生物量、异黄酮含量和产量的影响均达极显著水平;不同外植体诱导的愈伤组织之间,其异黄酮含量和产量的差异极显著,但生物量的差异不显著。相关分析表明,不同大豆品种(整粒、胚轴和子叶)异黄酮含量与其愈伤组织(分别由胚轴和子叶诱导)的异黄酮含量和产量均呈显著正相关,由此可见大豆品种异黄酮含量与其愈伤组织的异黄酮含量和产量密切相关,选育异黄酮组培专用型品种具有种质遗传基础。实验结果还表明,大豆品种来源、播期类型和异黄酮含量高低对其愈伤组织生长和异黄酮积累有重要影响。由建阳秋大豆胚轴诱导的愈伤组织,其生物量和异黄酮产量均较高,分别为1.24g/Flask(瓶)和13.16mg/Flask(瓶),适合作为诱导愈伤组织积累大豆异黄酮的材料。
     3.由愈伤组织生长和大豆异黄酮积累的动态变化可知,愈伤组织生物量和大豆异黄酮产量的增长趋势基本上一致,呈现“S”形曲线特征,但子叶和胚轴诱导产生的愈伤组织间存在差异。在整个愈伤组织培养过程中,PAL活性呈双峰型变化,大豆异黄酮积累之前先有一个酶活性增加过程,酶活化与最终产物的出现存在短暂的滞后时间,PAL酶活性对愈伤组织异黄酮合成存在重要影响。由此可见,在培养过程中愈伤组织大豆异黄酮的积累与初级代谢有密切联系,PAL是组织培养合成大豆异黄酮的一个主要的限速酶。
     4.培养条件对大豆愈伤组织生物量、异黄酮含量和产量的影响:
     (1)光照时间变化对大豆愈伤组织异黄酮的合成具有显著影响。在黑暗和光照交替处理下(8H/16h),愈伤组织的异黄酮含量最高为11.09(mg/g),同时异黄酮产量也最高,为12.04(mg/Flask)。结果表明,光照和黑暗处理相结合可有效促进愈伤组织生长和异黄酮的积累。
     (2)蔗糖浓度变化显著影响愈伤组织的生长和异黄酮积累,增大蔗糖浓度可以促进大豆愈伤组织中异黄酮积累,其中4%蔗糖浓度处理效果较好,异黄酮含量和产量分别为2%处理的1.30和1.61倍;
     (3)大豆愈伤组织对2,4-D、NAA和6-BA处理存在明显的浓度效应,2,4-D浓度为1.5mg/L时效果较好,能够实现愈伤组织生物量和异黄酮含量的同步增长;6-BA浓度为0.4mg/L时能显著促进愈伤组织生长和异黄酮积累;
     (4)苯丙氨酸添加浓度对愈伤组织生长和异黄酮积累有显著影响。浓度升高有利于愈伤组织异黄酮的积累,但对愈伤组织生物量有较大抑制作用。苯丙氨酸添加的较适浓度在0.120mmol/L左右,在该浓度下愈伤组织异黄酮产量最高,为12.36mg/瓶,是对照的1.07倍。
     (5)水杨酸(SA)作为诱导子对大豆愈伤组织异黄酮积累和愈伤组织生长诱导作用明显,当SA浓度为120μmol/L时,异黄酮含量和产量都达最高水平,分别是对照的1.35和1.58倍。
Soybean isoflavones are a large class of secondary metabolites found mostly in legumes. Recently, the isoflavones which have been associated with several health benefits, have been the one of the hottest topics in secondary metabolites. Isoflavones are usually extracted from soybean seeds and the waste water of the processing, so isoflavones resource is relatively limited. The use of plant cell cultures for large-scale production of active compounds is of interest from scientific and economical points of view. Many secondary metabolites have been reported to be produced by plant cell cultures. So soybean cell cultures can be used to provide high concentrations of bioactive isoflavones.
     Compared with HPLC, HPCE was improved to detect the contents of isoflavones with the method of internal standard analyze. The effect of soybean varieties and the explants on the growth of callus and accumulation of isoflavnones has been investigated. Meantime, dynamic changes of the accumulation of isoflavnones and the activity of PAL (EC 4.3.1.5) have been studied. Then the culture conditions which influence the synthesis of isoflavones in soyben callus has been explored. The main results were as follows:
     1. High performance capillary electrophoresis was improved to quickly analyze contents of isoflavones in soybean seed and callus. The biochanin was used as an internal standard. Electrophoresis conditions were as follows: a capillary tube with 40mmol/L sodium borate containing 5% methanol as the running buffer(pH10.0) and an applied voltage of 16.5kV, at 25℃, detected at a wavelength of 254 nm. Under the optimum conditions, 6 kinds of isoflavones were separated successfully within 21 minutes. The corrected peak areas of isoflavones increased linearly with components of isoflavones, and the recoveries were ranged from 97.2%~103.3%. The analytical results demonstrate the method is simple, quick and well reproducible, and can be used for the determination of isoflavones.
     2. There were significant differences of the biomass, content and yield of isoflavones among soybean callus from difference varieties and the interplay between variety and soybean callus. There were significant differences of the content and yield of isoflavones, but no significant difference of the biomass among the calluses from different explants. It was found that there was very significant positive correlation between the content of isoflavones of different varieties and the content and the yield of isoflavones in soybean callus. In a word, the content of isoflavones in difference varieties has significant effect on accumulation of isoflavones in soybean callus. By the experiments in this paper, there always has high contents and yield of isoflanoves in soybean callus from Jianyangqiudadou hypocotyls. So it can be used as a potential material for producing isoflavones in the future.
     3. The growth of soybean callus was approximately consistent with the accumulation of isoflavones by studying the dynamic changes of the accumulation of isoflavnones and the activity of PAL (EC 4.3.1.5). The shape of dynamic trends like a "S" curve, but there was little difference among the different explants. So there was close connection between accumulation of isoflavones and primary metabolism. During the entire course of culture of callus, the activity of PAL changed in a double-wave. The activity of PAL was activated before the accumulation of isoflavones. There was a short lag phase between activation of PAL and synthesis of isoflavones. Taken together, the activity of PAL has significant affect on the synthesis of isoflavones in soybean callus, and the PAL is a key enzyme for it.
     4. The effect of culture conditions on growth of callus and accumulation of isoflavones:
     (1) The illumination has great influence on the growth of callus and the accumulation of isoflavones. Comparede to illumination (24h) and darkness (24h), the contents and yield of isoflavones with the combination of illumination and darkness (16/8h) increased up to 11.09 (mg/g) and 12.04 (mg/Flask).
     (2) It was showed that improving sucrose concentration enhanced the growth of callus and stimulated accumulation of isoflavones. In comparison with 2% sucrose, the contents and yield of isoflavones with 4% sucrose in the medium increased by 30 % and 61%.
     (3) There was concentration effect on the growth of callus and the accumulation of isoflavones for 2,4-D,NAA and 6-BA. In comparison with control, 1.5mg/L 2,4-D was the best concentration, it had made the biomass of callus and the yield of isoflavones improve synchronistically. Among the 6-BA concentrations tested, 0.4 mg/L 6-BA enhanced the growth of callus and stimulated accumulation of isoflavones markedly.
     (4) The phenylalanine stimulated the accumulation of isoflavones markedly; however, it restrained the growth of callus remarkably. The results showed that among the phenylalanine concentrations tested, 0.120 mmol/L phenylalanine improved the accumulation of isoflavones, and the yield of isoflavones reached 12.36mg/Flask, which has increased by 7 % compared to the control.
     (5) By the experiments in this paper, SA which was chosen as an effective elicitor for isoflavones synthesis enhanced the growth of callus and stimulated accumulation of isoflavones remarkably. In comparison with control, the contents and yield of isoflavones with 120μmol/L SA in the medium increased by 35 % and 58 %.
引文
1.曹福祥著.次生代谢及其产物生产技术[M].长沙:国防科技大学出版社,2003
    2.陈斌,赵龙莲,李军会等.近红外光谱法快速分析葛根中的有效成分[J].光谱学与光谱分析,2002,22(6):976-979
    3.陈莎丽,赵晓峰,王庭槐等.植物雌激素对心血管保护作用的研究进展[J].新医学,2007,38(2):130-132
    4.陈学森,邓秀新,章文才.培养基及培养条件对银杏愈伤组织黄酮产量的影响[J].园艺学报,1997,24(4):373-377
    5.陈义.毛细管电泳技术及应用[M].北京:化学工业出版社,2000:46-49
    6.程水源,陈昆松,刘卫红等.植物苯丙氨酸解氨酶基因的表达调控与研究展望[J].果树学报,2003,20(5):351-357
    7.崔洪斌主编.大豆异黄酮-活性研究与应用[M].北京:科学出版社,2005
    8.邓廷倬主编.高效毛细管电泳[M].北京:科学出版社,1996:67-72
    9.董怀海,谷文英,王林祥.高效液相色谱-电喷雾质谱联用法检测大豆异黄酮和皂苷[J].无锡轻工大学学报,2002,21(4):48-50
    10.方从兵,李贺勤,宛晓春等.不同理化因子对野葛悬浮培养细胞生长及异黄酮合成的影响[J].中国中药杂志,2006,31(19):1580-1583
    11.方从兵,宛晓春,苏二正等.野葛细胞固定化培养及异黄酮化合物的生产[J].食品与发酵工业,2006,32(5):23-27
    12.方庆伟,那晓琳,崔洪斌.大豆异黄酮对大鼠骨代谢生化指标的影响[J].中国公共卫生,2002,18(3):293-294
    13.房建军,阙国宁.银杏愈伤组织生长和黄酮类化合物积累的关系[J].林业科学研究,1998,11(2):124-129
    14.甘烦远,彭丽萍,郑光植.云南红豆杉愈伤组织培养及其生产紫杉醇的研究[J].植生物工程学报,1996,12(增刊):308-311
    15.谷利伟,谷文英,陶冠军等.HPLC-ESI/MS法分析大豆胚芽中的异黄酮[J].中草药,2000,31(11):821-823
    16.郭俊明,赖依峰,肖丙秀等.黄豆苷原对体外培养人胃癌细胞增殖和细胞周期的影响[J].营养学报,2004,26(5):374-377
    17.韩粉霞,丁安林,孙君明.高异黄酮含量大豆新品种中豆27的选育及配套栽培技术[J].华北农学报,2002,17(增刊):111-114
    18.何含杰,梁朋,施和平.蔗糖和光对三裂叶野葛毛状根生长及次生物质产生的影响[J].生物工程学报,2005,21(6):1003-1008
    19.江和源,吕飞杰,台建祥等.高效液相色谱法测定大豆中异黄酮的含量[J].食品科学,2000,21(4):56-58
    20.江和源,台建祥,吕飞杰等.高速逆流色谱法分离制备大豆异黄酮中的黄豆苷和染料木苷[J].食品科学,2004,25(1):85-88
    21.鞠兴荣,袁建,汪海峰.大豆异黄酮提取工艺的优化[J].中国粮油学报,2001,16(6):17-20
    22.鞠兴荣,袁健,汪海峰.三波长紫外分光光度法检测大豆异黄酮的研究[J].食品科学,2001,22(5):46-48
    23.李辉,戴常军,兰静.黑龙江省栽培大豆异黄酮含量的初步分析[J].中国粮油学报,2007,22(1):38-40
    24.李琳,钱忠明.大豆异黄酮的药理作用和保健功能的研究进展[J].中国药学杂志,2002,37(10):724-726
    25.李卫东,梁慧珍,卢为国等.大豆籽粒异黄酮含量与生态因子相关关系的研究[J].中国农业科学,2004,37(10):1458-1463.
    26.刘长军,侯蒿生.真菌激发子对人参悬浮培养细胞的生长和人参皂苷生物合成的影响[J].实验生物学报,1999,32(2):169-174
    27.刘晶莹,刘宝兴,张莹.大豆异黄酮精制工艺研究[J].辽宁化工,2003,32(10):428-430
    28.刘岭.中草药植物细胞工程研究进展[J].中草药,2002,33(12):1132-1134
    29.刘文奇,郭泽建.信号传导拮抗物对大豆细胞植保素和异黄酮积累的影响[J].植物生理与分子生物学学报,2003,29(4):301-308
    30.刘颖,张牧,王小雪等.染料木黄酮对人胃癌细胞生长抑制作用研究[J].营养学报,2001,23(1):62-65
    31.刘幼琪,汤行春.连翘的组织培养和连翘苷形成的研究[J].中国中药杂志,2003,28(4):321-323
    32.吕东平,赵德修,黄艳等.前体对水母雪莲悬浮培养细胞黄酮合成的影响[J].云南植物研究,2001,23(4):497-503
    33.吕振越,王庆华.白藜芦醇研究进展[J].食品研究与开发,2003,2(24):25-26
    34.罗建平,罗凯,陈晓燕.用神经网络和遗传算法优化怀槐悬浮细胞合成异黄酮[J].生物工程学报,2004,20(5):759-763
    35.罗建平,沈国栋,姜绍通.怀槐培养细胞中异黄酮分析及其保肝作用[J].食品科学,2003,24(10):139-142
    36.罗建平,吴礼福,姜绍通.怀槐愈伤组织形成与异黄酮积累[J].中国中药杂志,2003,28(12):1138-1141
    37.罗建平,夏宁,沈国栋.茉莉酸甲醋、水杨酸和-氧化氮诱导怀槐悬浮细胞合成异黄酮及细胞结构变化[J].2006,39(5):438-444
    38.马桂枝,云琦,高晓黎.大豆中大豆异黄酮提取工艺的研究[J].中草药,2002,24(11):828-831
    39.孟祥颖,李向高,魏春雁等.葛藤与葛根中异黄酮类成分的比较[J].吉林农业大学学报,1994,16(3):47-50
    40.那晓琳,刘晓华,崔洪斌.大豆异黄酮对去卵巢大鼠骨力学性能的影响[J].中国公共卫生,2004,20(3):264-265
    41.潘廖明.大豆异黄酮提取分离技术及检测方法研究[D].四川大学硕士学位论文,2003
    42.彭义交,刘宗林.大豆异黄酮双向纸层析分析方法的研究[J].食品科学,2004,25(4):141-144
    43.钱洪胜,陈利民,胡惟孝.5-甲基-7-甲氧基异黄酮的合成[J].应用化学,2005,22(2):224-226
    44.任国峰,黄忆明.大豆异黄酮对大鼠前列腺增生的抑制作用[J].湖南医科大学学报,2003,28(4):343-346
    45.沈国栋.水杨酸调节怀槐培养细胞合成异黄酮与碳氮代谢的关系研究[D].合肥工业大学硕士学位论文,2004
    46.石荣,王少云,姜维林等.薄层分离-导数光谱法测定大豆中异黄酮[J].光谱实验室,2005,22(1):5-7
    47.石玮,罗建平,罗凯.怀槐培养细胞生产保肝异黄酮的条件优化[J].食品科学,2005,26(10):113-115
    48.孙君明,丁安林.大豆异黄酮含量及影响因素的评价[J].中国粮油学报,1998,13(2):10-16.
    49.孙君明,丁安林.大豆种子发育过程中异黄酮的积累[J].植物生理学通讯,1998,34(1):10-13
    50.孙君明,丁安林.地理环境对大豆种子中异黄酮积累的影响趋势[J].大豆科学,1997,16(4):298-303.
    51.孙君明,韩粉霞,丁安林.储藏温度与时间对大豆子粒中异黄酮含量的影响[J].大豆科学,2004,23(4):245-248
    52.孙君明.中国大豆异黄酮含量的初步分析[J].中国粮油学报,1995,10(4):51-54
    53.孙莲,孟磊,陈坚等.毛细管电泳法测定桑叶中的黄酮类成分-芦丁和槲皮素[J].色谱,2001,19(5):395-397
    54.孙玲,魏振承,徐志宏等.大豆异黄酮对衰老小鼠羟脯氨酸等物质变化的影响[J].中国粮油学报,2003,18(2):58-60
    55.孙玲,魏振承,徐志宏等.大豆异黄酮提取纯化及其抗衰老作用初探[J].食品科学,2002,23(8):267-270
    56.孙梅君,骆炼,史长颖等.中国大豆制品中异黄酮含量测定和分析研究[J].食品与发酵工业,2000,26(15):14-18
    57.汪海波,刘大川等.大豆胚芽甲醇提取物中大豆皂苷、大豆异黄酮分离纯化工艺研究[J].食品科学,2001,22(4):40-44
    58.王纯娥,刘叔义.大豆异黄酮的成分、含量及特性[J].食品科学,1998,19(4):39-43
    59.王敬文,薛应龙.植物苯丙氨酸裂解酶的研究:苯丙氨酸裂解酶在抗马铃薯晚疫病中的作用[J].植物生理学报,1982,8(1):35-43
    60.王松,丁立,周荣琪.HPLC法测定豆粕中大豆异黄酮的含量[J].化工进展,2005,24(2):196-199
    61.吴定,路桂红.发酵大豆食品中染料木黄酮含量的ELISA测定[J].食品科学,2002,23(7):118-120
    62.吴同,梁明.毛细管电泳分离四种大豆异黄酮类化合物[J].宜宾学院学报,2003,3(3):82-84
    63.谢明杰,高爽,邹翠霞等.大豆异黄酮生理功能的研究进展[J].食品与发酵工业,2004,30(5):94-98.
    64.徐德平,江汉湖,汤涛等.大豆及丹贝异黄酮对乳腺癌、子宫癌和卵巢癌癌细胞的抑制效应[J].食品科学,2001,22(6):69-72
    65.徐颖,董文宾.高效液相色谱法检测豆粕中大豆异黄酮的含量[J].陕西科技大学学报,2003,21(4):79-82
    66.杨丹,苍晶,郝再彬等.流动注射化学发光法测定大豆异黄酮[J].分析化学,2006,34(8):1113-1115
    67.殷丽君,李里特,李再贵等.采用HPLC技术快速检测发酵大豆制品中异黄酮的含量[J].食品科学,2002,23(2):100-103
    68.于树宏,李玲,潘瑞炽等.茉莉酸甲酯和ABA对野葛毛状根中异黄酮含量的影响[J].植物生理学通讯,2002,38(4):344-346
    69.袁建,鞠兴荣.大豆异黄酮分离与精制工艺研究[J].食品科学,2002,23(8):118-121
    70.袁晓洁,郭英,孙维琦等.大豆异黄酮与大豆皂甙抗疲劳作用[J].中国公共卫生,2007,23(3):327-328
    71.张春荣.影响野葛幼叶悬浮细胞中葛根素等异黄酮类化合物产量的因素研究[D].华南师范大学硕士学位论文,2002
    72.张岚,蔡美琴,高培君等.大豆异黄酮对去卵巢大鼠抗氧化能力影响[J].中国公共卫生,2006,22(10):1227-1228
    73.张永忠,孙艳梅.大豆异黄酮研究中的名词术语[J].中国粮油学报,2004,19(4):50-52
    74.张玉梅,孙学斌,高旭年.紫外分光光度法检测大豆总异黄酮的含量[J].中国食品卫生杂志,2000,12(4):7-9
    75.赵德修,李茂寅,邢建民等.光质、光强和光期对水母雪莲愈伤组织生长和黄酮生物合成的影响[J].植物生理学报,1999,25(2):127-132
    76.赵德修,汪沂,赵敬芳.不同理化因子对雪莲培养细胞中黄酮类形成的影响[J].生物工程学报,1998,14(3):259-264
    77.赵胜利,冀亚兰,黄正云等.愈风宁心片的薄层扫描定量法[J].中草药通报,1979,8:8-9
    78.赵世萍,章育中.葛根中异黄酮含量的薄层光密度法检测[J].药学学报,1985,20(3):203-208
    79.朱洪德,谢甫绨,费志宏.高油高异黄酮大豆垦鉴豆43套栽培技术[J].中国种业,2006,6:47
    80.朱洪德,谢甫绨,费志宏.高油高异黄酮大豆新品种垦农21的选育和配套栽培技术[J].种子,2006,25(5):92-95
    81.朱仕房,王普利,魏东芝.大豆异黄酮提取条件的研究[J].食品科学,2001,22(3):54-57
    82.邹海滨.大豆异黄酮类对体外培养大鼠成骨细胞的影响[J].营养学报,2002,24(3):260一264
    83.Luczkiewicz M,et al.Callus cultures of Genista plants in vitro material producing high amounts of isoflavones of phytoestrogenic activity[J].Plant Science 2003,165:1101-1108
    84.Adlercreutz H,Fotsis T,Wantanabe S,et al.Determination of lignans and isoflavonoids in plasma by isotope dilution gas chromatography-mass spectrometry[J].Cancer Detect Prev,1994,18(4):259-271.
    85.Anderson J W,Johnstone B M,Cook-Newell M E.Meta-analysis of the effects of soy protein intake on serum lipids[J].N Engl J Med,1995,333(5):276-282
    86.Aussenac T,Lacombe S,Dayde J.Quantification of isoflavones by capillary zone electrophoresis in soybean seeds:effects of variety and environment[J].American Journal of Clinical Nutrition,1998,68(suppl):1480S-5S.
    87.Barnes K A,Smith R A,Williams K,et al.A microbore high performance liquid chromatography electrospry ionization mass spectrometry method for the determination of the phytoestrogens genistein and daidzein in comminuted baby foods and Soya flour [J]. Rapid Communications in Mass Spectrometry, 1998, 12: 130-138.
    88. Bouque V, Bourgaud F, Nguyen C, et al. Production of daidzein by callus cultures of Psoralea species and comparison with plants [J]. Plant Cell Tiss. Org. Cult. 1998, 53: 35-41.
    89. Du Q Z, Li Z H, Ito Y. Preparative separation of isoflavone components in soybeans using high speed counter-current chromatography [J]. J Chromatogr A, 2001, 923(1-2): 271-274.
    90. Ermanno F, et al. High isoflavone content and estrogenic activity of 25 year-old Glycine max tissue cultures [J]. Phytochemistry. 2003(64): 717-724
    91. Fedoreyeva S.A et al;Isoflavonoid production by callus cultures of Maackia amurensis [J].Fitoterapia.2000 71:365-372
    92. Joannou G E, Kelly G E, Reeder A Y, et al. A urinary profile study of dietary phytoestrogens, the identification and mode of metabolism of new isoflavonoids [J]. J Steroid Biochem Mol. Biol, 1995, 54(34):167-184.
    93. Jong J K, Seung H K, Sang J H, et al. Changing soybean isoflavone composition and concentrations under two different storage conditions over three years[J].Food Research International, 2005, 38:435-444
    94. Kitamura K, Igita K, Kikuch A, et al. Low Isoflavone content in some early maturing cultivars, so-called Summer type soybean (Glycine max(L.)) [J]. Japan. J. Breed. 1991,41:651-654
    95. Ligins J, Bluck L G C. Coward A, et al. Extraction and quantification of genistein in food [J]. Anal Biochem, 1998, 264: 1-7.
    96. Ligins J, Bluck L G C. Daidzein and genistein content of fruits and unts[J].J Nutri Biochem,2000,11(6): 326-331
    97. Luczkiewicz M., D. Glo'd, Callus cultures of Genista plants: in vitro material producing high amounts of isoflavones of phytoestrogenic activity [J]. Plant Sci. 2003, 165: 1101-1108.
    98. Luczkiewicz M., D. Glo'd, T. Ba(?)czek, A. Bucin′ski, LC-DAD UV and LC-MS for the analysis of isoflavones and flavones from in vitro and in vivo biomass of Genista tinctoria L [J]. Chromatographia, 2004, 60:179-185.
    99. Nagata C, Takatsuka N, Kawakami N, et al. Soy product intake and hot flashes in Japanese women: results from a community-based prospective study [J]. Am J Epidemiol, 2001, 15(8): 790-793
    100.Oliver Y, Brian M. Metabolic Engineering of Isoflavone Biosynthesis [J]. Advances in Agronomy, 2005, 86:147-190
    101.Peng Y Y, Chu Q C, Liu F H, et al. Determination of isoflavones in soy products by capillary electrophoresis with electrochemical detection [J].Food Chemistry, 2004, 87: 135-139
    102.Peng Y Y, Ye J N. Determination of isoflavones in red clover by capillary electrophoresis with electrochemical detection [J]. Fitoterapia, 2006, 77: 171-178
    103.Shihabi Z K, Kute T, Garccia L L, et al. Analysis of isflavones by capillary electrophoresis [J]. J Chromatogra, 1995, 707:327-333
    104.Sun Joo L, Weikai Y, Joung K A, et al. Effects of year, site, genotype and their interactions on various soybean isoflavones [J]. Field Crops Research. 2002, 4150: 1-12
    105.Tony J V, Xinhua Y, Tom W, et al. Potassium Fertilization Effects on Isoflavone Concentrations in Soybean [Glycine max (L.) Merr.] [J]. J Agric Food Chem. 2002, 50: 3501-3506
    106.Trieu V N, Uckun F M. Genistein is neuroprotective in murine models of familial amyotrophic lateralsclerosis and stroke [J]. Biochem Biophys Res Commum, 1999, 258: 685-687
    107.Uehara M, Lapcik O, Hampl R, et al. Rapid analysis of phytoestrogens in human urine by time resolved-fluoroimmunoassay [J]. J Steroid Biochem Mol Biol, 2000, 72(5): 273-282.
    108.Vanttinen K, Mocavcova J. Phytoest rogen in soy foods determination of daidzein and genistein by capillary electrop horesis [J]. Czech J Food Sci, 1999, 7(2): 61-67
    109. Wang G J, Lapeik O, Hampl R, et al. Time resolved fluoroimmunoassy of plasma daidzein and genistein [J ]. Steroids, 2000, 65(6): 339-348
    110.Wang W. Isoflavone content in commercial soybean foods [J]. J Agric Food Chem, 1994, 42: 1666-1673
    111.White L R. Petrovitch H, Ross G W, et al. Brain Aging and midlifetofu consumption [J]. J Am Coll Nutr, 2000, 19: 242

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700