豆浆通电加热特性与凝胶流变特性及其在线检测方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆食品风靡全球,推动了豆制品加工业尤其是豆腐制造业的迅速发展。但是,作为豆腐的发源地和消费大国,我国的豆腐产业依然采用传统落后的生产方式。我国豆腐生产存在的主要问题有:缺少包装、卫生质量差、保质期短、产品质量不稳定、加工设备简陋、自动化水平低、工艺参数模糊、难于实现规格化和标准化生产。通电加热技术有利于提高豆腐生产过程的自动化水平,改善产品品质,因此本论文对豆浆通电加热凝胶过程中的电导率、动态流变特性、电阻率与动态流变特性之间的关系进行了研究,探索了通过测量电阻率来自动判断豆浆凝固终点,通过测量电阻率来实现动态流变特性在线自动检测的可行性。用有限元方法对豆浆通电加热过程中的温度场分布进行了模拟。在此基础上,完成了豆浆通电加热和豆浆凝固检测系统的设计,为研发通电加热家用豆腐机和商用大型豆腐机奠定了基础。通过上述研究得到的主要结论如下:
     (1)整个豆浆通电加热系统可用电容和电阻串联组成的等效电路表示。
     (2)豆浆在通电加热时的升温速率随着电场强度和频率的增加而增加;电场强度为6、12、18V/cm时,升温到90oC所需时间分别大约为:1400s,360s,170s;当电场强度为12、18V/cm时,升温曲线近似为指数曲线。
     (3)豆浆在通电加热凝固过程中的电导率随电场频率的增加而增加;豆浆的电导率与温度呈线性关系。
     (4)在通电加热时豆浆中间部位的温度分布比较均匀,靠近加热槽壁的温度较低,加热时间从50s增加到300s,豆浆的最大温差从3℃增大到20.2℃。加热槽吸热和散热是造成豆浆温度分布不均的主要原因。
     (5)豆浆在凝固过程中的弹性模量G'和黏性模量G"随时间的变化趋势相同:在凝胶反应初期凝胶速率很快,后期变慢。凝胶反应的均匀性与凝固温度有关,凝固温度为80℃时,凝胶反应速率变化比较均匀,制得的豆腐质构均匀。
     (6)可以将豆腐凝胶过程分为三个阶段:第一阶段是诱导阶段,温度从70~85℃,G'和G"变化不大;第二阶段是加速阶段,温度从85~95℃, G'和G"急剧增大;第三阶段是稳定阶段,当温度大于95℃,凝胶反应结束,豆腐凝胶形成,G'和G"趋于稳定。当温度小于70℃时,豆浆不能形成豆腐凝胶;当温度在87℃时,G'和G"相交,豆腐的凝胶温度为87℃。
     (7)豆浆在加热凝固过程中,电阻率、G'和G"随时间的变化曲线可以用连续一级反应模型模拟。可以用测量电阻率变化率(或电阻率)判断凝固终点,当电阻率变化率(或电阻率)基本不变时,凝固达到终点。
     (8)豆浆在加热凝固过程中,G、G与电阻率呈线性相关,凝固温度在75℃时,线性相关系数为0.981和0.980;80℃时,线性相关系数为0.996和0.979;85℃时,线性相关系数为:0.805、0.900。
     (9)设计了通电加热豆腐加工系统,主要对热电偶温度采集模块和阻抗测量模块进行了设计,实现了豆腐通电加热凝固在线检测。
Soybean food is a very popular and healthy product all over the world. Soybeanprocessing industry, especially the tofu manufacturing industry has been developed rapidly.There are many problems in tofu making in China: no packaging, poor sanitation, short shelflife, changeable quality, simple equipment and lack of process standard. To improveautomation of tofu process and tofu’s quality, the paper mainly studied the conductivity ofsoymilk, dynamic rheological properties and the relationship between them during thecoagulation process by ohmic heating, and explored the feasibility of online automaticdetection of dynamic rheological properties by measuring the electrical conductivity. A finiteelement model was established and temperature distribution inside the heating tank wassimulated and validated. On the basis of those findings, tofu process system that can performohmic heating of soymilk and detect the coagulation the coagulation process of tofu wasdesigned, which laid a foundation for development of tofu manufacturing equipment usingohmic heating. In this paper, the following conclusions were drawn.
     (1) An equivalent circuit model was used to describe the soymilk-electrode systemconsisting of resistance and capacitance in series.
     (2) Heating rate during ohmic heating process of the soymilk was increased with theincrease of the frequency and electric field strength. The required times for heating soymilksample to90℃were1400s,360s and170s, respectively, when electric field strengths of6,12and18V/cm were applied.
     (3) Electrical conductivity of soymilk during ohmic heating process increased with theincrease of frequency. Electrical conductivity of soymilk was correlated linearly withtemperature.
     (4) During ohmic heating process, the temperature distribution in the center part ofsoymilk was more uniform than the other locations and the temperature close to the heatingtank walls was low. For heating time increasing from50s to300s, temperature differenceinside the soymilk increased from3℃to20.2℃. The main reason was heat loss from theheating tank to the ambient.
     (5) During the coagulation process of soymilk, elastic modulusG'and viscous modulusG"showed the same trends. In the initial stage, coagulation process was fast and thenbecame low. When the coagulation temperature was about80℃, better texture of tofu gelwas easily obtained.
     (6) The dynamic temperature scanning curve of soymilk during the coagulation processwas divided into three stages. The first stage was induction stage from70to85℃,G'and G"increased gradually. The second stage was acceleration stage from85to95℃,G'and G"increased rapidly. The third stage was stabilization stage over95℃,G'and G"changed minimally and coagulation reaction finished. In temperature below70℃,tofu gel was not formed. Especially at87℃, the intersection point ofG'andG"wasobserved indicating that phase transformation of tofu gel took place.
     (7) During the coagulation process of soymilk, resistivity-time,G'-time andG"-timecurves were fitted by a consecutive first-order reaction kinetics. It could be concluded thatcoagulation process finished when the volume resistivity remained unchanged. So electricalmeasurement provided an indirect method to judge the end point of coagulation process.
     (8) Good agreements betweenG'and resistivity were obtained during soymilkcoagulation process, the same as betweenG"and resistivity. High correlation coefficientswere obtained at different temperatures.
     (9) On the basis of the above findings, tofu process system by ohmic heating waspreliminarily developed, Thermocouple temperature measurement circuit and impedancemeasurement circuit were mainly designed and online detection of soymilk coagulationprocess was realized.
引文
曹升富.1995.内酯豆腐的制作.重庆中草药研究,21:105~106
    陈世爵.1997.大豆与慢性疾病.豆腐文化研究论文集
    陈霞,李钢,杨铭铎,余善鸣,刘志东,刘宁.2003.通电加热技术及其在食品加工中的应用.哈尔滨商业大学学报(自然科学版),19(6):700~703
    段洪东.2002.部分水解聚丙烯酰胺/Cr凝胶的交联机理及交联动力学研究.[博士学位论文].浙江:浙江大学:8~10
    邓力,金征宇.2004.欧姆杀菌装备及其最新进展.食品与机械,20(2):61~63
    董利民,王晨,田杰谟,潘健,昝青峰.2005.可注射磷酸钙骨水泥凝固过程的动态流变学研究.稀有金属材料与工程,34(z1):1184~1187
    杜荣茂.2004.欧姆加热技术及其在食品工业中的应用.包装与食品机械,22(6):43~45
    冯立刚,贾玉玺,陈希亮,安立佳.2008.酶凝干酪素物理凝胶化过程的有限元模拟.高分子学报.6:529~535
    付海英,谢雷东,虞鸣.2005. SBS改性沥青动态剪切流变性能评价的研究[J].公路交通科技,22(12):9~10
    谷大海,常青,刘华戎.2009.豆腐的研究概况与发展前景.农产品加工创新版,6:76~78
    耿建暖.2006.欧姆加热及其在食品加工中的应用.食品与机械,22(6):144~146
    管立军,李里特.2008.影响豆腐保质期的原因及解决措施研究进展.中国豆制品行业自主创新高峰论坛论文
    郭咏梅倪富健肖鹏.2011.基于线黏弹范围的改性沥青动态流变性能.江苏大学学报(自然科学版),32(4):460~463
    龚加顺,幸治梅,彭春秀,刘勤晋.2005.大豆分离蛋白及其与魔芋葡苷聚糖凝胶化作用的动态粘弹性研究.食品科学,26(10):25~29
    黄继昌,徐巧鱼,张海贵.1998.传感器工作原理及应用实例[M].北京:人民邮电出版社,16~18
    籍保平,李博.2005.豆制品安全生产与品质控制.北京:化学工业出版社:1
    贾原媛,李修伦.2002.欧姆加热在食品加工中的应用.天津轻工业学院学报,(2):13~17
    姜苏俊.2003.二元聚合物及含填料的三元共混体系相行为的动态流变学研究.[博士学位论文].四川:四川大学:19~21
    揭广川,贡汉坤.1995.食品工业新技术及应用.北京:中国轻工业出版社:178~181
    李博,李里特.2003.中国传统豆制品生产工业化过程中存在的问题.食品科技,1:1~3
    李法德,李里特,辰巳英三.2003.不同加热条件对豆浆电导率的影响.农业机械学报,34(6):107~111
    李法德,孙玉利,李陆星.2008.连续通电加热条件下豆浆的电导率.农业工程学报,24(12):275~278
    李瀚如,潘君拯.1990.农业流变学导论.北京:农业出版社:187~190
    李洪波,赵维谦,高思田,崔建军,丁健.2010.基于热电偶的精密环境温度场测量的关键问题研究.哈尔滨理工大学学报,15(4):1~5
    李里特.2009.中国传统豆腐类食品的养生价值.粮食加工,34(1):57~58
    李里特.1995.电磁处理技术与食品加工新探索(上).食品与机械,5:7~9
    李里特.1998.食品物性学.北京:中国农业出版社
    李里特.2001.食品物性学.第二版.北京:中国农业出版社:309
    李里特,刘志胜.1999.大豆蛋白营养品质和生理功能研究进展.中国食物与营养,4:21~23
    李里特,汪立君,李再贵,辰巳英三.2002.大豆蛋白热变性程度对豆腐品质的影响.中国粮油学报,17(1):1~4
    李里特,刘志胜,辰巳英三.2000.加工条件对豆腐凝胶物性品质的影响.食品科学,21(5):26~29
    刘志胜.2000.豆腐凝胶的研究.[博士学位论文].北京:中国农业大学
    刘志胜,李里特,辰巳英三.2000.大豆异黄酮及其生理功能研究进展.食品工业科技,1:78~80
    李润明,俞炜,周持兴.2008.流变学方法测定共混物相图及其分辨尺度探导.高分子学报,5:481~486
    李润明,俞炜,周持兴.2006.聚甲基丙烯酸甲酯/聚(苯乙烯-马来酸酐)共混体系相分离的流变学行为.高等学校化学学报,1:166~169
    李修渠.2001.通电加热在食品加工中的应用.食品科技,6:6~9
    李修渠,李里特,辰巳英三.1999.豆浆的导电率.中国农业大学学报,4(2):103~106.
    李玥,钟芳,麻建国.2005.大豆蛋白组分7S和11S的凝胶特性,24(6):19~23
    李云飞.2007.食品质构学——半固态食品.北京:化学工业出版社:92
    林忠平,尹光初.1983.大豆储存蛋白研究.大豆科学,2(3):232~238
    凌振宝,王君,朱凯光,张瑞鹏.2003.数字温度传感器在热电偶冷端补偿中的应用[J].传感器技术,22(6):45~46
    孟岳成,洪伦波.2009.结冷胶的复配胶体系的流变行为研究.食品工业科技,4:128~130
    乔支红,李里特.2007.豆腐凝胶形成影响因素的研究进展.食品科学,28(6):363~366
    苏继颖.2006.大豆制品的营养及发展趋势.中国油脂,31(8):40~41
    叶同山,倪长云.2003.大厂地区豆腐生产卫生状况调查与管理对策.职业与健康,19(11):74~75
    邵健,范家林,潘雪良,陆卫明.2009.常熟市小包装内酯豆腐卫生质量状况调查.江苏预防医学,20(4):42~43
    沈五雄,周家华.2010.含绝缘体物料的欧姆加热过程模拟.食品工业科技,31(2):145~148.
    孙玉利,李法德,杨玉娥,韩玉臻,田富洋.2004.通电加热技术在食品工业中的应用研究进展.农业工程学报,20(6):296~300
    孙玉利,左敦稳,李法德.2006.直立分室式流体连续通电加热系统的试验研究.四川大学学报(工程科学版),38(6):148~152
    田其英,华欲飞.2007.豆腐生产研究进展.粮食与油脂,9:7~10
    许喜林,郭祀远,李琳,高建华,蔡妙颜.2003.鸡蛋豆腐和牛奶豆腐的研制及营养评价.华南理工大学学报(自然科学版),31(5):59~61
    熊秀芳,李星恕,郭康权,丰田净彦.2011.豆浆通电加热过程有限元解析与验证.农业机械学报,42(12):158~163
    熊秀芳,李星恕,郭康权,丰田净彦.2011.通电加热过程中豆浆内温度分布模拟及验证.中国农业工程学会2011年学术年会论文集:316
    王冉冉,朱敏,李法德.2011.食品通电加热中极板污染问题研究进展.农业工程,1(1):67~71
    王世军.2007.什么是有限元法. http://wsjxaut.blog.sohu.com/34086180.html
    王贵一.2001. RPA2000橡胶加工分析仪在橡胶研究中的应用.特种橡胶制品,22(1):56~62
    吴晖,唐传核,李琳,杨晓泉.2006.盐浓度对商用大豆分离蛋白凝胶的胶凝过程及动态黏弹性的影响.食品科学,27(7):39~43
    杨玉娥,李法德,孙玉利.2004.通电加热技术的特点及其在肉制品加工中的应用.江西食品工业,1:25~27
    阎利平,李志民,燕育民.1990.一种新的热电偶线性化方法.自动化仪表,11:18~19
    杨芳潘思铁张丛兰.2009.豆腐凝胶形成过程中蛋白质变化研究.食品科学,30(19):120~124
    杨红,胡庆国,祝妍妍,孟军.2011.内酯豆腐保鲜工艺的研究.合肥学院学报(自然科学版),21(2):72~76
    杨铭铎,邓云.2000.食品的通电加热技术研究.食品科学,21(12):146~155
    杨淑媛,田元兰,丁纯孝.1989.新编大豆食品.中国商业出版社
    姚茂君.2009.实用大豆制品加工技术.北京:化学工业出版社:3
    曾宗强,陈美,黄茂芳.2008.自然凝固和乙酸凝固的天然橡胶动态性能的比较.热带作物学报,29(3):270~274
    赵丽.2011. VGCF填充聚合物体系的结构、导电性与流变行为研究.[博士学位论文].杭州:浙江大学:10
    张明晶,魏益民.2003.加工条件对豆腐产量和品质的影响.大豆科学,22(3):227~229
    张明晶,魏益民,张波,康立宁,李勇.2006.加工条件对豆腐质量特性的影响.大豆科学,25(4):395~398
    张璐,李法德,郭清南.2001.食品的电导率以及通电加热技术的探讨.包装与食品机械,19(3):18~22
    张文朴.2007.豆腐解读——历史、原理、创新.化学教育,7:63~64
    张春晖.2011.抗冲共聚聚丙烯结构、相形态及动态流变行为研究.[博士学位论文].杭州:浙江大学:4~7
    钟芳,王璋,许时婴.2001.大豆蛋白速凝特性研究-Ⅰ热处理条件对大豆蛋白速凝特性的影响.中国粮油学报,16(4):47~50
    周持兴.2003.聚合物流变实验与应用.上海:上海交通大学出版社:43
    周春晖,黄惠华,王志.2001.大豆蛋白生理保健作用研究进展.粮食与油脂,2:37~39
    周亚军.2004.含水果颗粒液体食品物料通电加热特性及影响因素研究.[博士学位论文].吉林:3
    周亚军,殷涌光,于庆宇,刘薇.2003.含颗粒液态食品通电加热加工特性及影响因子.食品与发酵工业,29(7):75~78
    周亚军,殷涌光,王淑杰.2004.食品欧姆加热技术的原理及研究进展.吉林大学学报(工学版),34(2):324~329
    周亚军,殷涌光,王淑杰,王丹,于庆宇,刘微.2004.食品欧姆加热技术的原理及研究进展.吉林大学学报(工学版),34(2):324~330
    周亚军,殷涌光,王淑杰.2004.食品欧姆加热技术的原理及研究进展.吉林大学报(工学版),34(2):324~329
    周亚军,王淑杰,苏丹,钱曦,吕晨燕,李英.2009.含水果颗粒胶体溶液通电加热速度建模与工艺优化.农业机械学报,40(10):111~125
    Alwis A A P,Fryer P J.1990. The use of direct resistance heating in the food industry. Journal of FoodEngineering,11:3~27
    Bourne M C.1992. Calibration of rheological techniques used for foods. Journal of Food Engineering,16:151~163
    Beddows C G, Wong J.1987. Optimization of yield and properties of silken tofu from soybeans.ⅠCoagulant concentration, mixing and filtration pressure. Internaltional Joumal of Food Science andTechnology,22:29~34
    Beddows C G, Wong J.1987. Optimization of yield and properties of silken tofu from soybeans.ⅡHeatprocessing. Internaltional Jouranl of Food Science and Technology,22:23~27
    Berk Z.1992. Technology of production of edible flours and protein products from soybeans. FAOAgricultural Services Bullletin No.97, Chapter9
    Castro I, Teixeira J A, Salengke S, Sastry S K, Vicente A A.2003. The influence of field strength, sugarand solid content on electrical conductivity of strawberry products. Journal of food process engineering,26,17~29
    De alwis A A P,Halden K and Fryer P J.1989. Shape and conductivity effects in the ohmic heating offoods. Chem. Eng. Res. Des.67March:159~168
    Grimnes S and Martinsen Ф G.2000. Bioimpedance and bioelectricity basis.Academic Press:25~35
    Hashizume K, Maeda M, Watanabe T.1978. Relationship of heating and cooling condition to hardness oftofu. Nippon Shokuhin Kogyo Gakkaishi,25(7):387
    Howard A. Barnes.2000. A hand book of elementary rheology. Cambrain Printers:43~70
    Icier F, Ilicali C.2004. Electrical conductivity of apple and sourcherry juice concentrates during ohmicheating. Journal of Food Process Engineering,27:159~180
    Icier F, Ilicali C.2005. The effects of concentration on electrical conductivity of orange juice concentratesduring ohmic heating. Eur. Food Res. Technol.,220:406~414
    Iwabuchi S, Yamauchi F.1987. Determination of glycinin and β-congiycinin in soybean proteins byimmunological methods. J Agric Food Chem.35:200~205
    Jaeger H, Meneses N, Knorr D.2009. Impact of PEF treatment imhomogeneity such as electric fielddistribution, flow characteristic and temperature ffects on the inactivation of E.coli and milk alkalinephosphatase. Innovative Food Science and Emerging Technologies,10(4):470~480.
    Jones P L,Rowley A T.1997. Dielectric Dryers in Industrial Drying of Foods. Klackie Academic andProfessional, an imprint of Chapman&Hall,157
    Jun S, Sastry S.2005. Modelling and optimization of ohmic heating of food inside a flexible package.Journal of food engineering,28:417~436
    Kamata Y, Yamaki M, Onodera M.2004. Electrochemical coagulation of soybean protein; tofu (soybeancurd) production by an electro-reaction. Food Sci. Technol. Res.,10(4):424~427
    Kohyama K, Nishinari K.1992. The effect of glucono-δ-lactone on the gelation of soybean11S protein:concentration dependence. Food Hydrocolloids,6:263~274
    Kohyama K, Yoshida M, Nishinari K.1992. Rheological studies on the gelation process of soybean11Sproteins by Glucono-δ-lactone. Journal of Agricultural and Food Chemistry,40:740~744.
    Kohyama K, Nishinari K.1993. Rheological studies on the gelation process of soybean7S and11Sproteins in the presence of glucono-delt-lactone. J.Agric.food Chem.,41:8~14
    Kuang W, Nelson S O.1998. Low-frequency dielectric properties of biological tissue: a review with somenew insights. Transactions of the ASAE,41(1):173~184
    Li Xingshu.2009. Development of tofu processing system by the application of electrical impedancespectroscopy and ohmic heating [D]. Kobe: Kobe University.
    Li X, Toyoda K, Ihara I.2010. Coagulation process of soymilk characterized by electrical impedancespectroscopy. Journal of food engineering,105(3):563~568
    Mohsenin N N.1984. Electromagnetic radiation properties of foods and agricultural products. Gordon andBreach Science Publishers:375~400
    Naganawa A, Miho S, Akiyama Y, Adachi T.2006. Visualization and FEM analysis of joule heatingsystem. Journal of Japanese society of food science and technology,7(2):105-111
    Oguntunde A O, Akintoye O A.1991. Measurement and comparison of density, specific heat and viscosityof cow’s milk and soymilk. Journal of Food Engineering,13:221~330
    Palaniappan S, Sastry S K.1991. Electrical conductivities of selected solid foods during ohmic heating. J.Food Proc. Eng.14(3):221~236
    Peter Z, Peggy S.1996. Product development considerations for ohmic processing. Food Technology, May:263~266
    Pongviratchi P and Park J W.2007. Electrical conductivity and physical properties of surimi-potato starchunder ohmic heating. Journal of food science,72(9):503~507
    Saio K.1969. Food processing characteristics of soybean11S proteins. I Effect of difference of proteincomponents among soybean varieties on tofu-gel.Agr.Biol.Chem,33(9):1301~1307
    Sarang S, Sastry S, Gaines J, Yang T, Dunne P.2007. Product formulation for ohmic heating: blanching asa pretreatment method to improve uniformity in heating of solid-liquid food mixtures. Journal of foodscience,72(5): E227~E234
    Singh P, Heldman D.2001. Introduction to food engineering. Academic press, London, UK and San Diego,CA, USA:10~128
    Sudhir K S.1992. A model for heating of liquid-particle mixtures in a continuous flow ohmicheater.Joumal of Food Process Engineering,15(4):263~278
    Steffe J F.1996. Rheological Methods in Food Process Engineering, MI48823USA, Freeman Press
    Toyoda K.2003. Application of electrical properties. Handbook of nondestructive measurement offood.Tookyo:Science Forum Pub:84~91
    Toyoda K.2004. Spectroscopy. In: Japanese Society of Agricultural Informatics. New AgriculturalInformatic Engineering. Tokyo: Youkendo Pub:156~157
    Toyoda K, Li X.2010. Monitoring of coagulation process of soymilk by an integrated electrical sensingand control system. CIGR XVIIth World Congress, Québec City, Canada:1~10.
    Yongsawatdigul J, Park J W, Kolbe E, Abu Dagga Y, Morrissey M T.1995. Ohmic heating maximizes gelfunctionality of pacific whiting surimi. Journal of food science,60(1):10~14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700