清润方对糖尿病的治疗作用及其机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国社会经济的发展,人民生活方式改变,体力活动减少以及肥胖的增加等因素导致糖尿病患病人数骤增。2010年《新英格兰医学杂志》发文指出中国20岁以上成人糖尿病的患病率高达9.7%,糖尿病前期的患病率达15.5%,已成为严重危害群众健康的公共健康问题。中医药一直在糖尿病的防治方面做着积极的努力,中国中医科学院广安门医院林兰教授历经40余年临床与科研创立的糖尿病中医三型辨证理论(阴虚热盛、气阴两虚、阴阳两虚),客观的反应了糖尿病中医证型的动态演变规律,有效地指导了糖尿病中医治疗的临床实践。清润方(由知母、黄柏、酒大黄等组成)专为糖尿病早期的阴虚热盛型而设,以滋阴清热法治疗糖尿病早期阴虚热盛患者临床疗效显著。本研究以清润方为研究对象,利用糖尿病模型大鼠观察了不同剂量清润方对糖尿病大鼠糖代谢的影响,并从脂代谢、肝脏炎症与氧化应激、骨骼肌糖代谢关键基因mRNA表达等方面探讨了其发挥作用可能的机制,以期为清润方在糖尿病治疗中的临床应用提供理论依据与数据支撑。
     1.文献综述:本部分分别从糖尿病与胰岛素抵抗的关系、胰岛素抵抗相关机制(脂代谢紊乱、炎症与氧化应激、骨骼肌胰岛素抵抗)的研究现状、清润方组方原理与方中单味中药现代药理研究及中药治疗糖尿病研究进展等方面对本研究依托的研究基础进行了综述。
     2.实验研究:包括以下四个基础实验。
     2.1清润方对实验性糖尿病大鼠糖代谢及胰腺病理学形态的影响
     目的:观察清润方对糖尿病大鼠糖代谢及胰腺病理学形态的影响。方法:利用链脲佐菌素(streptozotocin, STZ)联合高糖高脂饲料的方法建立糖尿病大鼠模型。将实验动物分为空白对照组、模型组、清润方小、中、大剂量组(0.5,1,2g·kg·1·d-1)、二甲双胍组(150mg·kg-1·d-1),各治疗组分别灌胃给予相应药物治疗。干预治疗4周后检测各组大鼠体重、空腹血糖(FBG)、血清胰岛素水平、口服糖耐量曲线下面积(AUC),计算胰岛素敏感指数(ISI)与胰岛素抵抗指数(IRI),光镜、电镜下观察胰腺病理形态学改变。结果:清润方中、大剂量组和二甲双胍组较模型组FBG降低(P<0.05);清润方各剂量组和二甲双胍组AUC均有不同程度的降低(P<0.05);清润方中、小剂量组和二甲双胍组较模型组ISI升高,胰岛素抵抗指数IRI降低(P<0.05);清润方中、小剂量组和二甲双胍组肝糖原含量升高(P<0.05);光镜下显示清润方中、大剂量组及二甲双胍组胰岛数目的减少有所好转,虽大部分胰岛体积明显缩小,仍可见较大的胰岛;电镜下清润方各剂量组及二甲双胍组胰岛β细胞内分泌颗粒较模型组增多。结论:清润方有降低糖尿病大鼠血糖的作用,其机制与改善糖尿病大鼠的胰岛素抵抗,保护胰岛功能,促进糖尿病大鼠对葡萄糖的利用及肝糖原的合成有关。
     2.2清润方对实验性糖尿病大鼠脂代谢及肝脏病理学形态的影响
     目的:观察清润方对糖尿病大鼠脂代谢及肝脏病理形态学的影响,探讨其在脂代谢方而改善胰岛素抵抗的作用。方法:各组大鼠药物干预4周后取大鼠血清及肝脏组织,全血自动生化分析仪COD-PAP法测定总胆固醇(TCHO), GPO-PAP法测定三酰甘油(TG),清除法测定高密度脂蛋白胆固醇(HDL-C)与低密度脂蛋白胆固醇(LDL-C);铜显色法测定血清游离脂肪酸水平;光镜下观察肝脏病理形态学改变。结果:与模型组比较,清润方中、大剂量组糖尿病大鼠的TCHO、LDL-C水平降低(P<0.05),清润方各剂量组和二甲双胍组糖尿病大鼠的HDL-C水平升高(P<0.05),TG水平有降低趋势但无统计学差异;清润方中、小剂量组和二甲双胍组大鼠血清游离脂肪酸水平降低(P<0.05);光镜下显示清润方中、大剂量组和二甲双胍组对肝脏的脂肪沉积有改善作用。结论:清润方有改善糖尿病大鼠脂代谢紊乱,抑制脂肪在肝脏沉积的作用。清润方对糖尿病大鼠“脂毒性”的改善是其发挥抗糖尿病大鼠胰岛素抵抗的机制之一。
     2.3清润方对实验性糖尿病大鼠肝脏炎症及氧化应激的影响
     目的:观察清润方对糖尿病大鼠肝脏炎症反应及氧化应激的影响,探讨其对肝脏胰岛素抵抗的作用机制。方法:各组大鼠药物干预4周后取大鼠肝脏组织,酶联免疫吸附法(ELISA)法测定肝脏组织肿瘤坏死因子α(TNF-α)及白细胞介素6(IL-6)含量;比色法测定肝脏组织丙二醛(MDA)含量、超氧化物歧化酶(SOD)活性。结果:与模型组比较,清润方各剂量组肝组织TNF-α水平降低(P<0.05),清润方小、大剂量组肝组织IL-6水平降低(P<0.05),清润方中剂量组肝组织IL-6水平有降低趋势,但无统计学差异;清润方中、小剂量组及二甲双胍组肝脏组织MDA含量降低(P<0.05),清润方中、大剂量组肝脏组织SOD活性提高。结论:清润方有降低肝脏组织炎症因子含量,促进氧自由基清除,减轻组织损伤的作用。控制慢性炎症和减少氧化应激的损伤是清润方改善肝脏胰岛素抵抗的重要机制。
     2.4清润方对实验性糖尿病大鼠骨骼肌GLUT-4、INSR mRNA表达的影响
     目的:观察清润方对糖尿病大鼠骨骼肌GLUT-4、INSR mRNA表达的影响,探讨其对外周胰岛素抵抗中骨骼肌胰岛素抵抗的作用机制。方法:各组大鼠药物干预4周后无菌条件下,取左后腿骨骼肌组织,利用聚合酶链式反应(PCR)检测骨骼肌组织GLUT-4、INSR mRNA的表达。结果:与模型组相比,清润方中、大剂量组和二甲双胍组GLUT-4mRNA表达升高(P<0.05),INSR mRNA表达虽有升高趋势,但无统计学差异。结论:清润方上调糖尿病大鼠骨骼肌GLUT-4mRNA表达,促进糖尿病大鼠骨骼肌对葡萄糖的利用,是其发挥改善糖尿病大鼠外周组织骨骼肌胰岛素抵抗的作用机制之一。
     综上所述,本研究显示清润方有降低实验性糖尿病大鼠血糖、改善胰岛素抵抗、保护胰岛功能的作用,其发挥作用的机制可能与改善实验性糖尿病大鼠的脂代谢,减轻脂毒性;控制肝脏慢性炎症和减少氧化应激的损伤改善肝脏胰岛素抵抗;上调骨骼肌组织GLUT-4mRNA表达,促进糖尿病大鼠骨骼肌对葡萄糖的利用,改善骨骼肌胰岛素抵抗有关。为清润方在糖尿病“三型辨证”中阴虚热盛型患者中的使用提供了理论依据与数据支撑。
There is an increasing number of populations suffering from diabetes due to the china's social-economy development, people's life style changes, and decreasing physical activity and increasing number of obesity people. According to the article published in New England Medicine2010, it was estimated that the incidence of over20year old diabetes sufferer is about9.7%, for pre-diabetes the number is15.5%, and now it has been a severe public health problem. Chinese medicine plays a critical role in diabetes prevention and treatment, for example, professor Lin Lan with over40years of clinical expertise and researches in Guang' anmen Hospital Affiliated to China Academy of Chinese Medical Sciences, created the theory of three syndromes for diabetes in Chinese medicine, including yin deficiency due to excessive heat, qi&yin deficiency, and yin&yang deficiency, which summarized the dynamic alteration laws of diabetes, benefits clinical practice of diabetes in Chinese medicine. Qingrun formula (composed of huangbai, dahuang liquid soaked, zhimu) is specialized for diabetes early stage, the principle of nourishing yin and clearing heat works well for the diabetes syndrome of yin deficiency due to excessive heat. This study mainly focus on Qingrun formula's potential mechanism of lipid metabolism, liver inflammation, and oxidative stress, key gene mRNA expression on skeletal muscle metabolism, seeking theoretical evidence and database for clinical practice.
     1. Reviews:several parts will be discussed, including the relation between diabetes and insulin resistance, present research on mechanism of insulin resistance (disorder of lipid metabolism, inflammation and oxidative stress, insulin resistance in skeletal muscle), composing principle of Qingrun formula, and s modern study of single herb in the formula, and Chinese medicine treatment for diabetes.
     2. Experimental trials:four basic experiments are referred.
     2.1Qingrun formula's effect on glucose metabolism and pancreatic pathology&morphology in experimental diabetes mice.
     Objective:to observe Qingrun formula's effect on glucose metabolism and pancreatic pathology&morphology in experimental diabetes mice. Method: diabetes mice models were created by combination of streptozotocin and high sugar&lipid feeding. Experimental animals were divided into6groups, including contrast, model, Qingrun formula small, moderate, and high dosage (respective0.5,1,2g·kg-1·d-1), and Metformin groups; all groups were given medication by gastric lavage. With4weeks intervention, the mice were measured weight, fasting blood glucose, insulin level in blood, AUC, ISI, insulin resistance index, changes of pancreatic pathology&morphology in the optical microscope and electron microscope. Results:FBG was lower in Qingrun formula's moderate&high dosage and Metformin groups than model group (P<0.05); AUC in all three Qingrun formula and Metformin groups decreased individually (P<0.05); ISI in Qingrun formula's moderate&small dosage and Metformin groups were higher than model group, meantime, IRI is decreased (P<0.05); hepatic glycogen were increased in Qingrun formula's moderate&small dosage and Metformin group (P<0.05); in optical microscope, pancreatic islet account decreasing was improved in Qingrun formula's moderate&high dosage and Metformin groups, although partial islet size became smaller, occasionally larger ones is seen; in electron microscope, endocrine granule secreted by pancreatic islet (3-cell increased in all three Qingrun formula's and Metformin groups was much more than model group. Consults:Qingrun formula has good effects on lowering blood glucose in mice, the mechanism maybe referred to insulin resistance, protection of pancreatic islet, and improvement of glucose utilization and hepatic glycogen synthesis.
     2.2Qingrun formula's effect on lipid metabolism and liver pathology and morphology in experimental diabetes mice
     Objective:to observe Qingrun formula's effect on lipid metabolism and liver pathology and morphology in experimental diabetes mice, and discuss the function of improving insulin resistance in lipid mechanism. Method:with4weeks intervention, the mice were taken blood test, liver tissue test, TCHO by blood automatic biochemical analyzer COD-PAP, TG test by GPO-PAP, HDL-C&LDL-C measured by elimination method; Serum free fatty acid was measured with cooper color; liver tissue pathology and morphology changes in optical microscope was observed. Results:in comparison to model group, TCHO、LDL-C of diabetes mice lowered in Qingrun formulas moderate&high dosage groups (P<0.05); HDL-C increased in all three Qingrun formula and Metformin groups (P<0.05), TG showed decreased tendency without significance; Serum free fatty acid decreased in Qingrun formula's moderate&small dosage and Metformin groups (P<0.05); in optical microscope, liver fat deposition were improved in Qingrun formula's moderate&high dosage and Metformin groups. Consults:Qingrun formula has good effects on lipid metabolism and inhabiting liver fat deposition in diabetes mice. Qingrun formula's effect on lipid toxicity in diabetes mice related to the mechanism of insulin resistance.
     2.3Qingrun formula's effect on liver inflammation and oxidative stress in experimental diabetes mice
     Objective:to observe Qingrun formula's effect on liver inflammation and oxidative stress in experimental diabetes mice, and discuss the mechanism. Method: with4weeks intervention, liver tissue were taken out from mice, TNF-α and IL-6were measured by ELISA, MDA content and SOD activity of liver tissue were tested with colorimetry. Results:in comparison to model group, TNF-α lowered in all three Qingrun formula groups (P<0.05); IL-6of liver tissue decreased in Qingrun formula's small&high dosage groups (P<0.05), slight decreased tendency in Qingrun formula moderate dosage without significance; MDA in liver tissue decreased in Qingrun formula's moderate&small dosage and Metformin groups (P <0.05), meantime, SOD increased in Qingrun formula moderate&high dosage groups. Consults:Qingrun formula has good effects on lowering inflammatory factors in liver tissue by improve Oxygen free radical scavenging to decrease tissue damage. Controlling chronic inflammation and oxidative stress damage account for the mechanism of Qingrun formula in improving insulin resistance.
     2.4Qingrun formula's effects on skeletal muscle GLUT-4、INSR mRNA expression in experimental diabetes mice
     Objective:Qingrun formula's effects on skeletal muscle GLUT-4、INSR mRNA expression in experimental diabetes mice, and discuss the function of insulin resistance in skeletal muscle. Method:with4weeks intervention, skeletal muscle of left posterior legs were taken out in sterile conditions to exam GLUT-4、INSR mRNA expression by PCR. Results:in comparison to model group, GLUT-4mRNA expression increased in Qingrun formula's moderate&high dosage and Metformin groups (P<0.05), INSR mRNA expression increased without significance. Consults: Qingrun formula has a role of upgrading skeletal muscle GLUT-4mRNA expression, improving glucose utilization in skeletal muscle, which is related to the mechanism of insulin resistance in diabetes mice.
     Above mentioned, this study shows that Qingrun formula has good effects on lowering blood glucose, improving insulin resistance, and protecting pancreatic islet, which the functions relate to promote lipid metabolism, and decrease lipid toxicity; controlling liver chronic inflammation and decreasing oxidative stress damage to improve liver pancreatic islet insulin resistance; promoting glucose utilization in skeletal muscle to improve insulin resistance. Besides, Qingrun formula provided theoretical evidence and database for Chinese medicine application in yin deficiency due to excessive heat in three syndromes.
引文
[1]Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China[J]. N Engl J Med,2010,362(12):1090-1101.
    [2]中华医学会糖尿病学分会.中国2型糖尿病防治指南(2010年版)[J].中国医学前沿杂志(电子版),2011,03(6):54-109.
    [3]Meyre D, Froguel P. [ENPP1, the first example of common genetic link between childhood and adult obesity and type 2 diabetes][J]. Med Sci (Paris), 2006,22(3):308-312.
    [4]Kahn S E. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes[J]. Diabetologia,2003, 46(1):3-19.
    [5]Grundy S M, Brewer H J, Cleeman J I, et al. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition[J]. Arterioscler Thromb Vase Biol,2004,24(2):e13-e18.
    [6]Tomas E, Lin Y S, Dagher Z, et al. Hyperglycemia and insulin resistance: possible mechanisms[J]. Ann N Y Acad Sci,2002,967:43-51.
    [7]刘泽霖.代谢综合征[J].血栓与止血学,2006,12(2):93-96.
    [8]Kim J K, Fillmore J J, Chen Y, et al. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance[J]. Proc Natl Acad Sci U S A,2001,98(13):7522-7527.
    [9]Ide T, Shimano H, Yahagi N, et al. SREBPs suppress IRS-2-mediated insulin signalling in the liver[J]. Nat Cell Biol,2004,6(4):351-357.
    [10]Hays N P, Galassetti P R, Coker R H. Prevention and treatment of type 2 diabetes:current role of lifestyle, natural product, and pharmacological interventions[J]. Pharmacol Ther,2008,118(2):181-191.
    [11]Fong D G, Nehra V, Lindor K D, et al. Metabolic and nutritional considerations in nonalcoholic fatty liver[J]. Hepatology,2000,32(1):3-10.
    [12]Summers S A. Ceramides in insulin resistance and lipotoxicity[J]. Prog Lipid Res,2006,45(1):42-72.
    [13]Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulin resistance[J]. Nature,2002,420(6913):333-336.
    [14]Fridlyand L E, Philipson L H. Does the glucose-dependent insulin secretion mechanism itself cause oxidative stress in pancreatic beta-cells?[J]. Diabetes, 2004,53(8):1942-1948.
    [15]李焱.炎症、胰岛素抵抗是2型糖尿病和动脉粥样硬化的共同基础[J].国外医学(内分泌学分册),2005,25(3):150-152.
    [16]龙艳,苏珂,于健,等.瘦素、肿瘤坏死因子与2型糖尿病患者胰岛素抵抗的关系[J].四川大学学报(医学版),2004,35(4):580-581.
    [17]Suarez E C, Boyle S H, Lewis J G, et al. Increases in stimulated secretion of proinflammatory cytokines by blood monocytes following arousal of negative affect:the role of insulin resistance as moderator[J]. Brain Behav Immun,2006, 20(4):331-338.
    [18]Zappala G, Rechler M M. IGFBP-3, hypoxia and TNF-alpha inhibit adiponectin transcription[J]. Biochem Biophys Res Commun,2009,382(4):785-789.
    [19]Kaddai V, Jager J, Gonzalez T, et al. Involvement of TNF-alpha in abnormal adipocyte and muscle sortilin expression in obese mice and humans[J]. Diabetologia,2009,52(5):932-940.
    [20]Bouzakri K, Ribaux P, Halban P A. Silencing mitogen-activated protein 4 kinase 4 (MAP4K4) protects beta cells from tumor necrosis factor-alpha-induced decrease of IRS-2 and inhibition of glucose-stimulated insulin secretion[J]. J Biol Chem,2009,284(41):27892-27898.
    [21]Austin R L, Rune A, Bouzakri K, et al. siRNA-mediated reduction of inhibitor of nuclear factor-kappaB kinase prevents tumor necrosis factor-alpha-induced insulin resistance in human skeletal muscle[J]. Diabetes,2008,57(8):2066-2073.
    [22]Pickup J C, Chusney G D, Thomas S M, et al. Plasma interleukin-6, tumour necrosis factor alpha and blood cytokine production in type 2 diabetes[J]. Life Sci,2000,67(3):291-300.
    [23]Ruan H, Hacohen N, Golub T R, et al. Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes:nuclear factor-kappaB activation by TNF-alpha is obligatory[J]. Diabetes,2002,51 (5):1319-1336.
    [24]Senn J J, Burel S, Henry S P. Non-CpG-containing antisense 2'-methoxyethyl oligonucleotides activate a proinflammatory response independent of Toll-like receptor 9 or myeloid differentiation factor 88[J]. J Pharmacol Exp Ther,2005, 314(3):972-979.
    [25]Path G, Bornstein S R, Gurniak M, et al. Human breast adipocytes express interleukin-6 (IL-6) and its receptor system:increased IL-6 production by beta-adrenergic activation and effects of IL-6 on adipocyte function[J]. J Clin Endocrinol Metab,2001,86(5):2281-2288.
    [26]Fasshauer M, Kralisch S, Klier M, et al. Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 adipocytes[J]. Biochem Biophys Res Commun,2003,301 (4):1045-1050.
    [27]Samocha-Bonet D, Heilbronn L K, Lichtenberg D, et al. Does skeletal muscle oxidative stress initiate insulin resistance in genetically predisposed individuals?[J]. Trends Endocrinol Metab,2010,21(2):83-88.
    [28]Fridlyand L E, Philipson L H. Reactive species and early manifestation of insulin resistance in type 2 diabetes[J]. Diabetes Obes Metab,2006,8(2): 136-145.
    [29]Morrione A. Grb10 proteins in insulin-like growth factor and insulin receptor signaling (review)[J]. Int J Mol Med,2000,5(2):151-154.
    [30]Koliwad S K, Streeper R S, Monetti M, et al. DGATI-dependent triacylglycerol storage by macrophages protects mice from diet-induced insulin resistance and inflammation[J]. J Clin Invest,2010,120(3):756-767.
    [31]Danielsson A, Ost A, Lystedt E, et al. Insulin resistance in human adipocytes occurs downstream of IRS1 after surgical cell isolation but at the level of phosphorylation of IRS1 in type 2 diabetes[J]. FEBS J,2005,272(1):141-151.
    [32]Morino K, Petersen K F, Dufour S, et al. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents[J]. J Clin Invest,2005,115(12):3587-3593.
    [33]Gual P, Le Marchand-Brustel Y, Tanti J F. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation[J]. Biochimie,2005,87(1): 99-109.
    [34]Bilan P J, Samokhvalov V, Koshkina A, et al. Direct and macrophage-mediated actions of fatty acids causing insulin resistance in muscle cells[J]. Arch Physiol Biochem,2009,115(4):176-190.
    [35]Huang C, Thirone A C, Huang X, et al. Differential contribution of insulin receptor substrates 1 versus 2 to insulin signaling and glucose uptake in 16 myotubes[J]. J Biol Chem,2005,280(19):19426-19435.
    [36]杨亚超,周玉萍,王颜刚.胰岛素抵抗的信号传导障碍[J].中国临床康复,2004,8(30):6747-6749.
    [37]Zhang Y, Guan L, Wang X, et al. Protection of chlorophyllin against oxidative damage by inducing HO-1 and NQO1 expression mediated by PI3K/Akt and Nrf2[J]. Free Radic Res,2008,42(4):362-371.
    [38]Al-Kateb H, Boright A P, Mirea L, et al. Multiple superoxide dismutase 1/splicing factor serine alanine 15 variants are associated with the development and progression of diabetic nephropathy:the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Genetics study[J]. Diabetes,2008,57(1):218-228.
    [39]Macheda M L, Rogers S, Best J D. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer[J]. J Cell Physiol,2005,202(3):654-662.
    [40]Abel E D, Peroni O, Kim J K, et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver[J]. Nature,2001,409(6821): 729-733.
    [41]Nakatani Y, Kaneto H, Kawamori D, et al. Involvement of endoplasmic reticulum stress in insulin resistance and diabetes[J]. J Biol Chem,2005,280(1): 847-851.
    [42]Kaneto H, Nakatani Y, Kawamori D, et al. Role of oxidative stress, endoplasmic reticulum stress, and c-Jun N-terminal kinase in pancreatic beta-cell dysfunction and insulin resistance[J]. Int J Biochem Cell Biol,2006, 38(5-6):782-793.
    [43]Ozcan U, Cao Q, Yilmaz E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes[J]. Science,2004,306(5695):457-461.
    [44]Muoio D M, Newgard C B. Biomedicine. Insulin resistance takes a trip through the ER[J]. Science,2004,306(5695):425-426.
    [45]Nakatani Y, Kaneto H, Kawamori D, et al. Involvement of endoplasmic reticulum stress in insulin resistance and diabetes[J]. J Biol Chem,2005, 280(1):847-851.
    [46]Petersen K F, Shulman G I. Etiology of insulin resistance[J]. Am J Med,2006,119(5 Suppl 1):S10-S16.
    [47]Petersen K F, Befroy D, Dufour S, et al. Mitochondrial dysfunction in the elderly:possible role in insulin resistance[J]. Science,2003,300(5622): 1140-1142.
    [48]Petersen K F, Dufour S, Befroy D, et al. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes[J]. N Engl J Med,2004,350(7):664-671.
    [49]Patti M E, Butte A J, Crunkhorn S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes:Potential role of PGC1 and NRF1[J]. Proc Natl Acad Sci U S A,2003,100(14): 8466-8471.
    [50]Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-lalpha[J]. Cell,2006,127(6):1109-1122.
    [51]Martin S S, Qasim A, Reilly M P. Leptin resistance:a possible interface of inflammation and metabolism in obesity-related cardiovascular disease[J]. J Am Coll Cardiol,2008,52(15):1201-1210.
    [52]Colombo C, Cutson J J, Yamauchi T, et al. Transplantation of adipose tissue lacking leptin is unable to reverse the metabolic abnormalities associated with lipoatrophy[J].Diabetes,2002,51(9):2727-2733.
    [53]Pocai A, Morgan K, Buettner C, et al. Central leptin acutely reverses diet-induced hepatic insulin resistance[J]. Diabetes,2005,54(11):3182-3189.
    [54]Steinberg G R, Dyck D J, Calles-Escandon J, et al. Chronic leptin administration decreases fatty acid uptake and fatty acid transporters in rat skeletal muscle[J]. J Biol Chem,2002,277(11):8854-8860.
    [55]Banks W A, Farr S A, Morley J E. The effects of high fat diets on the blood-brain barrier transport of leptin:failure or adaptation?[J]. Physiol Behav, 2006,88(3):244-248.
    [56]Steppan C M, Bailey S T, Bhat S, et al. The hormone resistin links obesity to diabetes[J].Nature,2001,409(6818):307-312.
    [57]李伶,杨刚毅,方超,等.高脂喂养和脂质诱导的胰岛素抵抗大鼠糖代谢、抵抗素和脂联素的变化[J].中国糖尿病杂志,2007,15(3):142-145.
    [58]Qatanani M, Szwergold N R, Greaves D R, et al. Macrophage-derived human resistin exacerbates adipose tissue inflammation and insulin resistance in mice[J]. J Clin Invest,2009,119(3):531-539.
    [59]Osawa H, Onuma H, Ochi M, et al. Resistin SNP-420 determines its monocyte mRNA and serum levels inducing type 2 diabetes[J]. Biochem Biophys Res Commun,2005,335(2):596-602.
    [60]Abbasi F, Chu J W, Lamendola C, et al. Discrimination between obesity and insulin resistance in the relationship with adiponectin[J]. Diabetes,2004, 53(3):585-590.
    [61]Cote M, Mauriege P, Bergeron J, et al. Adiponectinemia in visceral obesity: impact on glucose tolerance and plasma lipoprotein and lipid levels in men[J]. J Clin Endocrinol Metab,2005,90(3):1434-1439.
    [62]Lindsay R S, Funahashi T, Hanson R L, et al. Adiponectin and development of type 2 diabetes in the Pima Indian population[J]. Lancet,2002,360(9326): 57-58.
    [63]Bobbert T, Rochlitz H, Wegewitz U, et al. Changes of adiponectin oligomer composition by moderate weight reduction[J].Diabetes,2005,54(9):2712-2719.
    [64]Dyck D J. Adipokines as regulators of muscle metabolism and insulin sensitivity[J]. Appl Physiol Nutr Metab,2009,34(3):396-402.
    [65]林兰.现代中医糖尿病学[G].北京:人民卫生出版社,2008:729-733.
    [66]庞健丽.2型糖尿病三型辨证规范与疗效评价指标的研究[D].2009.
    [67]Miura T, Ichiki H, Hashimoto I, et al. Antidiabetic activity of a xanthone compound, mangiferin[J]. Phytomedicine,2001,8(2):85-87.
    [68]Miura T, Iwamoto N, Kato M, et al. The suppressive effect of mangiferin with exercise on blood lipids in type 2 diabetes[J]. Biol Pharm Bull,2001,24(9): 1091-1092.
    [69]崔岚,安富荣,王平全.知母宁的药理作用[J].中药材,2000,23(2):112-114.
    [70]Kim J H, Kim Y Y, Kim S J. High glucose inhibits gene expression of tyrosyl-tRNA synthetase in osteoblast cells[J]. Methods Find Exp Clin Pharmacol,2009,31 (10):639-644.
    [71]孔令东,杨澄,仇熙,等.黄柏炮制品清除氧自山基和抗脂质过氧化作用[J].中国中药杂志,2001,26(4):245-248.
    [72]万生芳,文润花.掌叶大黄提取物对实验性2型糖尿病大鼠胰岛素抵抗的实验研究[J].现代中西医结合杂志,2007,16(12):1606-1607,1719.
    [73]Abe I I, Fukuhara T, Kawasaki N, et al. Characteristics of Cyclodextrin Adsorption onto Activated Carbons[J]. J Colloid Interface Sci,2000,229(2): 615-619.
    [74]马琼英,高鸣,王小琴,等.大黄素、川芎嗪对中分子物质损伤人胚大脑皮层神经元影响的实验研究[J].湖北中医学院学报,1999,1(1):39-42.
    [75]祁红.大黄素的抗炎作用[J].中草药,1999,30(7):522-523.
    [76]杜含光,邱英明.中医药对2型糖尿病胰岛素抵抗的认识及研究进展[J].实用中医内科杂志,2012(1):39-41.
    [77]陈广,陆付耳,王增四,等.小檗碱改善2型糖尿病大鼠胰岛素抵抗与PI-3K、GLUT4蛋白相关性的研究[J].中国药理学通报,2008(8):1007-1010.
    [78]杨小玉,陆付耳,黄琳,等.小檗碱对胰岛素抵抗大鼠氧化应激和内质网应激的影响[J].中国药理学通报,2008(9).
    [79]Lee Y S, Kim W S, Kim K H, et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states[J]. Diabetes,2006,55(8):2256-2264.
    [80]Lee Y S, Kim W S, Kim K H, et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states[J]. Diabetes,2006,55(8):2256-2264.
    [81]Liu X, Li G, Zhu H, et al. Beneficial effect of berberine on hepatic insulin resistance in diabetic hamsters possibly involves in SREBPs, LXRalpha and PPARalpha transcriptional programs[J]. Endocr J,2010,57(10):881-893.
    [82]高志强,冷三华,陆付耳,等.小檗碱对高果糖饲养诱导大鼠胰岛素抵抗和肝脏TNF-α表达的影响[J].中国药理学通报,2008(11):1479-1482.
    [83]欧阳礼枝,陆付耳.小檗碱对胰岛素抵抗大鼠糖脂代谢影响的研究[J].中国药物与临床,2010(10).
    [84]王念,毛先晴,王沈,等.黄芪多糖减轻2型糖尿病大鼠内质网应激和增加胰岛素敏感性的实验研究[J].公共卫生与预防医学,2007(4).
    [85]吴德红,王凤杰,刘永明.黄芪多糖对糖尿病心肌病大鼠心脏UCP2表达的影响[Z].中国湖北武汉:200818-19.
    [86]吴德红,王凤杰,邓娟,等.黄芪多糖对2型糖尿病大鼠肝脏AMPK苏氨酸磷酸化的影响[J].微循环学杂志,2009(3).
    [87]Liu M, Wu K, Mao X, et al. Astragalus polysaccharide improves insulin sensitivity in KKAy mice:regulation of PKB/GLUT4 signaling in skeletal muscle[J]. J Ethnopharmacol,2010,127(1):32-37.
    [88]王光浩,张敬芳.黄芪提取物对糖尿病大鼠骨骼肌组织胰岛素信号转导的影响[J].中国医院药学杂志,2008(13):1058-1061.
    [89]王雨秾,孙佳犄,刘毓敏.人参皂苷对胰岛素抵抗大鼠模型中GLUT4和PI3K表达的影响[J].辽宁中医药大学学报,2009(6).
    [90]Han G C, Ko S K, Sung J H, et al. Compound K enhances insulin secretion with beneficial metabolic effects in db/db mice[J]. J Agric Food Chem,2007, 55(26):10641-10648.
    [91]胡翠华,徐华丽,于晓风,等.人参二醇组皂苷对实验性2型糖尿病大鼠血糖及血脂代谢的影响[J].吉林大学学报(医学版),2006(6):1004-1008.
    [92]Shang W, Yang Y, Jiang B, et al. Ginsenoside Rbl promotes adipogenesis in 3T3-L1 cells by enhancing PPARgamma2 and C/EBPalpha gene expression[J]. Life Sci,2007,80(7):618-625.
    [93]侯雁,于世家.大黄醇提物对糖尿病大鼠胰岛索敏感性及脂肪细胞因子影响的研究[J].实用糖尿病杂志,2006(3).
    [94]Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-lalpha[J]. Cell,2006,127(6):1109-1122.
    [95]Sun C, Zhang F, Ge X, et al. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B[J]. Cell Metab,2007,6(4): 307-319.
    [96]肖方喜,陈璐璐,孙晖,等.白藜芦醇改善高脂喂养大鼠胰岛素抵抗的机制[J].中国医院药学杂志,2011(15):1245-1248.
    [97]杨成志,狄灵,于燕,等.姜黄素对单纯性肥胖大鼠胰岛素抵抗的影响[J].中国全科医学,2009(14).
    [98]郭颖,高毅,刘永光.免疫抑制剂姜黄素逆转胰岛素抵抗的研究[J].中山大学学报(医学科学版),2007(5):481-484.
    [99]于健,苏珂.葛根素对2型糖尿病病人胰岛素抵抗的影响[J].中国新药与临床杂志,2002(10).
    [100]Sievenpiper J L, Arnason J T, Leiter L A, et al. Null and opposing effects of Asian ginseng (Panax ginseng C.A. Meyer) on acute glycemia:results of two acute dose escalation studies[J]. J Am Coll Nutr,2003,22(6):524-532.
    [101]孙卫,郑学芝,崔荣军,等.葛根素对2型糖尿病大鼠胰岛素抵抗及脂肪分化相关蛋白基因表达的影响[J].医药导报,2008(10).
    [102]赵兴国,李丽.三七总皂苷对大鼠非酒精性脂肪肝模型胰岛素抵抗及瘦素受体表达的影响[J].中西医结合心脑血管病杂志,2008(6).
    [103]刘智,周晓霞,苏佩清,等.黄芩茎叶总黄酮治疗2型糖尿病性高脂血症大鼠的实验研究[J].中药新药与临床药理,2009(1):5-7.
    [104]殷惠军,张颖,杨领海,等.西洋参茎叶总皂苷对胰岛素抵抗脂肪细胞葡萄糖转运、GLUT-4转位和CAP基因表达的影响[J].中国药理学通 报,2007(10).
    [105]郑琳颖,潘竞锵,吕俊华,等.白芍总苷药理作用研究[J].广州医药,2011(3):66-69.
    [106]Kudolo G B. The effect of 3-month ingestion of Ginkgo biloba extract (EGb 761) on pancreatic beta-cell function in response to glucose loading in individuals with non-insulin-dependent diabetes mellitus[J]. J Clin Pharmacol, 2001,41(6):600-611.
    [107]宋光耀,王敬,曲东明,等.银杏叶提取物对胰岛素抵抗大鼠骨骼肌蛋白激酶B表达的影响[J].中国全科医学,2009(6).
    [108]唐嘉航,叶希韵,刘江,等.银杏叶总黄酮对胰岛素抵抗大鼠糖脂代谢和肝功能的影响[J].上海交通大学学报(医学版),2009(2).
    [109]王海颖,修彦凤,孙康德.鱼腥草改善糖尿病大鼠血脂代谢和胰岛素抵抗的实验研究[J].中国中医基础医学杂志,2009(1):72-73.
    [110]刘雪芹,于湄,张燕,等.虫草多糖对2型糖尿病小鼠InsR/IRS-1通路及糖代谢的影响[J].中国药师,2011(2).
    [111]刘江,童智,张再超,等.山楂叶总黄酮防治大鼠胰岛素抵抗及脂肪肝的实验研究[J].华东师范大学学报(自然科学版),2008(6):127-132.
    [112]朱玉霞,邹德平,刘学鹏,等.桑叶黄酮对2型糖尿病大鼠胰岛素抵抗影响的研究[J].四川医学,2008(9).
    [113]陈世伟,张红敏,张立实,等.大豆异黄酮对膳食诱导胰岛素抵抗大鼠脂联素基因表达的影响[J].卫生研究,2006(1):46-49.
    [114]叶爱丽,陆付耳,徐丽君.黄连解毒汤对胰岛素抵抗大鼠脂肪组织胰岛素受体及其底物信号转导的影响[J].中国中西医结合杂志,2006(10):909-912.
    [115]丁来标,陆付耳,叶爱丽,等.黄连解毒汤对胰岛素抵抗大鼠瘦素和抵抗素的影响[J].中国中西医结合杂志,2006(3).
    [116]陈广,陆付耳,徐丽君.黄连解毒汤对2型糖尿病大鼠靶组织葡萄糖转运子4的影响[J].中西医结合学报,2007(4):412-415.
    [117]殷丽平,杜联,谢春光,等.参芪复方对实验性2型糖尿病大血管病变胰岛素抵抗的干预作用[J].成都中医药大学学报,2010(3).
    [118]田义龙,赵静,任艳青,等.扼子豉汤对胰岛素抵抗的改善作用及机制研究[J].中药药理与临床,2010(6):5-7.
    [119]龚艳琳,陆付耳,董慧,等.交泰丸及其单味药对2型糖尿病大鼠异位脂肪沉积的影响[J].中国中西医结合杂志,2010(12):1297-1301.
    [120]Zhang W, Xu Y C, Guo F J, et al. Anti-diabetic effects of cinnamaldehyde and berberine and their impacts on retinol-binding protein 4 expression in rats with type 2 diabetes mellitus[J]. Chin Med J (Engl),2008,121(21):2124-2128.
    [121]杨化冰,吴勇,徐丹林.益气养阴通络方对2型糖尿病肾组织保护机制的实验研究[J].中医研究,2007(8).
    [122]张远超,陆付耳.桑精胶囊改善2型糖尿病大鼠胰岛素抵抗及其分子机制的研究[J].中国中西医结合杂志,2005(S1):81-86.
    [123]代莲,陆付耳,张馨,等.桑精胶囊对2型糖尿病大鼠血清细胞因子IL-4和IL-10水平的影响[J].中西医结合研究,2009(1):6-8.
    [124]李光伟.胰岛素抵抗评估及其临床应用[J].中华老年多器官疾病杂志,2004(1):11-12.
    [125]Chalkley S M, Hettiarachchi M, Chisholm D J, et al. Long-term high-fat feeding leads to severe insulin resistance but not diabetes in Wistar rats[J]. Am J Physiol Endocrinol Metab,2002,282(6):E1231-E1238.
    [126]Parveen K, Khan M R, Mujeeb M, et al. Protective effects of Pycnogenol on hyperglycemia-induced oxidative damage in the liver of type 2 diabetic rats[J]. Chem Biol Interact,2010,186(2):219-227.
    [127]徐叔云.药理实验方法学(第三版)[G].北京:人民卫生出版社,2002:1517.
    [128]Hevener A, Reichart D, Janez A, et al. Female rats do not exhibit free fatty acid-induced insulin resistance[J]. Diabetes,2002,51(6):1907-1912.
    [129]Unger R H. Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications[J]. Diabetes,1995,44(8):863-870.
    [130]王学美.2型糖尿病血脂异常的治疗进展[J].世界华人消化杂志,2006(4).
    [131]Fong D G, Nehra V, Lindor K D, et al. Metabolic and nutritional considerations in nonalcoholic fatty liver[J]. Hepatology,2000,32(1):3-10.
    [132]Dresner A, Laurent D, Marcucci M, et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity[J]. J Clin Invest,1999,103(2):253-259.
    [133]Watt M J, Holmes A G, Steinberg G R, et al. Reduced plasma FFA availability increases net triacylglycerol degradation, but not GPAT or HSL activity, in human skeletal muscle[J]. Am J Physiol Endocrinol Metab,2004,287(1): E120-E127.
    [134]Senn J J, Klover P J, Nowak I A, et al. Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes[J]. J Biol Chem,2003,278(16):13740-13746.
    [135]Russell A P, Gastaldi G, Bobbioni-Harsch E, et al. Lipid peroxidation in skeletal muscle of obese as compared to endurance-trained humans:a case of good vs. bad lipids?[J]. FEBS Lett,2003,551(1-3):104-106.
    [136]Arkan M C, Hevener A L, Greten F R, et al. IKK-beta links inflammation to obesity-induced insulin resistance[J]. Nat Med,2005,11(2):191-198.
    [137]Boden G, She P, Mozzoli M, et al. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver[J]. Diabetes,2005,54(12):3458-3465.
    [138]Ryder J W, Long Y C, Nilsson E, et al. Effects of calcineurin activation on insulin-, AICAR- and contraction-induced glucose transport in skeletal muscle[J]. J Physiol,2005,567(Pt 2):379-386.
    [139]Asano T, Fujishiro M, Kushiyama A, et al. Role of phosphatidylinositol 3-kinase activation on insulin action and its alteration in diabetic conditions[J]. Biol Pharm Bull,2007,30(9):1610-1616.
    [140]Furtado L M, Somwar R, Sweeney G, et al. Activation of the glucose transporter GLUT4 by insulin[J]. Biochem Cell Biol,2002,80(5):569-578.
    [141]Asano T, Fujishiro M, Kushiyama A, et al. Role of phosphatidylinositol 3-kinase activation on insulin action and its alteration in diabetic conditions[J]. Biol Pharm Bull,2007,30(9):1610-1616.
    [142]Zhang Y, Guan L, Wang X, et al. Protection of chlorophyllin against oxidative damage by inducing HO-1 and NQO1 expression mediated by PI3K/Akt and Nrf2[J]. Free Radic Res,2008,42(4):362-371.
    [143]Savage D B, Zhai L, Ravikumar B, et al. A prevalent variant in PPP1R3A impairs glycogen synthesis and reduces muscle glycogen content in humans and mice[J]. PLoS Med,2008,5(1):e27.
    [144]Watson R T, Pessin J E. Intracellular organization of insulin signaling and GLUT4 translocation[J]. Recent Prog Horm Res,2001,56:175-193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700