玉米与大豆群落捕食者捕食行为的DNA标记检测与控害作用的FQ-PCR量化评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可持续农业与害虫生态管理策略要求以生态系统为调控单位,充分发挥自然控制力,以达到治理有害生物和维护自然平衡的目的。捕食者作为一种重要的自然控制力是调节害虫种群密度、维持自然生态平衡的关键因子。无疑,准确评价捕食者在生态群落中所处的营养地位及精确量化评估其控害能力是应用捕食类群进行生物防治的基础。然而,捕食者尤其是广食性捕食者食物谱复杂且存在一定的选择性,加之研究理念、技术支持等条件的限制,对其所进行的研究与利用工作一直没有突破性进展,成为困扰生态学家与害虫防治学家的研究瓶颈之一。近年来,日趋成熟的DNA分子标记技术为探索群落内营养联系提供了有利的工具,同时荧光定量PCR技术的迅猛发展也为量化研究天敌对害虫的控制作用提供了新的契机。本研究立足玉米田与大豆田害虫与天敌群落,以DNA分子标记与荧光定量PCR技术为工具,准确定性研究群落内天敌对害虫的捕食行为,并拟和各种影响因子,精确定量研究主要天敌对靶标害虫的控制作用,对科学管理害虫、充分利用捕食性天敌、评估引进生物风险和治理有害生物入侵等工作具有重要意义。具体研究内容与结论如下:
     1基本明确沈阳地区玉米田与大豆田主要害虫与天敌群落结构及动态
     玉米田群落中主要害虫与天敌共50种,其中害虫17种,天敌33种。害虫类群中玉米蚜和禾缢管蚜相对多度最大,分别为46.86%和32.69%;并在7月25日至8月19日期间为优势害虫种群。天敌类群中,蜘蛛类相对多度最大为4.28%,其次为异色瓢虫与大草蛉,相对多度分别占1.25%和1.02%;大部分时间蜘蛛类为优势天敌种群。玉米田群落在6月15日和7月20日两个时期,多样性与均匀度指数同时达到峰值,是维持物种间相互组合抵抗外界干扰和恢复自然平衡的最佳时期,应予以保护。
     大豆田群落中主要害虫与天敌共41种,其中害虫15种,天敌26种。害虫类群中,大豆蚜和烟蓟马相对多度最大,分别为55.28%和27.59%;并且在大部分时间为优势害虫种群。天敌类群中,东亚小花蝽相对多度最大为2.97%,其次为蜘蛛类与大草蛉,分别为1.71%和0.54%;大部分时间东亚小花蝽为优势天敌种。大豆田群落多样性与均匀度指数在6月15日至6月25日、7月30日至8月14日两个时期较低,群落最不稳定。其余大部分时期群落多样性与均匀度指数维持在较高水平,是维持物种间相互组合抵抗外界干扰和恢复自然平衡的最佳时期,应予以保护。
     2利用DNA分子标记技术研究玉米田与大豆田群落内捕食行为
     2.1 COⅠ基因标记检测天敌对大豆蚜的捕食作用
     设计大豆蚜COⅠ基因特异片段扩增引物2对(A和B),扩增片段大小分别为197 bp和253 bp。检测田间捕食者对大豆蚜的捕食作用,结果表明,异色瓢虫成虫和幼虫、草蛉成虫、东亚小花蝽成虫和若虫捕食大豆蚜的作用较强,其阳性比率分别为61.90%和80.00%、78.57%、57.14%和62.50%。同时田间检测尚表明,捕食性天敌群体总的阳性比率与大豆蚜的种群密度呈显著正相关。
     2.2 COⅡ基因标记检测天敌对玉米蚜的捕食作用
     筛选玉米蚜COⅡ基因特异片段扩增引物(ClaCOⅡF/R3),其扩增片段为339bp,检测田间捕食者对玉米蚜的捕食作用,结果表明,大灰食蚜蝇幼虫、草蛉幼虫、异色瓢虫成虫和幼虫、龟纹瓢虫成虫和幼虫捕食玉米蚜的作用较强,其阳性比率分别为66.67%、60.00%、44.83%和46.15%、45.00%和57.14%。
     2.3 COⅡ基因标记检测天敌对禾缢管蚜的捕食作用
     筛选禾缢管蚜COⅡ基因特异片段扩增引物(BcoaCOⅡF4/R2),其扩增片段为148bp,检测田间捕食者对禾缢管蚜的捕食作用,结果表明,大灰食蚜蝇幼虫、异色瓢虫成虫和幼虫、草蛉成虫和幼虫、龟纹瓢虫幼虫捕食禾缢管蚜的作用较强,其阳性比率分别为55.56%、55.00%和46.15%、40.00%和50.00%、42.86%。
     2.4东亚小花蝽捕食朱砂叶螨的DNA分子标记检测
     克隆并测序朱砂叶螨COⅠ基因一段大小为480bp的序列,并借此设计朱砂叶螨特异片段扩增引物1对(C),其扩增目的片段为158bp。利用PCR方法鉴定了东亚小花蝽成虫及若虫对朱砂叶螨的捕食作用。
     2.5玉米田与大豆田捕食者对异色瓢虫与大草蛉捕食作用的DNA分子标记检测
     克隆并测序异色瓢虫COⅠ基因一段大小为500bp的序列,并借此设计异色瓢虫特异片段扩增引物1对(D),其扩增目的片段为293bp。根据草蛉16S ribosomal RNA基因序列(登陆号为AY620151),设计大草蛉特异片段扩增引物1对(E),其扩增片段为193bp。利用所设计引物,分别检测田间捕食者腹内食物成分,结果表明,捕食者类群内部存在捕食行为。大草蛉、步甲和蜘蛛类对异色瓢虫具有捕食能力,其中大草蛉成虫检出率最高,玉米田中为33.33%,大豆田中为40.00%;只有蜘蛛类对大草蛉存在捕食行为,玉米田中检出率为33.33%,大豆田中为25.00%。
     3构建荧光定量PCR体系量化研究田间捕食性天敌腹内目标害虫成分的含量
     制作玉米蚜、禾缢管蚜绝对定量标准品,并分别构建荧光定量PCR体系。对田间捕食者进行检测表明,大草蛉幼虫腹内含有的玉米蚜COⅡ基因拷贝量最大;其次依次为大草蛉成虫、异色瓢虫幼虫、成虫、大灰食蚜蝇幼虫;再次为龟纹瓢虫成虫、幼虫;蜘蛛类和东亚小花蝽成虫腹内含有的玉米蚜COⅡ基因拷贝数最少;步甲类腹内未检测到玉米蚜COⅡ基因成分。检测田间捕食者对禾缢管蚜的捕食作用,结果表明,大草蛉成虫腹内含有禾缢管蚜COⅡ基因拷贝量最大,其次依次为大草蛉幼虫、异色瓢虫幼虫、成虫;再次为大灰食蚜蝇幼虫、龟纹瓢虫幼虫、成虫;蜘蛛类和东亚小花蝽成虫腹内禾缢管蚜COⅡ基因拷贝数最少;步甲类腹内未检测到禾缢管蚜COⅡ基因成分。
     4荧光定量PCR量化研究目标害虫在主要天敌腹内的衰变规律
     异色瓢虫成虫喂饲单头玉米蚜,自然消化0,2,4,6h后,可检测到目标片段的拷贝数分别为991.5471、101.1695、20.6750、0个,时间与拷贝数对数的相关关系式为:A=-0.4203B+2.9458(R~2=0.9894);大草蛉成虫喂饲单头玉米蚜,自然消化0,2,4,6h后可检测到目标片段的拷贝数分别为942.9212、565.5247、121.4485、0个,时间与拷贝数对数的相关关系式为:C=-0.2225D+3.0483(R~2=0.9228)。
     异色瓢虫成虫喂饲单头禾缢管蚜,自然消化0,2,4,6h后可检测到目标片段的拷贝数分别为2304.2586、125.7857、6.1939、0个,时间与拷贝数对数的相关关系式为:E=-0.6427 F+3.3705(R~2=0.998);大草蛉成虫喂饲单头禾缢管蚜,自然消化0,2,4,6h后可检测到目标片段的拷贝数分别为1605.2458、576.1685、86.0061、0个,时间与拷贝数对数的相关关系式为:G=-0.3177 H+3.2689(R~2=0.970)。
     5量化评价主要天敌对目标害虫的控制作用
     拟和天敌发生数量、阳性比率、腹内目标害虫成分含量及目标害虫在天敌腹内的衰变速率四个因素评价7月31日至8月14日期间异色瓢虫成虫与大草蛉成虫对玉米蚜的控制能力,结果表明,异色瓢虫成虫对玉米蚜的控制作用(R=6.1429×10~6)强于大草蛉成虫(R=2.7967×10~6);评价异色瓢虫成虫与大草蛉成虫对禾缢管蚜的控制能力,结果表明,异色瓢虫成虫对禾缢管蚜的控制作用(R=15.4896×10~6)亦强于大草蛉成虫(R=8.4966×10~6)。
Considering the requirements of the sustainable agriculture and ecological pest management,we should base ecosystem and full utilize all natural control factors to managing pests and maintaining the natural balance.Without question,as an important natural control factor predators play a key role in pest biological control.The foundation of pest biological control are the evaluating predators' function in the biological community and estimating predators' control effect with quantity accurately.Predators,especial generalist predators prey multiplicate foods and select predation for different foods.The limit of idea and technology made the study of generalist predators' predation maintain a lower level and become a difficult problem to ecologists and experts of pest control.
     Recently,the rapid progress of molecular biotechnology of DNA marker and FQ-PCR provide us with valuable opportunities to study complex trophic interactions and evaluate generalist predators' control effect with quantity accurately in the field.In line with the communities structure of insect pests and natural enemies in maize and soybean fields and utilize DNA marker and FQ-PCR techniques,we study predation of predators with quality accurately and evaluate natural enemies' control effect to pests with quantity accurately in the field.This study is significance for ecological pest management,utilizing predatorial natural enemies resource,assessmenting immigrate risk species and managing invasive exotic species. And the main contents and conclusions are stated as following:
     1 The research basically finds out the communities structure and their dynamic chang of the insect pests and natural enemies in maize and soybean fields of Shen yang.There were 17 species pest insects and 33 species natural enemies among 50 kinds of species in maize fields. The relative abundance of Rhopalosiphum maidis and Rhopalosiphum padi were higher than the other insect pests,respectively as 46.86%and 32.69%.During the period of time from July 25th to August 19th,they were dominant insect pests.The relative abundance of spiders were 4.28%,higher than the other natural enemies,then followed by Harmonia axyridis and Chrysopa pallens.In the most time spiders were dominant natural enemies.In maize field,on June 15th and July 20th,the community diversity index and the evenness index of the insect pests and natural enemier community become the climax,those periods were the time that community most stable and the best one time to maintain the ability of resisting the outer interferences and returning to the natural balance,so in this period we should avoid the breakage of natural condition.
     There were 15 species pest insects and 27 species natural enemies among 41 kinds of species in soybean fields.The relative abundance of Aphis glycines and Thrips tabaci were higher than the other insect pests,respectively as 55.28%and 27.59%.In the most time they were dominant insect pests.The relative abundance of Orius sauteri was 4.28%,higher than the other natural enemies,then followed by spiders and C.pallens.In the most time Orius sauteri was dominant natural enemy.In soybean field,except of two periods of time from June 15th to June 25th and July 30th to August 14th,the community diversity index and the evenness index of the insect pests and natural enemier community maintaining in highly level, we should avoid the breakage of natural condition in this period.
     2 Studying the predation using DNA marker in maize and soybean fields
     2.1 Identifying the key predators of Aphis glycines using COI gene marker
     Two pairs of sequence-characterized primers(A and B) were designed to detect the remains of A.glycines in the gut of various predators in the soybean fields.Primer A amplified single band was about 197 bp and primer B about 253 bp.Using primer A,the percentage of positive responses of A.glycines DNA in the predators collected in fields,such as the larvae of Harmonia axyridis was 80.00%,the nymph of Orius sauteri was 62.50%,the adult of H.axyridis was 61.90%,O.sauteri was 57.14%and Chrysopas was 78.57%,their were all over 50%.Moreover,the tests of samples collected from the field showed that the detection rate of predators by using primer A significantly corresponded to the density of A. glycines in soybean fields.
     2.2 Identifying the key predators of Rhopalosiphum maidis using COⅡgene marker
     One pair of sequence-characterized primers(ClaCOⅡF/R3) of Rhopalosiphum maidis was selected and it amplified single band was about 339 bp.The positive responses of R. maidis DNA in predators collected in fields,such as the larvae of Syrphus corollae was 66.67%,Chrysopas was 60.00%,H.axyridis was 46.15%,Propylaea japonica was 57.14%, and adult H.axyridis was 44.83%and P.japonica was 45.00%,theirs were all over 40%.
     2.3 Identifying the key predators of Rhopalosiphum padi using COⅡgene marker
     One pair of sequence-characterized primers(BcoaCOⅡF4/R2) of Rhopalosiphum padi was selected and it amplified single band was about 148 bp.The positive responses of R.padi DNA in predators collected in fields,such as the larvae of S.corollae was 55.56%,Chrysopas was 50.00%,H.axyridis was 46.15%,P.japonica was 42.86%,and adult H.axyridis was 55.00%and Chrysopas was 40.00%,theirs were all over 40%.
     2.4 Identifying the predation of Orius sauteri to Tetranychus cinnabarinus using DNA marker
     Cloning and sequencing COⅠgene segment of Tetranychus cinnabarinus.The length of the sequence was 480 bp.In line with it,One pair of sequence-characterized primers(C) of T. cinnabarinus was designed and it amplified single band was about 158 bp.We can identifying the adult and nymph of Orius sauteri predation to T.cinnabarinus by it.
     2.5 Identifying the key predators of H.axyridis and C.pallens using DNA marker
     Cloning and sequencing COⅠgene segment of H.axyridis.The length of the sequence was 500 bp.In line with it,One pair of sequence-characterized primers(D) of T.cinnabarinus was designed and it amplified single band was about 293 bp.One pair of sequence-characterized primers(E) of C.pallens was designed and it amplified single band was about 193 bp.Using primer D and E,the results showed that there were intraguild predation in predacity community.C.pallens、Carabidaes and spiders can consumed H. axyridis in fields.There in to the positive responses of C.pallens was 33.33%in maize fields and 40.00%in soybean fields higher than Carabidaes and spiders.At the same time,the results showed that only spiders consumed C.pallens in fields,the percentage of positive responses was 33.33%in maize fields and 25.00%in soybean fields.
     3 FQ-PCR was used in studying the quantity of pest insects gene copes in predators gut contents
     The calibration curves for the quantifying analyses of R.maidis and R.padi DNA fragment were set up,and the conditions and system compositions of real-time detection were optimized.Real-time detection for the gut contents of predators collected in fields showed that C.Pallens larva was the most possesser of R.maidis COⅡgene copes,then followed by C.Pallens adult,H.axyridis larva and adult,S.corollae larva,P.japonica adult and larva, spider and O.sauteri adult;C.Pallens adult was the most possesser of R.padi COⅡgene copes,then followed by C.Pallens larva,H.axyridis larva and adult,S.corollae larva, P.japonica larva and adult,spider and O.sauteri adult.
     4 FQ-PCR was used in studying the disintegration rate of pest insects gene copes in predators gut contents
     When a single R.maidis consumed by adult H.axyridis the relationships between time and delectability copes quantity were evaluated the formula:A=-0.4203B+2.9458 (R~2=0.9894);When a single R.maidis consumed by adult C.Pallens the relationships between time and delectability copes quantity were evaluated the formula: C=-0.2225D+3.0483(R~2=0.9228).When a single R.padi consumed by adult H.axyridis the relationships between time and delectability copes quantity were evaluated the formula: E=-0.6427 F+3.3705(R~2=0.998);When a single R.maidis consumed by adult C.Pallens the relationships between time and delectability copes quantity were evaluated the formula: G=-0.3177 H+3.2689(R~2=0.970).
     5 FQ-PCR was used in quantitive evaluation control effect of predators
     For the purpose of evaluating the control effect of H.axyridis and C.Pallens on R. maidis and R.padi by comprehensively analyzing the number,positive rate,possess pest insects gene copes and digestive speed of natural enemies,the results showed that the control effect of H.axyridis on R.maidis(R=6.1429x10~6) and R.padi(R=15.4896x10~6 ) is stronger than that of C.pallens.(R=2.7967x 10~6 and R=8.4966x 10~6).
引文
1.曹雅忠,倪汉祥.1992.禾缢管蚜危害小麦穗部损失估计初步研究.植物保护,18(2):17-18.
    2.程立生,刘君成,宋国敏.1989.拟小食螨瓢虫成虫对朱砂叶螨捕食作用的研究.热带作物学报,10(2):100-101
    3.崔金杰,夏敬源.2000.麦套夏播转Bt基因棉R93-6对昆虫群落的影响.昆虫学报,43(1):43-51.
    4.丁伟,赵志模,王进军等.2002.玉米地节肢动物群落优势功能集团的组成与演替.生态学杂志,21(1):38-41.
    5.丁岩钦.1993.论害虫种群的生态控制.生态学报,13(2):99-106.
    6.丁岩钦,陈玉平.1986.中华草蛉对棉蚜与棉铃虫的捕食作用研究.生物防治通报,2(3):97-102.
    7.董永才,汪世泽.1991.丁纹豹蛛对棉田多种猎物的选择效应.昆虫天敌,13(2):66-70.
    8.高红秀,韩岚岚,赵奎军,樊东,刘健.2006.大豆蚜细胞色素氧化酶Ⅱ基因的克隆及其在捕食性天敌昆虫鉴定中的应用.昆虫学报,49(5):754-758.
    9.戈峰.1998.害虫生态调控的原理和方法.生态学杂志,17(2):38-42.
    10.郝树广,张孝羲,程遐年.1998.稻田节肢动物群落营养层及优势功能集团的组成与多样性动态.昆虫学报,41(4):343-352.
    11.郝锡联,任炳忠,穆永光.2003.吉林省大豆害虫的种类与分布.吉林师范大学学报(自然科学版),24(4):34-36.
    12.何洪俊,柯道秀,熊映清,樊孝贤.1991.草间小黑蛛对朱砂叶螨的捕食反应.昆虫天敌,(3):11-16.
    13.何林,杨羽,符建章等.2004.朱砂叶螨阿维菌素抗性品系选育及适合度研究.植物保护学报,31(4):395-400.
    14.何林,赵志模,曹小芳,邓新平,王进军.2005.温度对抗性朱砂叶螨发育和繁殖的影响.昆虫学报,48(2):203-207.
    15.侯美珍,张永强,王卫光.2005.玉米地昆虫及捕食性节肢动物群落结构及动态研究.植物保护,31(6):47-52.
    16.胡金林.1983.中国林业蜘蛛.天津:科学技术出版社.
    17.黄保宏,王波,沈光斌,陈从权.1999.玉米田生物种群动态与群落结构研究.安徽农业技术师范学院学报,13(2):33-37.
    18.黄振,任顺祥,姚松林.2003.烟粉虱捕食性天敌淡色斧瓢虫的形态特征及生活习性.昆虫知识,40(5):450-453.
    19.金翠霞,吴亚,王冬兰,1990.稻田节肢动物群落的多样性.昆虫学报,33(3):287-295.
    20.荆英,黄建等.2004.小黑瓢虫与两种猎物作用系统研究:选择捕食作用.生态学报,24(2):292-296.
    21.李超,丁岩钦,马世骏.1982.草间小黑蛛对棉铃虫幼虫的捕食作用及其模拟模型的研究Ⅱ.捕食者--多种猎物系统的研究.生态学报,2(4):363-373.
    22.李建荣,石万成.1992.防治策略对苹果园天敌昆虫群落结构的影响.两南农业大学学报,14(6):507-511.
    23.李建荣,石万成,刘旭.1995.防治措施对苹果园昆虫群落结构和生态控制及其稳定性的影响.四川农业大学学报,13(2):121-126.
    24.李丽莉,王振营,何康来,白树雄,花蕾.2007.转Bt基因抗虫玉米对玉米蚜种群增长的影响.应用生态学报,18(5):1077-1080.
    25.李尉民,濮祖芹.1991.南京地区夏大豆田蚜虫的消长与大豆花叶病毒(SMV)病的流行.植物保护学报,18(2):123-126.
    26.刘隆旺,黄国勤等.1999.不同种植方式早玉米田害虫及其天敌的种类和数量组成研究.江西植保,22(1):28-29.
    27.刘树生.2004.天敌动物对害虫控制作用的评估方法及其应用策略.中国生物防治,20(1):1-7.
    28.刘万学,万方浩,张帆,孟昭军,王福莲.2000.棉铃虫捕食性天敌控制作用评价.中国生物防治,16(3):97-101.
    29.刘新茹.2002.吉林省大豆害虫天敌-蜘蛛的种类及分布.北华大学学报(自然科学版),(6):35-36.
    30.刘雨芳,张古忍,古德详等.2002.用ELISA方法研究稻田节肢动物的食物关系.昆虫学报,45(3):352-335.
    31.卢泽愚.1988.数学生态学(第二版)[M].北京:科学出版社,308-331.
    32.罗志义.1982.上海佘山地区棉田节肢动物群落多样性分析及杀虫剂对多样性的影响.生态学报,2(3):255-266.
    33.吕志创,张桂芬,万方浩,邓国荣.2005.天敌对烟粉虱捕食作用的SCAR标记检测.中国农业科学,38(6):1167-1173.
    34.马克争,郝树广,赵惠燕,康乐.2004.昆虫群落中的集团内捕食作用.昆虫知识,41(3):191-197.
    35.马世骏.1962.谈农业害虫的动态分析及途径的商榷.植物保护学报,1(4):337-349.
    36.马世骏.1976.谈农业害虫的综合防治.昆虫学报,19(2):129-141.
    37.马世骏.1978.谈农业害虫测报的展望.昆虫学报,21(2):113-131.
    38.苗进,吴孔明,李国勋.2005.大豆蚜的研究进展.大豆科学,24(2):135-138.
    39.牟吉元,李照会,郑方强等.1997.苹果园主要害虫及天敌群落结构和生态控制的研究.山东农业大学学报,28(3):253-261.
    40.潘恕.1986.温室白粉虱的新天敌--小花蝽研究简报.中国蔬菜,(3):41-45.
    41.庞宝平.1993.麦田昆虫群落的时间结构.昆虫知识,30(5):263-266.
    42.庞雄飞.2002.害虫种群的生态控制.北京:高等教育出版社,13-19.
    43.庞雄飞,梁广文.1995.害虫种群系统的控制.广州:广东科技出版社,1-212.
    44.秦素研,刘怀.2006.食物对尼氏真绥螨发育繁殖和朱砂叶螨捕食量的研究.西南农业大学学报,28(1):87-93.
    45.邱明生,张孝羲,王进军,赵志模.2001.玉米田节肢动物群落特征的时序动态.西南农业学报,14(1):70-73.
    46.邱式邦.1976.植物保护必须坚持“预防为主,综合防治”的方针.中国农业科学,(1):41-47.
    47.曲耀训,牟少敏等.2001.豆田天敌昆虫生态位研究.莱阳农学院学报,18(2):125-129.
    48.曲耀训,牟少敏等.2002.豆田食虫蝽类生态位研究.山东农业科学,(3):34-36.
    49.师光禄,刘贤谦,王满困等.1998.枣树昆虫群落结构及其综合治理效果的研究.林业科学,34(1):58-64.
    50.宋新元.2005.岫岩典型农业生态园区主要害虫与天敌群落结构与特点研究.沈阳师范大学硕士研究生论文.
    51.汤鉴球,温瑞贞.2000.用ELISA评价狼蛛对稻纵卷叶螟的捕食效应.中山大学学报,39(2):83-86.
    52.汤鉴球,张文庆.1992.用血清学方法评价稻田狼蛛对稻纵卷叶螟的控制作用.植物保护学报,19(1):1-5.
    53.万方浩,陈常铭.1986.综防区和化防区稻田害虫——天敌群落组成及多样性研究.生态学报,6(2):159-170.
    54.王成树,陈树仁.1999.蔬菜害虫及其天敌昆虫群落多样性和相关研究.生物多样性,7(2):106-110.
    55.王红宇,郝锡联,赵卓,任炳忠.2004.吉林省大豆害虫的种类与分布(Ⅱ).吉林师范大学学报(自然科学版),25(3):19-21.
    56.王永宏,仵均祥,苏丽.2002.玉米蚜种群的空间动态.西北农林科技大学学报,30(4):55-58.
    57.王永宏,苏丽,仵均祥.2002.温度对玉米蚜种群增长的影响.昆虫知识,39(4):277-280.
    58.吴奇,彭焕,彭可维,陈强强,彭于发,彭德良.2007.抗除草剂转基因大豆对豆田主要害虫发生动态的影响.植物保护,33(5):50-53.
    59.徐洪富,牟吉元等.1999.棉区夏玉米田节肢动物群落的研究.华东昆虫学报,8(1):76-80.
    60.徐淑敏,刘新茹.2003.大豆害虫的研究概况.北华大学学报(自然科学版),4(6):478-483.
    61.许艳丽,钱秀娟.2005.大豆主要病虫害研究概况.大豆通报,(3):27.
    62.严毓骅.1986.苹果园种植覆盖作物保护和增殖天敌的研究初报.华北农学,1(2):98-104.
    63.杨本立,宋家雄,严乃胜等.1999.昭通市苹果园昆虫群落时间格局与害虫防治.云南大学学报,14(4):358-360.
    64.杨勤民,孙敏,徐玉芳,时爱菊,牟吉元.2004.夏大豆田主要害虫和天敌群落结构的研究.山东农业大学学报(自然科学版),35(2):217-220.
    65.杨益众.林冠伦,胡长富等.1991.麦蚜与麦株体内水分、蔗糖和田间温湿度关系的初步研究植物保护,17(2):2-4.
    66.姚英鹃,薛东,杨长举.2003.论生物防治与持续植保.湖北植保,(6):33-34.
    67.印毅.2004.麦蚜种群的发生为害与主要影响因子分析.扬州大学硕士学位论文.
    68.余金咏,蓝超跃,吴伟坚等.2003.中华微刺盲蝽对烟粉虱的捕食功能反应.湖北农学院学报,23(1):5-7.
    69.张安盛,于毅,门兴元,李丽莉,孙廷林.2007.东亚小花蝽若虫对人侵害虫西花蓟马成虫的捕食作用.昆虫天敌,29(3):108-112.
    70.张安盛,于毅,李丽莉等.2007.东亚小花蝽成虫对人侵害虫西花蓟马成虫的捕食作用.生态学报,27(5):1903-1909.
    71.张古忍,张文庆,古德详.1997.用ELISA研究稻田节肢类捕食者对稻飞虱的捕食作用.昆虫学报,40(2):171-176.
    72.张弘,孟铃.2003.农用杀螨剂应用、开发现状及展望.农药,42(3):14-17.
    73.张淑珍,徐鹏飞等.2004.黑龙江省2004年大豆田虫害的发生分布及综合防治措施.黑龙江省农业科学,(6):45-47.
    74.赵志模,郭依泉.1990.群落生态学原理与方法.科学技术文献出版社重庆分社.
    75.周集中,陈常铭.1987.捕食者对猎物选择性的数量测定方法.生态学报,7(1):50-56.
    76.周强,张古忍,张文庆等.1998.用ELISA方法评价捕食性天敌对白背飞虱的捕食效能.昆虫知识,35(3):183-184.
    77.周强,张古忍,张文庆等.1999.不同抗性品系稻田捕食性节肢动物群落的结构和动态.生态学报,19(5):728-731.
    78.周兴苗,雷朝亮.2002.南方小花蝽对不同猎物捕食作用及利用效率.生态学报,22(12):2085-2090.
    79.朱弘复.1978.治理有害动物的战略和策略--主要以中国棉虫为讨论材料.昆虫学报,21(3):297-306.
    80.Agust(?) N,de Vicente M C,Gabarra R.2000.Developing SCAR markers to study predation on Trialeurodes vaporariorum.Insect Molecular Biology,9:263-268.
    81.Agust(?) N,Shayler S P,Harwood J D,Vaughan I P,Sunderland K D,Symondson W O C.2003.Collembola as alternative prey sustaining spiders in arable ecosystems:prey detection within predators using molecular markers.Molecular Ecology,12:3 467-3 475.
    82.Agust(?) N,Unruh T R,Welter S C.2003.Detecting Cacopsylla pyricola(Hemiptera:Psyllidae) in predator guts by using COI mitochondrial markers.Bulletin of Entomological Research,93:179-185.
    83.Bellows T S J r,van Driesche R G,Elkinton J S.In:Bellows T S,Fisher T W,eds.1999.Handbook of Biological Control:Principles and Applications of Biological Control.New York:Academic Press,199-223.
    84.Bohan D A,Bohan A C,Glen D M,Symondson W O C,Wiltshire C W,Hughes L.2000.Spatial dynamics of predation by carabid beetles on slugs.Journal of Animal Ecology,69:367-379.
    85.Cardinale B J,C T Harvey,K Gross,and A R Ives.2003.Biodiversity and biocontrol:emergent impacts of a multienemy assemblage on pest suppression and crop yield in an agroecosystem.Ecology Letters,6:857-865.
    86.Cart J J.195 7.On the biology of the corn leafaphid.Journal of Economic Entomology, 50: 110-112.
    87.Chang G C, S D Eigenbrode.2004.Delineating the effects of a plant trait on interactions among associated insects.Oecologia,139:123-130.
    88.Chen Y, Giles K L, Payton M E, Greenston M H.2000,Identifying key cereal aphid predators by molecular gut analysis.Molecular Ecology, 9: 1 887-1 898.
    89.Coll M, and M Guershon.2002.Omnivory in terrestrial arthropods: mixing plant and prey diets.Annual Review of Entomology,47:267'-297.
    90.Corey D, Kambhampati S, Wilde G.1998.Electrophoretic analysis of Orius insidiosus (Hemiptera:Anthocoridae) feeding habits in field corn Journalof the Kansas Entomological Society,7 1:11-17.
    91.Crook A,Solomon M.1997.Predators of vine weevil in soft fruit plantations.New developments in the soft fruit industry.Proceedings of a Conference Organized by ADAS,HRI and EMRA in Association with CCFRA, HDC and the Grower Magazine, pp.83-87.Horticulture Research International, Ash ford, UK.
    92.Crook N E, Sunderland K D.1984,Detection of aphid remains in predatory insects and spiders by EUSAAnnals of Applied Biology, 105: 413-422.
    93.DeBach P.1974.Biological control by natural enemies.Cambridge University Press, London, UK.94.Dodd C S.2004.Development and optimization of PCR-based techniques in predator gut analysis.PhD Thesis, Cardiff University, Cardiff.
    95.Dyer L A, D K Letourneau.1999.Trophic cascades in a complex terrestrial community.Proceedings of the National Academy of Sciences (USA),96:5072-5078.
    96.Ehler L E, Miller J C.1978,Biological control in temporal agroecosystems.Entomophaga, 23:207-212.
    97.Eubanks M D, Denno R F.2000.Host plants mediate ominivoreherbivore interactions and influence prey suppression.Ecology,81:936-947.
    98.Farrell L E, Roman J, Sunquist M E.2000.Dietary separation of sympatric carnivores identified by molecular analysis of scats.Molecular Ecology, 9 :1 583-1 590.
    99.Finke D L, R F Denno.2002.Intraguild predation diminished in complex-structured vegetation:implications for prey suppression.Ecology,S3:6A3-652.
    100.Fletcher M J, Desborough P.2002.The soybean aphid, Aphis glycines, present in Australia, http ://www.agric.nsw.gov.au/Hort/ascu/insects/aglycin.htm.
    101.Finke D L, R F Denno.2003.1ntra-guild predation relaxes natural enemy impacts on herbivore populations.Ecological Entomology,,28:67-73.
    102.Forbes S A.1883.The food relations of the Carabidae and Coccinellidae.Bulletin of the Illinois State Laboratory of Natural History, 1:33-64.
    103.Gastreich K R.1999.Trait-mediated indirect effects of a theridiid spider on an ant-plant mutualism.Ecology, 80: 1066-1070.
    104.Goodman D.1975.The theory of diversity------stability relationships in ecology.The Quarterly Review of Biology, 50(3):237-266.
    105.Hagler J R.1998.Variations in the efficacy of several predator gut content immunoassays.Biological Control 12:25-32.
    106.Hagler J R, Cohen A C, Bradley-Dunlop D, Enriquez F J.1992.Field evaluation of predation on Lygus hesperus using a species- and stage-specific monoclonal antibody.Environmental.Entomology,21:896-900.
    107.Hagler J R, Durand C M.1994.A new method for immunologically marking prey and its use in predation studies.Entomohaga,39: 257-265.
    108.Hagler J R, Naranjo S E.1994.Determining the frequency of heteropteran predation on sweet-potato whitefly and pink-bollworm using multiple ELISAs.EntomologiaExperimentalis et Applicata, 72:59-66.
    109.Hagler J R, Naranjo S E.1994.Qualitative survey of two coleopteran predators of Bemisia tabaci (Homoptera:Aleyrodidae) and Pectinophora gossypiella (Lepidoptera:Gelechiidae) using multiple prey gut content ELISA.Environmental Entomology, 23: 193-197.
    110.Hagler J R, Naranjo S E.1996.Using gut content immunoassays to evaluate predaceous biological control agents:a case study.The Ecology of Agricultural Pests: Biochemical pproaches (eds W O C Symondson , J E Liddell),pp.383-399.Chapman & Hall, London.
    111.Hagler J R, Naranjo S E.1997.Measuring the sensitivity of an indirect predator gut content EL1SA: detectability of prey remains in relation to predator species, temperature,time and meal size.Biological Control,9: 112-119.
    112.Hagler J R, Naranjo S E.2004.A multiple ELISA system for simultaneously monitoring intercrop movement and feeding activity of mass-released insect predators.InternationalJournal of Pest Management, 50:199-207.
    113.Hagler J R, Naranjo S E.2005.Use of a gut content ELISA to detect whitefly predator feeding activity after field exposure to different insecticide treatments.Biocontrol Science and Technology,1 5:321 -339.
    114.Hagler J R, Naranjo S E, Bradley-Dunlop D, Enriquez F J, Henneberry T J.1994.A monoclonal antibody to pink bollworm (Lepidoptera, Gelechiidae) egg antigen-a toolfor predator gut analysis.Annals of the Entomological Society of America, 87:85-90.
    115.Hairston N G, F E Smith, L B Slobodkin.1960.Community structure, population control, and competition American Naturalist,94:42\-425.
    116.Halaj J, D H Wise.2001.Terrestrial trophic cascades: how much do they trickle? American Naturalist, 157:262-281.
    117.Halaj J, D H Wise.2002.Impact of a detrital subsidy on trophic cascades in a terrestrial grazing food web.Ecology, 83:3 141-3 151.
    118.Harmon J P, Ives A R, Losey J E, Olson A C, Rauwald K S.2000,Coleomegilla maculata (Coleoptera:Coccinellidae) predation on pea aphids promoted by proximity to dandelions.Oecologia, 125:543-548.
    119.Harper G L, King R A, Dodd C S, Harwood J D, Glen D M, Bruford M W, Symondson W O C.2005.Rapid screening of invertebrate predators for multiple prey DNA targets, olecular Ecology,14:819-828.
    120.Harwood J D, Symondson W O C, Sunderland K D.2001.Monoclonal antibodies to quantify the effects of alternative prey on aphid predation by spiders.Antenna, 25:257-259.
    121.Harwood J D, Sunderland K D, Symondson W O C.2004.Prey selection by linyphiid spiders: molecular tracking of the effects of alternative prey on rates of aphid consumption in the field.Molecular Ecology, 13:3549-3560.
    122.Harwood J D, Sunderland K D, Symondson W O C.2005.Monoclonal antibodies reveal the potential of the tetragnathid spider Pachygnatha degeeri (Araneae: Tetragnathidae)as an aphid predator.Bulletin of Entomological Research, 95: 161-167.
    123.Henneberry T J,Clayton T E.1985.Consumption of pink boilworm and tobacco budworm eggs by some predators commonly found in cotton fields Environ.Entomol, 416-419.
    124.Heong K L et al.1991.Arthropod community structure of rice ecosystem in the Philippines.Bull.Entomol.Res., 81: 407-416.
    125.Holt R D.1977.Predation, apparent competition, and the structure of prey communities.Jheor.Popul.Biol, 12:197-229.
    126.Hoogendoorn M, Heimpel G E.2001.PCR-based gut content analysis of insect predators: using ribosomal ITS-I fragment from prey to estimate predation frequency.Molecular Ecology, 10:2 059-2067.
    127.Huffaker C B, F J Simmonds, J E Laing.1976.The theoretical and empirical basis of biological control.pp.41-78 in C B Huffaker and P S Messenger, editors.Theory and practice of biological control.Academic Press, New York, New York, USA.
    128.Hurd L E, and R M Eisenberg.1990.Arthropod community responses to manipulation of a bitrophic predator guild.Ecology ,71:2 107-2 114.
    129.Hurlbert S H.1971 .The nonconcept of species diversity: A critique and alternative Parameters.Ecology,52(4): 577-586.
    130.Janssen A,A Pallini,M Venzon,M W Sabelis.1998.Behaviour and indirect interactions in food webs of plantinhabiting arthropods.Experimental and Applied Acarology, 22:497-521.
    131.Jarman S N, Gales N J, Tierney M, Gill P C, Elliott N G.2002.A DNA-based method for identification of krill speciesand its application to analysing the diet of marine vertebrate predators.Molecular Ecology, 11:2 679-2 690.
    132.Jervis M , Kidd N , eds.1996.1nsect Natural Enemies : Practical Approaches to Their Study and Evaluation .London :Chapman & Hall,491.
    133.Juen A, Traugott M.2005.Detecting predation and scavenging by DNA gut-content analysis: a case study using a soil insect predator-prey system.Oecologia,142:244-252.
    134.Kapuge S H, Danthanarayana W, Hoogenraad N.1987.Immunological investigation of prey-predator relationships for Pieris brassicae (L.) (Lepidoptera: Pieridae).Bulletin of Entomological.Research,77:247-254.
    135.Kaspar M L, Reeson A F, Cooper S J B, Perry K D, Austin A D.2004.Assessment of prey overlap between a native (Polistes humilis) and an introduced (Vespula germanica) social wasp using morphology and phylogenetic analysis of 16SrDNA.Molecular Ecology, 13: 2 037-2 048.
    136.Kogan M.1998.Integrated Pest management: historical perspectives and contem Porary developments developments.Annual Review of Entomology, 43: 243-270.
    137.Koss A M, Snyder W E.2005.Alternative prey disrupt biocontrol by a guild of generalist predators..Biological Control, 32:243-251.
    138.Kuhar T P,Wright M G, Hoffmann M P,et a\.2002.Environmental Entomology..,31:482 - 489.
    139.Lang A.2003,Intraguild interference and biocontrol effects of generalist predators in a winter wheat field.0ecologia,134:144-153.
    140.Le Kang et al1995.Dynamics of grusshopper communities under different grazing intensities in Inner Mongolia steppes.Entomologia Sinica,2(3): 265-281.
    141.Letoumeau D K, L A Dyer.1998.Experimental test in lowland tropical forest shows top-down effects through four trophic levzls.Ecology, 79:1 678-1 687.
    142.Lim U T, Lee J H.1999.Enzyme-linked immunosorbent assay used to analyze predation of Nilaparvata lugens (Homoptera: Delphacidae) by Pirata subpiraticus (Araneae:Lycosidae).Environmental Entomology, 28: 1 177-1 182.
    143.Losey J E,R F Denno.1998.Positive predator-predator interactions: enhanced predation rates and synergistic suppression of aphid populations.Ecology,79:2 143-2 152.
    144.Luck R F , Shepard B M , Kenmore P E.In : Bellows T S , Fisher T W, eds.1999.Handbook of Biological Control: Principles and Applications of Biological Control.New York : Academic Press,225-242.
    145.May M R.1973.Qualitative stability in model ecosystems.Ecology, 54(3): 638-641.
    146.Mcdaniel S G, Keeley L L,Sterling W L.1978.Radiolabeling Heliothis viresccns eggs by P32 injection of adult females.Ann.Entomol.Soc.Am ,71:432-434.
    147.Mills N.1997.Techniques to evaluate the efficacy of natural enemies.In: Dent D R ed.Methods in Ecological and Agricultural Entomology.CAB International, Wallingford, UK.271-291.
    148.Murray R A, Solomon M C R1978.A rapid technique for analyzing diets of invertebrate predators by electrophoresis.Ann .Appl..Biol, 113:213-222.
    149.Noldus L P J J,Spink A J,Tegelenbosch R A J.2002 .Computers and Electronics in Agriculture,35:201-227.
    150.Orphanides G M, Gonzales D,Bartlett B R.1971.Identification and evaluation of pink, bollworm predators in southern California.J.Econ.Entomol,64: 421-424.
    151.Pfeifer T A- T A Grigliatti.1996.Future Perspective on Insect Management: Engineering the Pest.Inverterbr, 67: 109-119.
    152.Pielou E C.1975.Ecological diversity.New York: John Wiley&Sons.
    153.Pimm S L, Lawton J H.1978.On feeding on more than one trophic level.Nature,275:542-544.
    154.Polis G.A, C A Myers, and R D Holt.1989.The ecology and evolution of intraguild predation: potential competitors that eat each other.Annual Review of Ecology and Systematics,20:297-330.
    155.Polis G.A.1991.Complex trophic interactions in deserts: an empirical critique of food-web theory.American Naturalist, 138:123-155.
    156.Polis G A, and D R Strong.1996.Food web complexity and community dynamics.American Naturalist, 147:813-846.
    157.Polis G A.1999.Why are parts of the world green? Multiple factors control productivity and the distribution of biomass.Oikos, 86:3-15.
    158.Polis G A, Holt R D.1992.1ntraguild predation: the dynamics of complex trophic interactions.Trends in Ecology and Evolution, 7: 151-154.
    159.Ragsdale D W, Voegtlin D J, O'Neil R J.2004.Soybean aphid biology in north America.Annals Entomological Society Amerasian, 97(2): 204-208.
    160.Riechert S E, L Provencher, and K Lawrence.1999.The potential of spiders to exhibit stable equilibrium joint control of prey: tests of two criteria.Ecological Applications, 9:365-377.
    161.Riechert S E, Lockley T.1984.Spiders as biological control agents.Annu.Rev.Entomo\,29:299-320.
    162.Rosenheim J A.1998.Higher-order predators and the regulation of insect herbivore populations.Annual Review of'Entomology,43:421 -447.
    163.Rosenheim J A.2001.Source-sink dynamics for a generalist insect predator in a habitat with strong higher-order predation.Ecological Monographs,71:93-l 16.
    164.Rosenheim J A, D D Limburg,and R G Colfer.1999.Impact of generalist predators on a biological control agent, Chrysoperla carnea: direct observations.Ecological Applications,9:409-417.
    165.Rosenheim J A,Glik T E,Goeriz R E, and Ramert B.2004.Linking a predator's foraging behavior with its effects on herbivore population suppression.iscology, 85(12):3 362-3 372.
    166.Rosenheim J A, H K Kaya, L E Ehler, J J Marois, and B A Jaffee.1995.Intraguild predation among biological control agents: theory and evidence.Biological Control, 5:303-335.
    167.Rosenheim J A, L R Wilhoit, and C A Armer.1993.Influence of intraguild predation among generalist insect predators on the suppression of an herbivore population.Oecologia,96:439-449.
    168.Ruberson J R, Greenstone M H.1998.Predators of budworm/bollworm eggs in cotton: an immunological study .Proceedings of the 1998 Beltwide Cotton Conferences, 2:1 095-1 098.
    169.Sansone C G, Smith J W Jr.2001.Identifying predation of Helicoverpa zea (Lepidoptera: Noctuidae) eggs by Orius spp.(Hemiptera: Anthocoridae) in cotton by using ELISA.Environmental Entomology,30:431-438.
    170.Schmidt M H, A Lauer, T Purtauf, C Thies, M Schaefer, and T Tscharntke.2003.Relative importance of predators and parasitoids for cereal aphid control.Proceedings of the Royal Society of London B, 270:1 905-1 909.
    171.Schmitz O J, P A Hamback, and A P Beckerman.2000.Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants.American Naturalist, 155:141-153.
    172.Scribner K T,Bowman T D.1998.Microsatellites identify depredated waterfowl remains from glaucous gull stomachs.Molecular Ecology, 7:1 401-1 405.
    173.Settle W H, Ariawan H, Astuti E T, Cahyana W, Hakim A L, Hindayana D, Lestari A S.1996.Pajarningsih, Sartanto.Managing tropical rice pests through conservation of generalist natural enemies and alternative prey.Ecology,77:\ 975-1 988.
    174.Settle W H, Wilson L T.1990.Invasion by the variegated leafhopper and biotic interactions: parasitism,competition, and apparent competition.Ecology, 7:1 461-1 470.
    175.Sheppard S K, Harwood J D.2005.Advances in molecular ecology: tracking trophic links through predator-prey food-webs.Functional Ecology, 19: 751-762.
    176.Sheppard S K, Henneman M L, Memmott J, Symondson W O C.2004.Infiltration by alien predators into invertebrate food webs in Hawaii: a molecular approach.Molecular Ecology, 13: 2 077-2 088.
    177.Sigsgaard L.1996.Serological analysis of predators of Helicoverpa armigera H(u|¨)bner (Lepidoptera: Noctuidae) eggs in sorghum-pigeonpea intercropping at 1CRISAT, India: a preliminary field study.
    The Ecology of Agricultural Pests: Biochemical Approaches (eds W O C Symondson J E Liddell), pp.367-381.Chapman & Hall.London.
    178.Sigsgaard L, Greenstone M H, Duffield S J.2002.Egg cannibalism in Helicoverpa zea on sorghum and pigeonpea.Bio Control.47:151 -165.
    179.Sih A, G Englund, and D Wooster.1998.Emergent impacts of multiple predators on prey.Trends in Ecology and Evolution , 13:350-355.
    180.Simon C, Frati F, Beckenbach A, et al.1994.Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved PCR primers.Ann.Entomol.Soc.Am., 87(6): 51-701.
    181.Simpson E H.1949.Measurement of diversity.Nature, 63-68.
    182.Singh S R, Painter RH.1964,.Effect of temperature and plants on progeny production of four biotypes of corn leaf aphid,Rhopalaosiph urn maidis.Journal of Economic Entomology, 57: 348-350.
    183.Snyder W E, and A R Ives.2001,Generalist predators disrupt biological control by a specialist parasitoid.Ecology,82:705-716.
    184.Snyder W E, and A R Ives.2003.Interactions between specialist and generalist natural enemies:parasitoids, predators, and pea aphid biocontrol.Ecolo,84:91-107.
    185.Snyder W E, Clevenger G M.2004.Negative dietary eVects of Colorado potato beetle eggs for the larvae of native and introduced ladybird beetles.Biok.Control,31:353-361.
    186.Snyder W E, D H Wise.2001.Contrasting tropic cascades generated by a community of generalist predators.Ecology,82:1 571-1 583.
    187.Sokol Hessner L, and O J Schmitz.2002.Aggregate effects of multiple predator species on a shared prey.Ecology, 83:2367-2372.
    188.Soluk D A., and N C Collins.1988.Synergistic interactions between fish and stoneflies: facilitation and interference among stream predators.Oikos ,52:94-100.
    189.Spiller D A.1986.1nterspecial competition between spiders and its relevance to biological control by general predators.Environmental Entomology 15:177-181.
    190.Sunderland K D.1996.Progress in quantifying predation using antibody techniques.In: Symondson W O C ed.The Ecology of Agricultural Pests: Biochemical Approaches.London: Chapman and Hall,419-455.
    191.Sunderland K D, Crook N E, Stacey D L.et al.1987.A study of feeding by polyphagous predators on cereal aphids using ELISA and gut issection.Journal of Applied Ecology, 24:907-933.
    192.Sutherland R M.2000.Molecular analysis of avian diets.?\\D Thesis, University of Oxford, Oxford.193.Symondson W 0 C.2002.Molecular identification of prey in predator diets.Molecular Ecology, 11:627-641.
    194.Symondson W O C, Glen D M, Erickson M L, Liddell J E, Langdon C J.2000.Do earthworms help to sustain the slug predator Pterostichus melanarius (Coleoptera: Carabidae) within crops? Investigations using monoclonal antibodies.Molecular Ecology, 9:1 279-1 292.
    195.Symondson WOC, Glen D M, Wiltshire C W, Langdon C J, Liddell J E.1996.Effects of cultivation techniques and methods of straw disposal on predation by Pterostichus melanarius (Coleoptera: Carabidae) upon slugs (Gastropoda-.Pulmonata) in an arable field.Journal of Applied Ecology, 33:741-753.
    196.Taberlet P, Fumagalli L.1996.Owl pellets as a source for genetic studies of small mammals.Molecular Ecology, 5:301-305.
    197.Toft S, Wise D.H.1999.Behavioral and ecophysiological responses of a generalist predator to single-and mixed-species diets of different quality.Oecologia, 119:198-207.
    198.Traugott M.2001.Ecology and prey spectrum of Cantharis-species (Coleoptera: Cantharidae) in arable land.PhD Thesis, University of Innsbruck.
    199.Tshernyshev W B.1995.Ecological Pest management(EPM): general approaches.Appl.Ent., 119: 375-381.
    200.van Baalen M, Krivan V, vanRijn P C J, Sabelis M W.2001.Alternative food, switching predators, and the persistence of predator-prey systems.Am.Nat, 157:512-524.
    201.vanden Bosch R, P S Messenger, and A P Gutierrez.1982.An introduction to biological control.Plenum Press, New York, New York, USA.
    202.Winder L Alexander C L, Holland J M, Symondson W O C.Perry J,Woolley C.2005.Predatory activity and spatial pattern: the response of generalist carabids to their aphid prey.Journal of Animal Ecology.74: 443-454.
    203.Wise D H.1993.Spiders in ecological webs.Cambridge University Press, Cambridge, UK.204.Wratten S D.1987.The effectiveness of native natural enemies In: Integrated Pest Management.Cademic Press Limited,89-1 12.
    205.Zhao W C, Cheng J A, Chen Z X.2004.Development of a monoclonal antibody to detect predation of the brown planthopper Nilaparvata lugens (Stal).International Journal of Pest Management,50:317-321.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700