在高植物蛋白饲料中添加胆固醇、牛磺酸和大豆皂甙对大菱鲆生长性能和胆固醇代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以我国重要海水肉食性养殖鱼类大菱鲆(Scophthalmus maximus L.)为实验对象,在室内流水养殖系统中进行摄食生长实验,研究高植物蛋白饲料中添加胆固醇、牛磺酸和大豆皂甙以及限饲水平对大菱鲆生长性能和胆固醇代谢的影响。在此基础上探讨植物蛋白降低鱼类血浆胆固醇的机制。本文的研究内容和主要研究结果如下:
     1、高植物蛋白饲料中添加胆固醇对大菱鲆幼鱼摄食、生长和胆固醇代谢的影响
     用添加胆固醇的高植物蛋白饲料饲喂大菱鲆(Scophthalmus maximus L.)幼鱼9周,研究其对大菱鲆摄食、生长和胆固醇代谢的影响。实验设计了5组等氮等脂饲料,以含鱼粉58%的饲料作为基础饲料(FM),而其它4组饲料均含14.5%的鱼粉、42.0%豆粕和18.5%谷朊粉,在这4组饲料中分别补充0.0%(C-0.0%)、0.5%(C-0.5%)、1.0%(C-1.0%)和1.5%(C-1.5%)的胆固醇,其实测值分别为0.30%、0.77%、1.25%和1.78%,而基础饲料中胆固醇检测值为0.63%。结果表明,摄食饲料FM的大菱鲆增重率和饲料效率均显著高于其它饲料组(P<0.05)。与C-0.0%组相比,摄食饲料C-1.0%组显著提高了大菱鲆幼鱼的摄食率、增重率和血浆及肝脏胆固醇水平(P<0.05)。与C-1.0%组相比,摄食饲料C-1.5%组显著抑制了实验鱼的增重率和摄食率(P<0.05)。当饲料中胆固醇含量为1.25%(C-1.0%)时,其全鱼脂肪含量最高,且显著高于其它处理组(P<0.05)。饲料中胆固醇含量与血浆中总胆固醇、游离胆固醇、胆固醇酯、高密度脂蛋白胆固醇和低密度脂蛋白胆固醇的含量、肝脏中总胆固醇、胆固醇酯的含量及粪便中总胆固醇的含量呈显著相关关系,相关系数均大于0.74。饲料中含有0.30%的胆固醇(C-0.0%),其粪便总胆汁酸含量和肝脏胆固醇7A羟化酶的活性在所有处理组中最低。该研究结果表明,高植物蛋白饲料中含有1.25%的胆固醇有利于大菱鲆幼鱼的生长,且对其生理状态无不良影响。
     2、大菱鲆HMG-CoAr基因的克隆、序列分析以及胆固醇添加到高植物蛋白饲料中对肝脏HMG-CoAr基因mRNA表达量的影响
     以大菱鲆(Scophthalmus maximus L.)为实验材料,利用同源克隆技术和RACE技术从大菱鲆肝脏中成功扩增出3-羟基-3-甲基戊二酸单酰辅酶A还原酶(3-hydroxy-3-methylglutaryl-Coenzyme A reductase,HMG-CoAr)cDNA的全序列。HMG-CoAr基因cDNA全长序列为3048bp(Genbank No: JN542428),其中包括一个有2664bp的开放阅读框且编码887个氨基酸,预测分子量约为96.52kDa,理论等电点为6.44。BLAST分析显示大菱鲆HMG-CoAr基因与其它已知脊椎动物具有高度同源性,且N-端和C-端高度保守,仅连接N-端和C-端的中间疏水部分变异较大。序列分析指出HMG-CoAr基因在N-端氨基酸部分包括5个主要的跨膜域。实时定量PCR技术检测了全鱼粉组(FM)、高植物蛋白组(C-0.0%)和高植物蛋白组基础饲料中添加1.0%的胆固醇(C-1.0%)对大菱鲆肝脏HMG-CoAr基因mRNA表达量的影响。结果表明,与摄食全鱼粉组相比(DietFM),摄食高植物蛋白饲料(C-0.0%)能显著上调大菱鲆肝脏HMG-CoAr基因mRNA的表达(P<0.01)。然而,当高植物蛋白饲料中补充1.0%的胆固醇则显著抑制肝脏HMG-CoAr基因mRNA的表达量(P<0.01)。该研究结果表明,充足的饲料胆固醇能够显著抑制HMG-CoAr基因mRNA的表达,胆固醇的合成受反馈调节机制控制。
     3、高植物蛋白饲料中添加胆固醇和牛磺酸对大菱鲆幼鱼摄食、生长、胆固醇代谢以及肝脏HMG-CoAr基因mRNA表达量的影响
     在高植物蛋白饲料中添加胆固醇、牛磺酸或同时添加胆固醇和牛磺酸研究其对大菱鲆(Scophthalmus maximus L.)幼鱼生长性能和胆固醇代谢的影响。实验基础饲料(对照组)包括14.5%的鱼粉和50%的粗蛋白,在基础饲料中分别添加1.0%牛磺酸、1.0%胆固醇及1.0%胆固醇和1.0%牛磺酸的混合物(各组饲料分别命名为C-1.0%、T-1.0%和TC),配制成等氮等脂的实验饲料。实验结果表明摄食饲料C-1.0%、T-1.0%和TC的大菱鲆增重率显著高于对照组。其中摄食饲料TC的大菱鲆增重率最高,但与C-1.0%相比无显著差异(P>0.05)。与摄食饲料C-1.0%相比,摄食饲料TC显著降低了大菱鲆血浆总胆固醇、游离胆固醇和低密度脂蛋白胆固醇含量(P<0.05)。与对照组相比,摄食饲料C-1.0%能显著提高实验鱼胆固醇7A羟化酶(CYP7A1)的活性(P<0.05),且摄食饲料T-1.0%组CYP7A1活性最高。与摄食饲料C-1.0%相比,摄食饲料TC能显著下调HMG-CoAr基因mRNA的表达量(P<0.05)。该研究结果表明,高植物蛋白饲料中添加1.0%胆固醇和1.0%的牛磺酸有利于大菱鲆的生长。
     4、饲料中添加大豆皂甙对大菱鲆幼鱼摄食、生长和胆固醇代谢的影响
     本实验旨在研究大豆皂甙对大菱鲆幼鱼(Scophthalmus maximus L.)摄食、生长和胆固醇代谢的影响。以鱼粉饲料为基础饲料(对照组,不添加大豆皂甙),分别在对照饲料基础上添加0.3%(实际含量为0.25%)和0.6%(实际含量为0.5%)的大豆皂甙产品,配制出另外的2组实验饲料。3组饲料大豆皂甙的含量分别为0.0%(Diet1)、0.25%(Diet2)和0.5%(Diet3)。结果表明,与对照组相比,饲料中添加0.25%的大豆皂甙(Diet2)对实验鱼的摄食率、饲料利用率和生长无显著影响。但与对照组相比,饲料中添加0.5%的大豆皂甙显著抑制了实验鱼的生长(P<0.05)。血浆、肝脏和粪便胆固醇代谢相关指标在各处理组间均无显著差异。以上结果表明在鱼粉为基础的饲料中添加0.25%大豆皂甙对大菱鲆幼鱼的生长没有负面效应,而添加0.5%大豆皂甙则显著抑制大菱鲆幼鱼的生长。各组间实验鱼血浆、肝脏和粪便胆固醇含量无显著差异,这表明在鱼粉为基础的饲料中添加大豆皂甙对实验鱼胆固醇代谢无显著影响。
     5、限饲水平对大菱鲆幼鱼生长性能、胆固醇代谢以及肝脏HMG-CoAr基因表达的影响
     以初始体重为6.4±0.1g的大菱鲆幼鱼为实验研究对象,探讨限饲水平对大菱鲆幼鱼生长性能和胆固醇代谢的影响。实验分为4组,对照组以表观饱食投喂,其它3组摄食率相应调整为表观饱食的75%、50%和25%,并分别命名为100%组、75%组、50%组和25%组。实验结果表明,摄食率与大菱鲆增重率、血浆总胆固醇、游离胆固醇、高密度脂蛋白胆固醇和低密度脂蛋白胆固醇呈显著的正相关关系(P<0.05)。而摄食率与肝脏总胆固醇、游离胆固醇及胆固醇酯呈显著负相关关系(P<0.05)。与对照组相比,25%组的酰基辅酶A:胆固醇酰基转移酶(ACAT)活性显著降低(P<0.05),且其活性与摄食率呈显著正相关关系(P<0.05)。与对照组相比,摄食表观饱食50%或25%的实验组显著上调了3-羟基-3-甲基戊二酰-辅酶A还原酶(HMG-CoAr)基因的mRNA表达。以上结果表明,植物蛋白所致的鱼类血浆低胆固醇效应部分归因于其摄食植物蛋白后导致的摄食率下降。在50%或25%组中、显著升高的实验鱼肝脏胆固醇含量可能与其胆固醇合成能力升高有关。
Turbot (Scophthalmus maximus L.), an important commercial carnivorous fishin East Asia, is widely farmed. Four growth trials were conducted to investigate theeffects of dietary cholesterol, taurine, soya saponins supplementation and feedrestriction on growth performance, feed intake and cholesterol metabolism of juvenileturbot. The aim of these experiments was to study the mechanism ofhypocholesterolemic effect caused by plant protein and to clarify the mechanism ofthe fish growth promoting effects of cholesterol.The results are summarized asfollows:
     1. Effects of dietary cholesterol on growth performance, feed intake andcholesterol metabolism in juvenile turbot (Scophthalmus maximus L.) fedhigh plant protein diets
     A9-week growth trial was conducted to investigate the effects of dietarycholesterol supplementation on growth performance, feed intake and cholesterolmetabolism of juvenile turbot (Scophthalmus maximus L.) fed high plant proteindiets. A fish meal diet (diet FM) with58%FM was formulated, and this diet was usedas control. The other four isonitrogenous and isolipidic diets were formulated with0.0%,0.5%,1.0%and1.5%cholesterol supplementation, respectively, to the diet FM,whichcontained14.5%FM,42.0%soybean meal (SBM), and18.5%wheat glutenmeal. They were named as diet C-0.0%, C-0.5%, C-1.0%and C-1.5%, respectively.The final dietary cholesterol concentrations were0.30%,0.77%,1.25%, and1.78%,respectively, and that in control diet was0.63%. The results showed that weight gainrate (WGR) and feed efficiency rate in fish fed the diet FM were significantly higherthan those in fish fed other diets (P<0.05). Furthermore, compared with fish fed diet C-0.0%, fish fed diet C-1.0%significantly enhanced WGR, feed intake (FI) andcholesterol levels in plasma and liver. However, WGR and FI in fish fed diet C-1.5%were significantly lower than those in fish fed diet C-1.0%(P<0.05). Fish fed dietC-1.0%showed significantly higher whole-body lipid content than that of fish fedother diets (P<0.05). The total cholesterol (TC), free cholesterol (FC), cholesterolesters, high-density lipoprotein cholesterol (HDL-C) and low-density lipoproteincholesterol (LDL-C) contents in fish plasma, TC and cholesterol esters in fish liver,and TC in fish faeces were significantly correlated with dietary cholesterol contents,and correlated coefficients were above0.74.Fish fed diet C-0.0%showed the lowestfecal total bile acid and activity of cholesterol7α hydroxylase among dietarytreatments. These results suggested that1.25%of dietary cholesterol is helpful forjuvenile turbot fed high plant protein diets to get significantly better growth ratewithout negative effects.
     2. Molecular cloning, characterization and mRNA expression of3-hydroxy-3-methylglutaryl-Coenzyme A reductase from turbotScophthalmus maximus L in response to dietary cholesterol
     In the present study, the cDNA of3-hydroxy-3-methylglutaryl-Coenzyme Areductase (HMG-CoAr) from turbot Scophthalmus maximus L was cloned byhomology cloning with degenerate primer and RACE techniques. Thefull-length cDNA of HMG-CoAr was of3048bp, including an open reading frame(ORF) of2664bp encoding a polypeptide887amino acids with predicted molecularweight of96.52kDa and theoretical isoelectric point of6.44. BLAST analysisrevealed that HMG-CoAr shared high similarity with other known HMG-CoAr, andthe N-and C-terminus amino acids portions are the most conserved and are linked byhydrophilic region that appears to be quite variable. The expression levels ofHMG-CoAr in hepatic tissue was measured by real-time PCR after turbot were feddiets FM, C-0.0%and C-1.0%containing graded levels of cholesterol (0.63,0.30and1.25%) for9weeks. The results showed that the expression levels of HMG-CoAr transcript were significantly up-regulated in hepatic tissue of turbot fed diet C-0.0%(0.30%cholesterol) compared with that of fish fed diet FM (0.63%cholesterol)(p<0.01). However, these levels significantly decreased in hepatic tissue when fishwas fed diet C-1.0%(1.25%cholesterol)(p<0.01). These results indicated thatadequate dietary cholesterol could inhibit the mRNA expression of HMG-CoAr,suggesting that biosynthesis of cholesterol is controlled by a feedback mechanism inturbot.
     3. Synergistic effects of dietary cholesterol and taurine on growth performanceand cholesterol metabolism in juvenile turbot (Scophthalmus maximus L.)fed high plant protein diets
     The study was conducted to investigate the effects of cholesterol, taurine andcombination of dietary cholesterol and taurine on growth performance and cholesterolmetabolism in juvenile turbot (Scophthalmus maximus L.) fed high plant proteindiets. A basal diet (control) with14.5%fish meal and50%crude protein wasformulated. The other three isonitrogenous and isolipidic experimental diets wereprepared with the supplementation of1.0%cholesterol,1.0%taurine and thecombination of1.0%cholesterol and1.0%taurine to the basal diet, which werenamed as C-1.0%, T-1.0%and TC, respectively. The results showed that the weightgain rate in fish fed C-1.0%, T-1.0%and TC diets was significantly higher than that infish fed the control diet. Especially, fish fed TC diet showed the highest growthperformance in data among dietary treatments. The plasma total cholesterol, freecholesterol and low-density lipoprotein cholesterol levels were significantly lower infish fed TC diet compared to those in fish fed C-1.0%diet (P<0.05). Fish fed C-1.0%diet showed significantly higher activity of cholesterol7α hydroxylase (CYP7A1)than the control diet (P<0.05), and activity of CYP7A1in fish fed T-1.0%diet was thehighest among dietary treatments. The HMG-CoAr mRNA levels were significantlylower in fish fed TC diet compared to that in fish fed C-1.0%diet (P<0.05). Theseresults suggested that combination of1.0%cholesterol and1.0%taurine is helpful for juvenile turbot fed high plant protein diets to obtain significantly better growthwithout negative effects.
     4. Effects of soya saponins on feed intake, growth performance and cholesterolmetabolism in juvenile turbot (Scophthalmus maximus L)
     An8-week growth trial was conducted to investigate the effects of soya saponinson feed intake, growth performance and cholesterol metabolism in juvenile turbot(Scophthalmus maximus L). A control diet was formulated without soya saponinssupplementation and other two experimental diets were prepared with thesupplementation of3.0g kg-1and6.0g kg-1soya saponins product to the control diet,respectively. The planned soya saponin concentrations in diets were0.0g kg-1(Diet1),2.5g kg-1(Diet2) and5.0g kg-1(Diet3), respectively. The results showed that2.5g kg-1of dietary soya saponins exhibited comparable feed intake, feed utilization andgrowth performance with the control diet (P<0.05). However, fish fed the diet with5.0g kg-1soya saponins significantly depressed growth. All the selected parameters inplasma, liver and feces of each group were not significantly different. These resultssuggested that2.5g kg-1of dietary soya saponins did not show negative effects, but5.0g kg-1of dietary soya saponins significantly depressed growth of fish. Dietarysoya saponins supplementation to FM-based diet did not show significant effect oncholesterol metabolism.
     5. Effects of feed restriction on growth performance and cholesterol metabolismin juvenile turbot (Scophthalmus maximus L)
     The study was conducted to investigate the effects of feed restriction on growthperformance and cholesterol metabolism in juvenile turbot Scophthalmus maximusL. Fish from the control group was fed to apparent satiation following adjustedfeeding rates. In the experimental treatments, the control group feeding rates wasreduced to75%,50%and25%, and the four diets were named as100%,75%,50%and25%, respectively. The results showed that weight gain rate (WGR) was linearly related to feed intake (FI)(P<0.05). Significant positive correlations were observedbetween the FI and some the selected plasma parameters, total cholesterol (TC), freecholesterol (FC), high-density lipoprotein cholesterol (HDL-C) and low-densitylipoprotein cholesterol (LDL-C)(P<0.05). The FI was significant negativecorrelations with the TC, FC and cholesterol esters in fish liver (P<0.05). Fish fed to25%of satiation showed significant low activity of acyl-coenzyme A: cholesterolacyltransferase (ACAT) compared with fish fed to the control group(P<0.05), and asignificant positive correlations was observed between FI and activity of ACAT(P<0.05). The expression levels of3-hydroxy-3-methylglutaryl-Coenzyme Areductase (HMG-CoAr) transcript were significantly up-regulated in liver of turbotfed fed to50%or25%of satiation compared with that in fish fed to the control group.These results suggested thatthe hypocholesterolemic effect was observed in plasma offish fed plant protein diets, which were related to, in part, significantly decreasedFI.Moreover, the increased hepatic TC level in fish fed to25%or50%of satiation may beattributed to the increased ability of cholesterol synthesis.
引文
Afrose S, Hossaina M S, Makib T, Tsujiia H. Karaya root saponin exerts a hypocholesterolemicresponse in rats fed a high-cholesterol diet. Nutr. Res.2009,29:350–354.
    Association of O cial Analytical Chemist (AOAC)(1995) O cial Methods of Analysis of AOACInternational,16th edn. AOAC Inc., Arlington, VA, USA.
    Bjerkeng B, Storebakken T, Wathne E. Cholesterol and short-chain fatty acids in diets for Atlanticsalmon Salmo salar (L.): effect on growth, organ indices, macronutrient digestibility andfatty acid composition. Aquac. Nutr.1999,5:181–191.
    Blanquet I, Oliva-Teles A. Effect of feed restriction on the growth performance of turbot(Scophthalmus maximus L.) juveniles under commercial rearing conditions. Aquacu Res.2010,41:1255–1260.
    Bonaldo A, Parma L, Mandrioli L, Sirri R, Fontanillas R, Badiani A, Gatta P P. Incresingdietary plant proteins affects growth performance and ammonia excretion but notdigestibility and gut histology in turbot (Psetta maxima) juveniles. Aquaculture2011,doi:10.1016/j.aquaculture.201105.003.
    Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities ofprotein utilizing the principle of protein–dye binding. Anal. Biochem.1976,72:248–254.
    Bureau D P, Harris A M, Cho C Y. The effects of purified alcohol extracts from soy products onfeed intake and growth of Chinook salmon (Oncorhynchus tshawytscha) and rainbow trout(Oncorhynchus mykiss). Aquaculture1998,161:27–43.
    Carr W E S. Chemical stimulation of feeding behaviour. In: Hara, T.J.(Ed.), Chemoreception inFishes. Elsevier, Amsterdam,1982, pp.259–273.
    Castell J D, Mason E G, Covey J F. Cholesterol requirements of juvenile American lobster(Homarus americanus). J. Fish. Res. Board Can.1975,32:1431–1435.
    Chatzifotis S, Polemitou I, Divanach P, Antonopoulou E. Effect of dietary taurine supplementationon growth performance and bile salt activated lipase activity of common dentex, Dentexdentex, fed a fish meal/soy protein concentrate-based diet. Aquaculture2008,275:201–208.
    Chen H J, Shapiro D J. Nucleotide sequence and estrogen induction of Xenopus laevis3-hydroxy-3-methylglutaryl-Coenzyme A reductase. J. Biol.Chen.1990,265:4622-4629.
    Chen J Y, Chen J C, Wu J L. Molecular cloning and functional analysis of zebrafish high-densitylipoprotein-binding protein. Comp. Biochem. Physiol.2003,136B:117–130.
    Chen W, Ai Q H, Mai K S, Xu W, Liufu Z G, Zhang W B, Cai Y H. Effects of dietary soybeansaponins on feed intake, growth performance, digestibility and intestinal structure in juvenileJapanese flounder (Paralichthys olivaceus). Aquaculture2011,318:95–100.
    Chen W, Suruga K, Nishimura N, Gouda T, Lam V N, Yokogoshi H. Comparative regulation ofmajor enzymes in the bile acid biosynthesis pathway by cholesterol, cholate and taurine inmice and rats. Life. Sci.2005,77:746–757.
    Cheng D, Chang C C, Qu X, Chang T Y. Activation of acyl-coenzyme A: cholesterolacyltransferase by cholesterol or by oxysterol in a cell-free system, J. Biol. Chem.1995,270:685–695.
    Cheng Z J, Hardy R W. Protein and lipid sources affect cholesterol concentrations of juvenilePacific white shrimp, Litopenaeus vannamei (Boone). J. Anim. Sci.2004,82:1136–1145.
    Cheng Z Y, Ai Q H, Mai K S, Xu W, Ma H M, Li Y, Zhang J M. Effects of dietary canola meal ongrowth performance, digestion and metabolism of Japanese seabass, Lateolabrax japonicus.Aquaculture2010,305:102–108.
    Chou R L, Her B Y, Su M S, Hwang G, Wu Y H, Chen H Y. Substituting fish meal with soybeanmeal in diets of juvenile cobia Rachycentron canadum. Aquaculture2004,229:325–333.
    Concein ao L E C, van der Meeren T, Verreth M S, Evjen M S, Houlihan D F, Fyhn H J. Aminoacid metabolism and protein turnover in larval turbot (Scophthalmus maximus) fed naturalzooplankton or Artemia. Mar. Biol.1997,129:255–265.
    Davis D A, Arnold C R, McCallum I. Nutritional value of feed peas (Pisum sativum) in practicaldiet formulations for Litopenaeus vannamei. Aquac. Nutr.2002,8:87–94.
    Day O J, Plascencia Gonzàlez H G. Soybean protein concentrate as a protein source for turbotScophthalmus maximus L. Aquac. Nutr.2000,6:221–228.
    Deng J M, Mai K S, Ai Q H, Zhang W B, Wang X J, Xu W, LiuFu Z.G. Effects of replacing fishmeal with soy protein concentrate on feed intake and growth of juvenile Japanese flounder,Paralichthys olivaceus. Aquaculture2006,258:503–513.
    Deng J M, Mai K S, Ai Q H, Zhang W B, Wang X J, Tan B P, Xu W, Liufu Z G, Ma H M.Interactive effects of dietary cholesterol and protein sources on growth performance andcholesterol metabolism of Japanese flounder (Paralichthys olivaceus). Aquac. Nutr.2010,16:419–429.
    Dersjant-Li Y. The use of soy protein in aquafeeds. In: Cruz-Suarez L.E., Ricque-Marie D.,Tapia-Salazar M., Gaxiola-Cortes M.G.&Simoes N.(Eds.), Advances in AquacultureNutrition: Sixth International Symposium of Aquaculture Nutrition, Cancun, Quintana Roo,Mexico.2002
    Duerr E O, Walsh W A. Evaluation of cholesterol additions to a soybean meal based diet forjuvenile pacific white shrimp, Penaeus vannamei (Boone), in an out door growth trial. Aquac.Nutr.1996,2:111–116.
    Dunstan G A, Baillie H J, Barrett S M, Volkman J K. Effect of diet on the lipid composition ofwild and cultured abalone. Aquaculture1996,140:115–127.
    Eroldogan O T, Kumlu M, Kiris G A, Sezer B. Compensatory growth response of Sparus auratafollowing different starvation and refeeding protocols. Aquac Nutr.2006,12:203–210.
    Espe M, Lemme A, Petri A, EL-Mowafi A. Can Atlantic salmon (Salmo salar) grow on dietsdevoid of fish meal? Aquaculture2006,255:255–262.
    Folch J, Lees M, Sloane-Stanley G H. A simple method for the isolation and purification of totallipids from animal tissues. J. Biol. Chem.1957,226:497–509.
    Fournier V, Huelvan C, Desbruyeres E. Incorporation of a mixture of plant feedstuffs as substitutefor fish meal in diets of juvenile turbot (Psetta maxima). Aquaculture2004,236:451–465.
    Francis G, Makkar H P S, Becker K. Antinutritional factors present in plant-derived alternate fishfeed ingredients and their effects in fish. Aquaculture2001a,199:197–227.
    Francis G, Makkar H P S, Becker K. Effects of cyclic and regular feeding of a Quillaja saponinsupplemented diet on growth and metabolism of common carp (Cyprinus carpio L.). FishPhysiol.Biochem.2001b,24:343–350.
    Francis G, Makkar H P S, Becker K. Effects of Quillaja saponins on growth, metabolism, eggproduction and muscle cholesterol in individually reared Nile tilapia (Oreochromis niloticus).Comp. Biochem. Physiol. C.2001c,129:105–114.
    Gandhi V M, Cherian K M, Mulky M J. Hypolipidemic action of taurine in rats. Indian J. Exp Bio1992,30:413–417.
    Gatlin III D M, Barrows F T, Brown P. Expanding the utilization of sustainable plant products inaquafeeds: a review. Aquac. Res.2007,38:551–579.
    Gaylord T G, Barrows F T, Teague A M, Johansen K A, Overturf K E, Shepherd B.Supplementation of taurine and methionine to all-plant protein diets for rainbow trout(Oncorhynchus mykiss). Aquaculture2007,269:514–524.
    Gaylord T G, Teague A M, Barrows F T. Taurine supplementation of all-protein diets for rainbowtrout (Oncorhynchus mykiss). J. World Aquac. Soc.2006,37:509–517.
    Glencross B D, Booth M, Allan G L. A feed is only as good as its ingredients-a review ofingredient evaluation strategies for aquaculture feeds. Aquac. Nutr.2007,13:17–34.
    Gomez-Requeni P, Mingarro M, Calduch-Giner J A, Medale F, Martin S A M, Houlihan D F,Kaushik S, Perez-Sanchez J. Protein growth performance, amino acid utilisation andsomatotropic axis responsiveness to fish meal replacement by plant protein sources ingilthead sea bream (Sparus aurata). Aquaculture2004,232:493–510.
    Gong H, Lawrence A L, Jiang D H, Castille F L, Gatlin III D M. Lipid nutrition of juvenileLitopenaeus vannamei I. Dietary cholesterol and de-oiled soy lecithin requirements and theirinteraction. Aquaculture2000,190:305–324.
    Gornati R, Papis E, Rimoldi S, Chini V, Terova G, Prati M, Saroglia M, Bernardini G. Molecularmarkers for animal biotechnology: sea bass (Dicentrarchus labrax, L.) HMG-CoA reductasemRNA. Gene2005,344:299–305.
    Goto T, Tiba K, Sakurada Y, Takagi S. Determination of hepatic cysteine sulfinate decarbox-ylaseactivity in fish by means of OPA-prelabeling and reverse phase high-performance liquidchromato-graphic separation. Fish. Sci.2001,67:553–555.
    Goto T, Ui T, Une M, Kuramoto T, Kihira K, Hoshita T. Bile salt composition and distribution ofthe D-cysteinolic acid conjugated bile salts in fish. Fish. Sci.1996,62:606–609.
    Hansen A C, Rosenlund G, Karlsen, Koppe W, Hemre G I. Total replacement of fish meal withplant proteins in diets for Atlantic cod (Gadus morhua L) I: Effects on growth and proteinretention. Aquaculture2007,272:599–611.
    Hernandez P V, Olvera-Novoa M A, Rouse D B. Effect of dietary cholesterol on growth andsurvival of juvenile redclaw crayfish Cherax quadricarinatus under laboratory conditions.Aquaculture2004,236:405–411.
    Hernández M D, Martínez F J, Jover M, García García B. Effects of partial replacement of fishmeal by soybean meal in Sharpsnout seabream (Diplodus puntazzo) diet. Aquaculture2007,263:159–167.
    Hiroshi U, Gen S. Effects of tea saponin, cholesterol and oils on the growth and feed passage ratesin chicks. Ani. Sci. Tech.1998,69:14–21.
    Holme M H, Zeng C S, Southgate P C. The effects of supplemental dietary cholesterol on growth,development and survival of mud crab, Scylla serrata, megalopa fed semi-purified diets.Aquaculture2006,261:1328–1334.
    Hossain M A, Focken U, Becker K. Effect of soaking and soaking followed by autoclaving ofSesbania seeds on growth and feed utilization in common carp, Cyprinus carpio L.Aquaculture2001,203:133–148.
    Hossain M A, Focken U, Becker K. Antinutritive effects of galactomannan-rich endosperm ofSesbania (Sesbania aculeata) seeds on growth and feed utilization in tilapia, Oreochromisniloticus. Aquac. Res.2003,34:1171–1179.
    Huxtable R J. Physiological actions of taurine. Physiol. Rev.1992,72:101–163.
    Ikonen E. Cellular cholesterol trafficking and compartmentalization, Nat. Rev. Mol. Cell Biol.2008,9:125–138.
    Ireland P A, Dziedzic S Z, Kearsley M W. Saponin content of soya and some commercial soyaproducts by means of high performance liquid chromatography of the sapogenins. J. Sci.Food. Agricu.1986,34:694–698.
    Istvan E S. Structure mechanism for statin inhibit ion of3-hydroxy-3-methylglutaryl-Coenzyme Areductase. Am. Heart J.2002,144: S27-S32.
    Jhiang S M, Fithian L, Smanik P, McGill J, Tong Q, Mazzaferri E L. Cloning of the human taurinetransporter and characterization of taurine uptake in thyroid cells. FEBS Lett.1993,318:139–144.
    Kaushik S J, Cravedi J P, Lalles J P, Sumpter J, Fauconneau B, Laroche M. Partial or totalreplacement of fish meal by soybean protein on growth, protein utilization, potentialestrogenic or antigenic effects, cholesterolemia and flesh quality in rainbow trout(Oncorhynchus mykiss). Aquaculture1995,133:257–274.
    Kaushik S J. Whole body amino acid composition of European seabass (Dicentrarchus labrax),gilthead seabream (Sparus aurata) and turbot (Psetta maxima) with an estimation of theirIAA requirement profiles. Aquat. Living Resour.1998,11:355-358.
    Kaushik S J, Covès D, Dutto G. Almost total replacement of fish meal by plant protein sources inthe diet of a marine teleost, the European seabass, Dicentrarchus labrax. Aquaculture2004,230:391–404.
    Kim S K, Matsunari H, Takeuchi T, Yokoyama M, Murata Y, Ishihara K. Effect of differentdietary taurine levels on the conjugated bile acid composition and growth performance ofjuvenile and fingerling Japanese flounder Paralichthys olivaceus. Aquaculture2007,273:595–601.
    Kim S K, Matsunari H, Takeuchi T, Yokoyama M, Furuita H, Murata Y, Goto T. Comparison oftaurine biosynthesis ability between juveniles of Japanese flounder and common carp. AminoAcids2008,35:161–168.
    Kim S K, Takeuchi T, Akimoto A, Furuita H, Yamamoto T, Yokoyama M, Murata Y. Effect oftaurine supplemented practical diet on growth performance and taurine contents in wholebody and tissues of juvenile Japanese flounder Paralichthys olivaceus. Fish. Sci.2005a,71:627–632.
    Kim S K, Takeuchi T, Yokoyama M, Murata Y, Kaneniwa M, SakakuraY. Effect of dietary taurinelevels on growth and feeding behavior of juvenile Japanese flounder Paralichthys olivaceus.Aquaculture2005b,250:765–774.
    Knudsen D, Jutfelt F, Sundh H, Sundetll T K, Koppe W, Fr ki r H. Dietary soya saponinsincrease gut permeability and play a key role in the onset of soyabean induced enteritis inAtlantic salmon (Salmo salar L.). Br. J. Nutr.2008,100:120–129.
    Lee S O, Simons A L, Murphy P A. Soyasaponins lowered plasma cholesterol and increased fecalbile acids in female golden Syrian hamsters. Exp. Biol. Med.2005,230:472–478.
    Leonard D J, Chen H W. ATP-dependent degradation of3-hydroxy-3-methylglutaryl-Coenzyme Areductase in permeabilized cells. J. Biol. Chen.1987,262:7914–7919.
    Li J Z, Lei Y, Wang Y, Zhang Y X, Ye J, Xia X Y, Pan X M, Li P. Control of cholesterolbiosynthesis, uptake, and storage in hepatocytes by cideb. Biochim. Biophys. Acta.2010,1801:577–586.
    Lim C, Dominy W. Evaluation of soybean meal as a replacement for marine animal protein indiets for shrimp (Penaeus vannamei). Aquaculture1990,87:53–63.
    Lim S J, Lee K J. Partial replacement of fish meal by cottonseed meal and soybean meal with ironand phytase supplementation for parrot fish Oplegnathus fasciatus. Aquaculture2009,290:283–289.
    Liu Q R, Lopez-Corcuera B, Nelson H, Mandiyan S, Nelson N. Cloning and expression of acDNA encoding the transporter of taurine and beta-alanine in mouse brain. Proc.Natl. Acad.Sci. USA1992,89:12145–12149.
    Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitativePCR and the2ΔΔCTmethod. Methods2001,25:402–408.
    Lunger A N, McLean E, Gaylord T G, Kuhn D, Craig S R. Taurine supplementation to alternativedietary proteins used in fish meal replacement enhances growth of juvenile cobia(Rachycentron canadum). Aquaculture2007,271:401–410.
    Madani S, Frenoux J M, Prost J. Changes in serum lipoprotein lipids and their fatty acidcompositions and lipid peroxidation in growing rats fed soybean protein versus casein with orwithout cholesterol. Nutrition2004,20:554–563.
    Madani S, Lopez S, Blond J P, Prost J, Belleville J. Highly purified soybean protein is nothypocholesterolemic in rats but stimulates cholesterol synthesis and excretion and reducespolyunsaturated fatty acid biosynthesis. J. Nutr.1998,128:1084–1091.
    Madani S, Prost J, Belleville J. Dietary protein level and origin (casein and highly purifiedsoybean protein) affect hepatic storage, plasma lipid transport, and antioxidative defensestatus in the rat. Nutrition2000,16:368–375.
    Maita M, Maekawa J, Satoh K I, Futami K, Satoh S. Disease resistance and hypocholesterolemiain yellowtail Seriola quinqueradiata fed a non-fishmeal diet. Fish. Sci.2006,72:513–519.
    Martinez J B, Chatzifotis S, Divanach P, Takeuchi T. Effect of dietary taurine supplementation ongrowth performance and feed selection of sea bass Dicentrarchus labrax fry fed withdemand-feeders. Fish. Sci.2004,70:74–79.
    Matsumoto J, Erami K, Ogawa H, Doi M, Kishida T, Ebihara K. The protease-resistant fravtion ofsmoked, dried bonito lowers serum cholesterol in ovariectomized rats fed cholesterol-freediets. J. Food. Sci.2005,70:467–474.
    Matsuura M. Saponins in garlic as modifiers of the risk of cardiovascular disease. J. Nutr2001,131:1000–1005.
    Militante D J, Lombardini J B. Dietary taurine supplementation: hypolipidemic andantiatherogenic effects. Nutr. Res.2004,24:787–801.
    Miyamoto Y, Liou G I, Sprinkle T J. Isolation of a cDNA encoding a taurine transporter in thehuman retinal pigment epithelium. Curr. Eye Res.1996,15:345–349.
    Mizushima S, Nara Y, Sawamura M, Yamori Y. Effects of oral taurine supplementation on lipidsand sympathetic nerve tone. Adv Exp Med Biol1996,403:615–622.
    Morris T C, Samocha T M, Davis A A, Fox J M. Cholesterol supplements for Litopenaeusvannamei reared on plant based diets in the presence of natural productivity, Aquaculture2011,314:140–144.
    Murakami S, Kondo Y, Tomisawa K. Improvement in cholesterol metabolism in mice givenchronic treatment of taurine and fed a high-fat diet. Life. Sci.1999,64:83–91.
    Murakami S, Kondo Y, Toda Y, Kitajima H, Kameo K, Sakono M, Nobuhiro Fukuda N. Effect oftaurine on cholesterol metabolism in hamsters: Up-regulation of low density lipoprotein(LDL) receptor by taurine. Life. Sci.2002,70:2355–2366.
    Murakami S, Yamagishi I, Asami Y, Toda Y, Nara Y, Yamori Y. Hypolipidemic effect of taurine instrokeprone spontaneously hypertensive rats. Pharmacology1996,52:303–313.
    National Research Council. Nutrient Requirement of Fish. National Academy of Press,Washington, D.C.1993,114pp.
    Nelson N. The family of Na+/Cl-neurotransmitter transporters. J. Neurochem.1998,71:1785–1803.
    Olli J J, Krogdahl, V ben A. Dehulled solvent-extracted soybean meal as a protein source indiets for Atlantic salmon (Salmo salar L). Aquac. Res.1995,26:167–174.
    Park G S, Takeuchi T, Yokoyama M, Seikai T. Optimal dietary taurine level for growth of juvenileJapanese flounder Paralichthys olivaceus. Fish. Sci.2002,68:824–829.
    Park T, Lee K. Dietary taurine supplementation reduces plasma and liver cholesterol andtriglyceride levels in rats fed a high-cholesterol or a cholesterol-free diet. Adv. ExP. MedBiol.1998,442:319–325.
    Parker R A, Miller S J, Gibson D M. Phosphorylation of native97-kDa3-hydroxy-3-methylglutaryl-Coenzyme A reductase from rat liver. Impact on activity anddegradation of the enzyme. J. Biol. Chen.1989,264:4877–4887.
    Pazos A J, Silva A, Vázquez V, Pérez-Parallé M L, Román G, Sáncheza J L, Abad M. Sterolcomposition of gonad, muscle and digestive gland of Pecten maximus from Málaga (SouthSpain). Comp. Biochem. Physiol.2003,134B,435–446.
    Peffley D, Sinensky M. Regulation of3-hydroxy-3-methylglutaryl-Coenzyme A reductasesynthesis by a non-sterol mevalonate-derived product in Mev-1cell. Apparent translationalcontrol. J. Biol. Chen.1985,260:9949–9952.
    Petty M A, Kintz J, DiFracesco G F. The effects of taurine on atherosclerosis development incholesterol-fed rabbits. Eur J Pharmacol1990,180:119–127.
    Pinto W, Figueira L, Ribeiro L, Yufera M, Dinis M T, Aragao C. Dietary taurine supplementationenhances metamorphosis and growth potential of Solea aenegalensis larvae. Aquaculture2010,309:159–164.
    Potter S M, Jimenez-Flores R, Pollack J, Lone T A, Berber-Jimenez M D. Protein saponininteraction and its influence on blood lipids. J.Agric.Food Chem1993,41:1287–1291.
    Qian X, Vinnakota S, Edwards C, Sarkar H K. Molecular characterization of taurine transport inbovine aortic endothelial cells. Biochim. Biophys. Acta.2000,1509:324–334.
    Ramamoorthy S, Leibach F H, Mahesh V B, Han H, Yang-Feng T, Blakely R D, Ganapathy V.Functional characterization and chromosomal localization of a cloned taurine transporterfrom human placenta. Biochem. J.1994,300:893–900.
    Rasmussen M K, Ekstrand B, Zamaratskaia G. Comparison of cytochrome P450concentrationsand metabolic activities in porcine hepatic microsomes prepared with two different methods.Toxicol. in Vitro2011,25:343–346.
    Refstie S, Storebakken T, Roem A J. Feed consumption and conversion in Atlantic salmon (Salmosalar) fed diets with fish meal, extracted soybean mealor soybean meal with reduced contentof oligosaccharides, trypsininhibitors, lectins and soya antigens. Aquaculture1998,162:301–312.
    Refstie S, Svihus B, Shearer K D. Nutrient digestibility in Atlantic salmon and broiler chickensrelated to viscosity and non-starch polysaccharide content in different soyabean products.Anim. Feed Sci. Tech.1999,79:331–345.
    Refstie S, Kors en, Storebakken T, Baeverfjord G, Lein I, Roem A J. Differing nutritionalresponses to dietary soy-bean meal in rainbow trout (Oncorhynchus mykiss) and Atlanticsalmon (Salmo salar). Aquaculture2000,190:9–63.
    Regost C, Arzel J, Kaushik S J. Partial or total replacement of fish meal by corn gluten meal indiet for turbot (Psetta maxima). Aquaculture1999,180:99–117.
    Reymond I, Bitoun M, Levilain O.Regional expression and histological localization of cysteinesulfinate decarboxylase mRNA in the rat kidney. J Histochem Cytochem.2000,48:1461–1468.
    Robinson E H, Allen O W, Poe W E, Wilson R P. Utilization of dietary sulfur compounds byfingerling channel catfish: L-methionine, DL-methionine, methionine hydroxy analogue,taurine and inorganic sulfate. J Nutr1978,108:1932–1936.
    Robaina L, Corraze G, Aguirre P, Blanc D, Melcion J P, Kaushik S. Digestibility, postprandialammonia excretion and selected plasma metabolites in European sea bass (Dicentrarchuslabrax) fed pelleted or extruded diets with or without wheat gluten. Aquaculture1999,179:45–56.
    Saether B S, Jobling M. The effects of ration level on feed intake and growth, and compensatorygrowth after restricted feeding, in turbot Scophthalmus maximus L. Aquac Res.1999,30:647–653.
    Sakai T, Nagasawa T. Simple, rapid and sensitive determination of plasma taurine byhigh-performance liquid chromatography using pre-column derivative formation withfluorescamine. J. Chromatogr.1992,576:155-157.
    Sealey W M, Craig S R, Gatlin D M III. Dietary cholesterol and lecithin have limited effects ongrowth and body composition of hybrid striped bass (Moronechrysops M.saxatilis). Aquac.Nutr.2001,7:25–31.
    Sheen S S. Dietary cholesterol requirement of juvenile mud crab Scylla serrata. Aquaculture2000,189:277–285.
    Sheen S S. Liu P C, Chen S N, Chen J C. Cholesterol requirement of juvenile tiger shrimp(Penaeus monodon). Aquaculture1994,125:131–137.
    Shimeno S, Hosokawa H, Yamane R. Change in nutritive value of defatted soybean meal withduration of heating time for young yellowtail. Nippon Suisan Gakkaishi,1992,58:1351–1359.
    Shudo K, Nakamura K, Ishikawa S, Kitabayashi K. Studies on formula feed for Kuruma prawn-IV.On the growth-promoting effects of both squid liver oil and cholesterol. Bull. Tokai Reg. Fish.Res. Lab.1971,65:129–137.
    Siddhuraju P, Becker K. Comparative nutritional evaluation of differentially processed mucunaseeds [Mucuna pruriens (L.) DC. var. utilis (Wall ex Wight) Backer ex Burck] on growthperformance, feed utilization and body composition in Nile tilapia (Oreochromis niloticus L.).Aquac. Res.2003,34:487–500.
    Silva J M G, Espe M, Conceicao L E C, Dias J, Valente L M P. Senegalese sole juveniles (Soleasenegalensis Kaup,1858) grow equally well on diets devoid of fish meal provided the dietaryamino acids are balanced. Aquaculture2009,296:309–317.
    Sitja-Bobadilla A, Pena-Llopis S, Gomez-Requeni P, Medale F, Kaushik S, Perez-Sanchez J.Effect of fish meal replacement by plant protein sources on non-specific defence mechanismsand oxidative stress in gilthead sea bream (Sparus aurata). Aquaculture2005,249:387–400.
    Skalnik D G, Narita H, Kent C, Simoni R D. The membrane domain of3-hydroxy-3-methylglutaryl-Coenzyme A reductase confers endoplasmic reticulumlocalization and sterol-regulated degradation onto beta-galactosidase. J. Biol. Chen.1988,263:6836–6841.
    Smith K E, Borden L A, Wang C H, Hartig P R, Branchek T A, Weinshank R L. Cloning andexpression of a high affinity taurine transporter from rat brain. Mol. Pharmacol.1992,42:563–569.
    Smith T M, Tabrett S J, Barclay M C. Cholesterol requirement of subadult black tiger shrimpPenaeus monodon (Fabricius). Aquac. Res.2001,32:399–405.
    Southon S, Johnson I T, Gee J M, Price K R. The effect of Gypsophylla saponins in the diet onmineral status and plasma cholesterol concentration in the rat. Brit. J. Nutr.1988,59:49–55.
    Strickland D K, Gonias S L, Argraves S. Diverse roles for the LDL receptor family. TRENDS inEndocrinology&Metabolism.2002,13:66-74.
    Tacon A G J, Metian M. Global overview on the use of fish meal and fish oil in industriallycompounded aquafeeds: trends and future prospects. Aquaculture2008,285:146–158.
    Takagi S, Murata H, Goto T, Endo M, Hatate H, Ukawa M. Taurine is an essential nutrient foryellowtail Seriola quinqueradiata fed non-fish meal diets based on soy protein concentrate.Aquaculture2008,280:198–205.
    Takagi S, Murata H, Goto T, Ichiki T, Endo M, Hatate H, Yoshida T, Sakai T, Yamashita H, UkawaM. Efficacy of taurine supplementation for preventing green liver syndrome and improvinggrowth performance in yearling redsea bream (Pagrus)major fed low-fishmeal diet. Fish. Sci.2006b,72:1191–1199.
    Takeuchi K, Toyohara H, Sakaguchi M. A hyperosmotic stress-induced mRNA of carp cellencodes Na+and Cl-dependent high affinity taurine transporter. Biochim.Biophys.Acta,Biomembr.2000,1464:219–230.
    Tappaz M L. Taurine Biosynthetic Enzymes and Taurine Transporter: Molecular Identification andRegulations. Neurochemical research.2004,29:83–96.
    Teshima S. Phospholipids and sterols. In: Crustacean Nutrition (D’Abramo, L., Conklin, D.E. andAkiyama, D.M. eds.),1997, pp.85–107. The World Aquaculture Society, Baton Rouge, LA.
    Teshima S. Sterol metabolism. In: Pruder, G.D., Langdon, C.J., Conklin, D.E.(Eds.), Proc.2nd Int.Conf. Aquaculture Nutrition: Biochemical and Physiological Approaches to ShellfishNutrition.27–29October1981. Louisiana State University Division of Continuing Education,Baton Rouge, LA,1982, pp.205–216.
    Thurston J H, Hauhart R E, Dirgo J A. Taurine: A role in osmotic regulation of mammalian brainand possible clinical significances. Life. Sci.1980,26:1561–1568.
    Trider D J, Castell J D. Effect of dietary lipids on growth, tissue composition and metabolism ofthe oyster Crassostrea virginica. J. Nutr.1980,110:1303–1309.
    Tucker B W. Sterols in seafood: a review. World Aquacult.1989,20:69–72.
    Twibell R G, Wilson R P. Preliminary evidence that cholesterol improves growth and feed intakeof soybean meal-based diets in aquaria studies with juvenile channel catfish, Ictaluruspunctatus. Aquaculture2004,236:539–546.
    Uchida S, Kwon H M, Yamauchi A, Preston A S, Marumo F, Handler J S. Molecular cloning ofthe cDNA for an MDCK cell Na(+)-and Cl(-)-dependent taurine transporter that is regulatedby hypertonicity. Proc. Natl. Acad. Sci. USA1992,89:8230–8234.
    Ueda H, Tanoue K. Growth-depressing and cholesterol-lowering effect of Quillaja and teasaponins in chicks as influenced by diet composition. J. Ani. Sci.2000,71:393–399.
    Venkatesan N, Rao P V, Arumugam V. Inhibitory effect of taurine on puromycinaminonucleoside-induced hyperlipidemia in rats. J Clin Biochem Nutr1993,15:203–210.
    Venou B, Alexis M N, Fountoulaki E, Haralabous J. Effect of extrusion and inclusion level ofsoybean meal on diet digestibility, performance and nutrient utilization of gilthead sea bream(Sparus aurata). Aquaculture2006,261:343–356.
    Wang Y, Kong L J, Cui Z H, Li K, Bureau D P. Effect of replacing fish meal with soybean meal ongrowth, feed utilization and carcass composition of cuneate drum (Nibea miichthioides).Aquaculture2006,261:1307–1313.
    Wright C E, Tallan H H, Lin Y Y. Taurine:biological update. Annual Review of Biochemistry1986,55:427–453.
    Yamamoto T, Akimoto A, Kishi S, Unuma T, Akiyama T. Apparent and true availabilities of aminoacids from several protein sources for fingerling rainbow trout, common carp, and redseabream. Fish. Sci.1998,64:448–458.
    Yamamoto T, Suzuki N, Furuita H, Sugita T, Tanaka N, Goto T. Supplemental effect of bile saltsto soybean meal-based diet on growth and feed utilization of rainbow trout Oncorhynchusmykiss. Fish. Sci.2007,73:123–131.
    Yan C C, Bravo E, Cantafora A. Effect of taurine levels on liver lipid metabolism: an in vivo studyin the rat, Proc Sot Expt Biol Med1993,202:88–96.
    Yokogoshi H, Mochizuki H, Nanami K, Hida Y, Miyachi F, Oda H. Dietary taurine enhancescholesterol degradation and reduces serum and liver cholesterol concentrations in rats fed ahigh-cholesterol diet. J Nutr.1999,129:1705–1712.
    Yokoyama M, Kaneniwa M, Sakaguchi M. Metabolites of L-[35S] cysteine injected into theperi-tonealcavity of rainbow trout. Fish. Sci.1997,63:799–801.
    Yokoyama M, Takeuchi T, Park G S, Nakazoe J. Hepatic cysteinesulphinate decarboxylase activityin fish. Aquac. Res.2001,32:216–220.
    Zarate J M, Bradley T M. Molecular cloning and characterization of the taurine transporter ofAtlantic salmon. Aquaculture2007,273:209–217.
    Zhang W, Mai K, Yao C, Xu W, Wang W, Liufu Z, Wang X. Effects of dietary cholesterol ongrowth, survival and body composition of juvenile abalone Haliotis discus hannai Ino.Aquaculture2009,295:271–274.
    Zhou Q C, Tan B P, Mai K S, Liu Y J. Apparent digestibility of selected feed ingredients forjuvenile cobia Rachycentron canadum. Aquaculture2004,241:441–451.
    陈京华.2006.微生物发酵,外源酶制剂和促摄食物质对牙鲆利用豆粕蛋白的影响.博士学位论文,青岛:中国海洋大学.
    代伟伟.2011.半滑舌鳎赖氨酸需求及其蛋白源替代研究.硕士学位论文.青岛:中国海洋大学.
    邓君明.2006.动植物蛋白源对牙鲆摄食,生长和蛋白质及脂肪代谢的影响.博士学位论文,青岛:中国海洋大学.
    钱云霞,陈惠群,孙江飞,2002.饥饿对养殖鲈鱼血液生理生化指标的影响.中国水产科学.9:133–137.
    邹思湘.2005.动物生物化学.北京.中国农业出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700