用户名: 密码: 验证码:
大豆逆境胁迫相关microRNA的发掘与验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MicroRNA (miRNA)是植物中广泛存在的、长度约20-25nt的内源单链非编码小分子RNA,在植物的生长发育、应对各种逆境胁迫等方面起着非常重要的调控作用。而目前关于大豆miRNA的研究还非常有限。
     为发掘逆境相关的miRNA,对大豆(Glycine max)幼苗进行了干旱、高盐、低温、脱落酸(ABA)和大豆花叶病毒(SMV)胁迫处理,提取你不同组织的小RNA后等量混合构建混合小RNA文库,用Solexa技术进行高通量测序,与生物信息学分析相结合,发掘与大豆逆境相关的miRNA,为大豆小RNA在抗逆研究方面提供有价值的信息。
     主要研究结果如下:
     1.在逆境胁迫条件下小分子RNA混合文库的Solexa测序共获得3201342条原始小分子RNA序列,经生物信息学分析筛选出338403条候选miRNA (?)序列,占原始序列的10.6%。共鉴定出包括60个已知miRNA家族的228个miRNA,64个新miRNA家族的76个miRNA。
     2.利用miRNA芯片筛选出22个逆境胁迫应答miRNA。其中,4个miRNA与高盐胁迫应答相关,miR156a、miR164、miR166a和miR2911;10个miRNA与干旱胁迫应答相关,niR164、 miR166a、miR168、482b-5p、miR2118、miR2911、miR1507b、miR1508a、miR319g和miR1450;8个miRNA与低温胁迫应答相关,miR156a、 miR164、miR166a、miR168、miR159a-3p、miR1508a、 miR1450和niR2911。
     3.受干旱胁迫的大豆miR2118至少有4类靶基因。Northern杂交结果显示,大豆miR2118受干旱胁迫诱导表达且表达有时空特异性。miR2118先在根中表达,后在茎和叶中高表达。在根中0.5小时被诱导表达,1小时表达量最高,表达呈先上调后下调,而茎和叶中表达呈上调趋势,而对高盐和低温胁迫无响应。通过5'RACE方法鉴定了miR2118在大豆中的4个功能各异的靶基因,包括一个编码未知功能蛋白的基因,3个分别编码LRR蛋白、信号肽酶Ⅰ和类基因沉默蛋白抑制子3的基因。
     4. miR1511与mR1511*共同切割同一靶基因。高通量测序数据分析及Northern杂交结果均证明了niR1511和miR1511的存在。5'RACE方法验证了niR1511的靶基因为一个属于60S核糖体蛋白L4家族(RPL4) Gmrpl4a (Glyma10g05580.1)基因,同时发现miR1511*也切割该靶基因,miR1511*的切割Gmrpl4a的第一个外显子,miR1511的切割Gmrpl4a的第二个外显子。
     5.研究结果显示miR1511有等位变异及地域分布特点。不同栽培大豆(Glycine max) MR1511序列是保守的;多年生野生大豆虽有多处Indel和SNP位点,但miR1511及miR1511*位点序列保守;而在一年生野生大豆(Glycine soja)中,存在4种不同的等位变异,其中两种由于片段缺失导致miR1511缺失,Northern杂交结果也验证了这种缺失现象,约1/4的一年生野生大豆不能加工形成miR1511。这些缺失种质主要集中分布在黄河中下游地区,说明MR1511基因的进化经历了自然选择。
MicroRNAs (miRNAs) are a class of20-25nucleotides, endogenous, small noncoding single-strand RNAs that play critical regulatory roles in plants growth and development, as well as responses to different environmental stresses. But limited researches have been done on the soybean miRNAs.
     In order to cloning with stress-related miRNAs in soybean, the soybean seedlings were treated with various stresses, including drought, high salinity, low temperature, abscisic acid (ABA) and soybean mosaic virus (SMV). A mixed small RNA library was constructed and sequenced by Solexa technology. These results provide inprotant clues for the research of soybean stress tolerance.
     The major results are as following:
     1. A total of3201342raw sequence reads were obtained by solexa high-troughtput sequencing technology including338403candidate miRNA reads were generated from stress-treated soybean small RNA library. Fanally,228known miRNAs and76putative novel miRNAs were found by bioinformatic analysis, which belongs to60and64miRNA families, respectively.
     2. A total of22stress-responsive miRNAs were identified using miRNA microarray screenings, including4salinity-responsive miRNAs (miR156a, miR164, miR166a and peu-miR2911),10drought-responsive miRNAs (miR164, miR166a, miR168,482b-5p, miR2118, miR2911, miR1507b, miR1508a, miR319g and miR1450), and8low temperature-responsive miRNAs (miR156a, miR164, miR166a, miR168, miR159a-3p, miR1508a, miR1450and miR2911).
     3. miR2118expression were upregulated by drought stress, the expression was induced firstly from root, then in root and leaf, the expression was induced in0.5h reached high in1h then declined, while continued increasing expression in shoot and leaf. miR2118expression was not induced by high silinity and low temperature. Using5'RACE (Rapidd amplification of cDNA ends)-PCR, we have identified4target genes of of which coding leucine-rich repeat-containing protein, signal peptidase I, suppressor gene silencing3-like and one unkown protein, respectively
     4. miRNA1511and miRNA1511were cooperated to cleave the same target gene. miR1511*was validated by analyzing high-troughtput sequencing data and Northern blotting. Using5'RACE-PCR, we identified one target gene belonged to60S ribosomal protein L4family gene Gmrpl4a (Glyma10g05580.1), which were cleaved by both miR1511and miR1511*. The target cleavage site of the miR1511was identified in the first exon of Gmrpl4a, and the miR1511target in second exon of Gmrpl4a.
     5. Allelic variation of miR1511gene were identified on geographical distribution in China. The MIR1511were conserved in cultivated soybean (Glycine max), but there were several Indels and SNPs in MR1511for perennial wild soybean, though conserved miR1511and miR1511*sequences. There were4allelic variations in MIR1511,2of them were absent of miR1511in annual wild soybeans (Glycine soja), which were confirmed by Northern blotting. One fouth of annual wild soybean accessions were absent of miR1511. We have found with absent of miR1511in Glycine soja, Which were mainly came from lower and middle reaches Yellow River. These results indicated the evolution of MIR1511gene undergo natural selection.
引文
1. Accerbi M, Schmidt S A, De Paoli E, et al. Methods for isolation of total RNA to recover miRNAs and other small RNAs from diverse species. Methods Mol Biol,2010,592:31-50.
    2. Achard P, Herr A, Baulcombe D C, et al. Modulation of floral development by a gibberellin-regulated microRNA. Development,2004,131(14):3357-3365.
    3. Adai A, Johnson C, Mlotshwa S, et al. Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res,2005,15(1):78-91.
    4. Aida M, Ishida T, Tasaka M. Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis:interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development,1999,126 (8):1563-1570.
    5. Allen E, Xie Z, Gustafson A M, et al. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell,2005,121 (2):207-221.
    6. Allen R S, Li J, Alonso-Peral M M, et al. MicroR159 regulation of most conserved targets in Arabidopsis has negligible phenotypic effects. Silence,2010,1 (1):18.
    7. Allen R S, Li J, Stahle M I, et al. Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR 159 family. Proc Natl Acad Sci USA,2007,104 (41): 16371-16376.
    8. Ambros V. The functions of animal microRNAs. Nature,2004,431 (7006):350-355.
    9. Aravin A A, Hannon G J, Brennecke J. The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science,2007,318 (5851):761-764.
    10. Arazi T, Talmor-Neiman M, Stav R, et al. Cloning and characterization of micro-RNAs from moss. Plant J,2005,43 (6):837-848.
    11. Arenas-Huertero C, Perez B, Rabanal F, et al. Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Mol Biol,2009,70 (4):385-401.
    12. Aukerman M J, Sakai H. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell,2003,15 (11):2730-2741.
    13. Aung K, Lin S I, Wu C C, et al. pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol,2006,141 (3):1000-1011.
    14. Axtell M J, Snyder J A, Bartel D P. Common functions for diverse small RNAs of land plants. Plant Cell,2007,19(6):1750-1769.
    15. Axtell M J, Westholm J O, Lai E C. Vive la difference:biogenesis and evolution of microRNAs in plants and animals. Genome Biol,2011,12 (4):221.
    16. Baker C C, Sieber P, Wellmer F, et al. The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr Biol,2005,15 (4):303-315.
    17. Bari R, Datt Pant B, Stitt M, et al. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol,2006,141 (3):988-999.
    18. Bartel B. MicroRNAs directing siRNA biogenesis. Nat Struct Mol Biol,2005,12 (7):569-571.
    19. Bartel D P. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell,2004,116 (2): 281-297.
    20. Baulcombe D. RNA silencing in plants. Nature,2004,431 (7006):356-363.
    21. Baumberger N, Baulcombe D. Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA,2005,102 (33):11928.
    22. Beauclair L, Yu A, Bouche N. MicroRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis. Plant J,2010,62 (3):454-462.
    23. Behm-Ansmant I, Rehwinkel J, Doerks T, et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev,2006, 20(14):1885.
    24. Belkhadir Y, Subramaniam R, Dangl J L. Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Curr Opin Plant Biol,2004,7 (4):391-399.
    25. Berezikov E, Chung W J, Willis J, et al. Mammalian mirtron genes. Mol Cell,2007,28 (2): 328-336.
    26. Berezikov E, Robine N, Samsonova A, et al. Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence. Genome Res,2011, 21 (2):203-215.
    27. Boland A, Huntzinger E, Schmidt S, et al. Crystal structure of the MID-PIWI lobe of a eukaryotic Argonaute protein. Proc Natl Acad Sci USA,2011,108 (26):10466-10471.
    28. Borchert G M, Lanier W, Davidson B L. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol,2006,13(12):1097-1101.
    29. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, et al. Widespread translational inhibition by plant miRNAs and siRNAs. Science,2008,320 (5880):1185-1190.
    30. Carrington J C, Ambros V. Role of microRNAs in plant and animal development. Science,2003, 301 (5631):336-338.
    31. Cheloufi S, Dos Santos C O, Chong M M W, et al. A Dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature,2010,465 (7298):584-589.
    32. Chen C, Ridzon D A, Broomer A J, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res,2005,33 (20):e179.
    33. Chen H M, Chen L T, Patel K, et al.22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci USA,2010,107 (34):15269-15274.
    34. Chen H M, Wu S H. Mining small RNA sequencing data: a new approach to identify small nucleolar RNAs in Arabidopsis. Nucleic Acids Res,2009,37 (9):e69.
    35. Chen R, Hu Z, Zhang H. Identification of microRNAs in wild soybean (Glycine soja). J Integr Plant Biol,2009,51 (12):1071-1079.
    36. Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science,2004,303 (5666):2022-2025.
    37. Chen X. MicroRNA Metabolism in Plants. In RNA Interference, Paddison P J and P K Vogt, eds (Springer Berlin Heidelberg),2008,117-136.
    38. Chen Y H, Yang X Y, He K, et al. The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol,2006, 60(1):107-124.
    39. Chendrimada T P, Finn K J, Ji X J, et al. MicroRNA silencing through RISC recruitment of eIF6. Nature,2007,447 (7146):823-828.
    40. Chendrimada T P, Gregory R I, Kumaraswamy E, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature,2005,436 (7051):740-744.
    41. Chiou T J. The role of microRNAs in sensing nutrient stress. Plant Cell Environ,2007,30 (3): 323-332.
    42. Chuck G, Cigan A M, Saeteurn K, et al. The heterochronic maize mutant Corngrassl results from overexpression of a tandem microRNA. Nat Genet,2007,39 (4):544-549.
    43. Chuck G, Whipple C, Jackson D, et al. The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries. Development,2010,137(8):1243-1250.
    44. Cock J M, Sterck L, Rouze P, et al. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature,2010,465 (7298):617-621.
    45. Cullen B R. Viral and cellular messenger RNA targets of viral microRNAs. Nature,2009,457 (7228):421-425.
    46. Dai X, Zhao P X. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res,2011, 39(suppl 2):W155-W159.
    47. Dai X, Zhuang Z, Zhao P X. Computational analysis of miRNA targets in plants:current status and challenges. Brief Bioinform,2010,12 (2):115-121.
    48. Das S, Foley N, Bryan K, et al. MicroRNA mediates DNA demethylation events triggered by retinoic acid during neuroblastoma cell differentiation. Cancer Res,2010,70 (20):7874-7881.
    49. Davis E, Caiment F, Tordoir X, et al. RNAi-mediated allelic trans-interaction at the imprinted Rtll/Peg11 locus. Curr Biol,2005,15 (8):743-749.
    50. Denli A M, Tops B B, Plasterk R H, et al. Processing of primary microRNAs by the Microprocessor complex. Nature,2004,432 (7014):231-235.
    51. Devers E A, Branscheid A, May P, et al. Stars and symbiosis: microRNA- and microRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis. Plant Physiol,2011,156(4):1990-2010.
    52. Ding Y F, Zhu C. The role of microRNAs in copper and cadmium homeostasis. Biochem Biophys Res Commun,2009,386 (1):6-10.
    53. Du T, Zamore P D. microPrimer: the biogenesis and function of microRNA. Development,2005, 132 (21):4645-4652.
    54. Dugas D V, Bartel B. Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases. Plant Mol Biol,2008,67 (4):403-417.
    55. Eamens A L, Smith N A, Curtin S J, et al. The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes. RNA,2009,15 (12): 2219-2235.
    56. Eiring A M, Harb J G, Neviani P, et al miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell,2010,140 (5):652-665.
    57. Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing. Cell, 2008,132(1):9-14.
    58. Eulalio A, Rehwinkel J, Stricker M, et al. Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev,2007,21 (20):2558-2570.
    59. Fahlgren N, Montgomery T A, Howell M D, et al. Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol,2006,16 (9):939-944.
    60. Faller M, Guo F. MicroRNA biogenesis:there's more than one way to skin a cat. BBA-Gene Regul Mech,2008,1779 (11):663-667.
    61. Faller M, Matsunaga M, Yin S, et al. Heme is involved in microRNA processing. Nat Struct Mol Biol,2006,14(1):23-29.
    62. Fang Y, Spector D L. Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr Biol,2007,17 (9):818-823.
    63. Fattash I, Voss B, Reski R, et al. Evidence for the rapid expansion of microRNA-mediated regulation in early land plant evolution. BMC Plant Biol,2007,7 (1):13.
    64. Fire A, Xu S, Montgomery M K, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature,1998,391 (6669):806-811.
    65. Franco-Zorrilla J M, Valli A, Todesco M, et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet,2007,39 (8):1033-1037.
    66. Gandikota M, Birkenbihl R P, Hohmann S, et al. The miRNA156/157 recognition element in the 3' UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J,2007,49 (4):683-693.
    67. Gao P, Bai X, Yang L, et al. osa-MIR393:a salinity- and alkaline stress-related microRNA gene. Mol Biol Rep,2011,38 (1):237-242.
    68. German M A, Luo S, Schroth G, et al. Construction of Parallel Analysis of RNA Ends (PARE) libraries for the study of cleaved miRNA targets and the RNA degradome. Nat Protoc,2009,4 (3): 356-362.
    69. German M A, Pillay M, Jeong D-H, et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotech,2008,26 (8):941-946.
    70. Ghildiyal M, Zamore P D. Small silencing RNAs:an expanding universe. Nat Rev Genet,2009,10 (2):94-108.
    71. Gifford M L, Dean A, Gutierrez R A, et al. Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci USA,2008,105 (2):803.
    72. Giraldez A J, Mishima Y, Rihel J, et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science,2006,312 (5770):75.
    73. Girard A, Sachidanandam R, Hannon G J, et al. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature,2006,442:199-202.
    74. Glazov E A, Cottee P A, Barris W C, et al. A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res,2008,18 (6):957-964.
    75. Glick E, Zrachya A, Levy Y, et al. Interaction with host SGS3 is required for suppression of RNA silencing by tomato yellow leaf curl virus V2 protein. Proc Natl Acad Sci USA,2008,105 (1):157.
    76. Gou J Y, Felippes F F, Liu C J, et al. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell,2011,23 (4):1512-1522.
    77. Gregory B D, O'Malley R C, Lister R, et al. A link between RNA metabolism and silencing affecting Arabidopsis development. Dev Cell,2008,14 (6):854-866.
    78. Griffiths-Jones S, Saini H K, van Dongen S, et al. miRBase:tools for microRNA genomics. Nucleic Acids Res,2008,36 (Database issue):D154-D158.
    79. Grimson A, Srivastava M, Fahey B, et al. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature,2008,455 (7217):1193-1197.
    80. Groβhans H, Filipowicz W. Molecular biology:the expanding world of small RNAs. Nature,2008, 451 (7177):414-416.
    81. Guo H S, Xie Q, Fei J F, et al. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development. Plant Cell,2005,17 (5): 1376-1386.
    82. Gutierrez L, Bussell J D, Pacurar D I, et al. Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell,2009,21 (10):3119-3132.
    83. Han J, Lee Y, Yeom K H, et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev,2004,18 (24):3016-3027.
    84. He C Y, Zhang J S, Chen S Y. A soybean gene encoding a proline-rich protein is regulated by salicylic acid, an endogenous circadian rhythm and by various stresses. Theor Appl Genet,2002, 104(6):1125-1131.
    85. He L, Hannon G J. MicroRNAs:small RNAs with a big role in gene regulation. Nat Rev Genet, 2004,5 (7):522-531.
    86. He X F, Fang Y Y, Feng L, et al. Characterization of conserved and novel microRNAs and their targets, including a TuMV-induced TIR-NBS-LRR class R gene-derived novel miRNA in Brassica. FEBS letters,2008,582 (16):2445-2452.
    87. Horiguchi G, Molla-Morales A, Perez-Perez J M, et al. Differential contributions of ribosomal protein genes to Arabidopsis thaliana leaf development. The Plant Journal,2011,65 (5):724-736.
    88. Horwich M D, Li C, Matranga C, et al. The Drosophila RNA methyltransferase, DmHenl, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr Biol,2007,17 (14):1265-1272.
    89. Howell M D, Fahlgren N, Chapman E J, et al. Genome-Wide Analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 Pathway in Arabidopsis Reveals Dependency on miRNA-and tasiRNA-Directed Targeting. Plant Cell,2007,19 (3):926-942.
    90. Hsieh L C, Lin S I, Shih A C, et al. Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol,2009,151 (4):2120-2132.
    91. Hu R, Fan C, Li H, et al. Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Mol Biol,2009,10:93.
    92. Jackson R J, Standart N. How do microRNAs regulate gene expression. Sci Stke,2007,367:rel.
    93. Jagadeeswaran G, Saini A, Sunkar R. Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta,2009,229 (4):1009-1014.
    94. Jagadeeswaran G, Zheng Y, Li Y F, et al. Cloning and characterization of small RNAs from Medicago truncatula reveals four novel legume-specific microRNA families. New Phytol,2009, 184(1):85-98.
    95. Jiang W, Yu D. Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid. BMC Plant Biol,2009,9:96.
    96. Jiao Y, Wang Y, Xuc D, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet,2010,42 (6):541-544.
    97. Jinek M, Fabian M R, Coylc S M, et al. Structural insights into the human GW182-PABC interaction in microRNA-mediated deadenylation. Nat Struct Mol Biol,2010,17 (2):238-240.
    98. Johnson C, Kasprzewska A, Tennessen K, et al. Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res,2009,19 (8):1429-1440.
    99. Johnston R J, Hobert O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature,2003,426 (6968):845-849.
    100. Jones-Rhoades M W, Bartel D P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell,2004,14 (6):787-799.
    101. Joshi T, Yan Z, Libault M, et al. Prediction of novel miRNAs and associated target genes in Glycine max. BMC Bioinformatics,2010,11 (Suppl 1):S14.
    102. Juarez M T, Kui J S, Thomas J, et al. microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature,2004,428 (6978):84-88.
    103. Jung H J, Kang H. Expression and functional analyses of microRNA417 in Arabidopsis thaliana under stress conditions. Plant Physiol Biochem,2007,45 (10-11):805-811.
    104. Kawashima C G, Yoshimoto N, Maruyama-Nakashita A, et al. Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J,2009,57 (2):313-321.
    105. Khraiwesh B, Arif M A, Seumel G I, et al. Transcriptional control of gene expression by microRNAs. Cell,2010,140 (1):111-122.
    106. Khurana J S, Theurkauf W. piRNAs, transposon silencing, and Drosophila germline development. J Cell Biol,2010,191 (5):905-913.
    107. Kim J, Jung J H, Reyes J L, et al. microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J,2005,42 (1):84-94.
    108. Kim J H, Woo H R, Kim J, et al. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science,2009,323 (5917):1053-1057.
    109. Kim K Y, Park S W, Chung Y S, et al. Molecular cloning of low-temperature-inducible ribosomal proteins from soybean. J Exp Bot,2004,55 (399):1153-1155.
    110. Kim S, Lee U J, Kim M N, et al. MicroRNA miR-199a* regulates the MET proto-oncogene and the downstream extracellular signal-regulated kinase 2 (ERK2). J Biol Chem,2008,283 (26): 18158-18166.
    111. Kim V N. MicroRNA precursors in motion:exportin-5 mediates their nuclear export. Trends Cell Bio,2004,14(4):156-159.
    112. Kim V N, Han J, Siomi M C. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol,2009, 10(2):126-139.
    113. Kiriakidou M, Tan G S, Lamprinaki S, et al. An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell,2007,129(6):1141-1151.
    114. Klevebring D, Street N R, Fahlgren N, et al. Genome-wide profiling of Populus small RNAs. BMC Genomics,2009,10 (1):620.
    115. Kozomara A, Griffiths-Jones S. miRBase:integrating microRNA annotation and deep-sequencing data. Nucleic Acids Research,2011,39 (suppl 1):D152-D157.
    116. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet,2010,11 (9):597-610.
    117. Kulcheski F R, de Oliveira L F, Molina L G, et al. Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genomics,2011,12(1):307.
    118. Kulcheski F R, Marcelino-Guimaraes F C, Nepomuceno A L, et al. The use of microRNAs as reference genes for quantitative polymerase chain reaction in soybean. Anal Biochem,2010,406 (2):185-192.
    119. Kurihara Y, Watanabe Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA,2004,101 (34):12753-12758.
    120. Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs. Science,2001,294 (5543):853-858.
    121.Lanet E, Delannoy E, Sormani R, et al. Biochemical evidence for translational repression by Arabidopsis microRNAs. Plant Cell,2009,21 (6):1762-1768.
    122. Lau N C, Lim L P, Weinstein E G, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science,2001,294 (5543):858-862.
    123. Laubinger S, Sachsenberg T, Zeller G, et al. Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana. Proc Natl Acad Sci USA,2008,105 (25):8795-8800.
    124. Lea U S, Slimestad R, Smedvig P, et al. Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway. Planta, 2007,225(5):1245-1253.
    125. Lee H C, Li L, Gu W, et al. Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi. Mol Cell,2010,38 (6):803-814.
    126. Lee R C, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science,2001, 294 (5543):862-864.
    127. Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell,1993,75 (5):843-854.
    128. Lelandais-Briere C, Naya L, Sallet E, et al. Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell, 2009,21 (9):2780-2796.
    129. Leung A K, Sharp P A. MicroRNA functions in stress responses. Mol Cell,2010,40 (2):205-215.
    130. Lewis B P, Burge C B, Bartel D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell,2005,120 (1):15-20.
    131. Li B, Qin Y, Duan H, et al. Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica. J Exp Bot,2011,62 (11):3765-3779.
    132. Li H, Deng Y, Wu T, et al. Misexpression of miR482, miR1512, and miR1515 increases soybean nodulation. Plant Physiol,2010,153 (4):1759-1770.
    133. Li J, Yang Z, Yu B, et al. Methylation protects miRNAs and siRNAs from a 3'-end uridylation activity in Arabidopsis. Curr Biol,2005,15 (16):1501-1507.
    134. Li T, Li H, Zhang Y X, et al. Identification and analysis of seven H2O2-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica). Nucleic Acids Res,2010,39 (7): 2821-2833.
    135. Li W X, Oono Y, Zhu J H, et al. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell,2008,20 (8): 2238-2251.
    136. Lim L P, Lau N C, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature,2005,433 (7027):769-773.
    137. Lin E A, Kong L, Bai X H, et al. miR-199a*, a bone morphogenic protein 2-responsive MicroRNA, regulates chondrogenesis via direct targeting to Smadl. J Biol Chem,2009,284 (17):11326-11335.
    138. Lin S I, Chiang S F, Lin W Y, et al. Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiol,2008,147 (2):732-746.
    139. Liu D, Song Y, Chen Z, et al. Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiol Plant,2009,136 (2):223-236.
    140. Liu D, Zhang X, Cheng Y, et al. rHsp90 gene expression in response to several environmental stresses in rice (Oryza sativa L.). Plant Physiol Biochem,2006,44 (5-6):380-386.
    141. Liu H H, Tian X, Li Y J, et al. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA,2008,14 (5):836-843.
    142. Llave C, Kasschau K D, Rector M A, et al. Endogenous and silencing-associated small RNAs in plants. Plant Cell,2002,14 (7):1605-1619.
    143. Llave C, Xie Z, Kasschau K D, et al. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science,2002,297 (5589):2053-2056.
    144. Lohrum M A E, Ludwig R L, Kubbutat M H G, et al. Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell,2003,3 (6):577-587.
    145. Lu S, Sun Y-H, Shi R, et al. Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell,2005,17 (8):2186-2203.
    146. Mahajan S, Tuteja N. Cold, salinity and drought stresses:an overview. Arch Biochem Biophys, 2005,444(2):139-158.
    147. Makeyev E V, Maniatis T. Multilevel regulation of gene expression by microRNAs. Science,2008, 319(5871):1789-1790.
    148. Mallory A C, Bartel D P, Bartel B. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell,2005,17 (5):1360-1375.
    149. Mallory A C, Reinhart B J, Jones-Rhoades M W, et al. MicroRNA control of PIIABULOSA in leaf development: importance of pairing to the microRNA 5'region. EMBO J,2004,23 (16): 3356-3364.
    150. Marin E, Jouannet V, Herz A, et al. miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell,2010,22 (4):1104-1117.
    151. Martin A, Adam H, Diaz-Mendoza M, et al. Graft-transmissible induction of potato tuberization by the microRNA miR172. Development,2009,136 (17):2873-2881.
    152. Martin R C, Liu P-P, Goloviznina N A, et al. microRNA, seeds, and Darwin?:diverse function of miRNA in seed biology and plant responses to stress. J Exp Bot,2010,61 (9):2229-2234.
    153. Mathieu J, Yant L J, Murdter F, et al. Repression of flowering by the miR172 target SMZ. PLoS Biol,2009,7(7):e1000148.
    154. McHale N A, Koning R E. MicroRNA-directed cleavage of Nicotiana sylvestris PHAVOLUTA mRNA regulates the vascular cambium and structure of apical meristems. Plant Cell,2004,16 (7): 1730-1740.
    155. Meister G. miRNAs get an early start on translational silencing. Cell,2007,131 (1):25-28.
    156. Meyers B C, Axtell M J, Bartel B, et al. Criteria for annotation of plant MicroRNAs. Plant Cell, 2008,20 (12):3186-3190.
    157. Mi S, Cai T, Hu Y, et al. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5'terminal nucleotide. Cell,2008,133 (1):116-127.
    158. Millar A A, Gubler F. The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell,2005,17 (3): 705-721.
    159. Molnar A, Schwach F, Studholme D J, et al. miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature,2007,447 (7148):1126-1129.
    160. Montgomery T A, Howell M D, Cuperus J T, et al. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell,2008,133 (1): 128-141.
    161. Montgomery T A, Yoo S J, Fahlgren N, et al. AGO1-miR173 complex initiates phased siRNA formation in plants. Proc Natl Acad Sci USA,2008,105 (51):20055-20062.
    162. Mourrain P, Beclin C, Elmayan T, et al. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell,2000,101 (5):533-542.
    163. Muylkens B, Coupeau D, Dambrine G, et al. Marek's disease virus microRNA designated Mdvl-pre-miR-M4 targets both cellular and viral genes. Arch Virol,2010,155 (11):1823-1837.
    164. Nagpal P, Ellis C M, Weber H, et al. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development,2005,132 (18):4107.
    165.Navarro L, Dunoyer P, Jay F, et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science,2006,312 (5772):436-439.
    166. Nielsen A F, Gloggnitzer J, Martinez J. Ars2 and the Cap-Binding complex team up for silencing. Cell,2009,138 (2):224-226.
    167. Nogueira F T, Chitwood D H, Madi S, et al. Regulation of small RNA accumulation in the maize shoot apex. PLoS Genet,2009,5(1):e1000320.
    168. Okamura K, Hagen J W, Duan H, et al. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell,2007,130 (1):89-100.
    169. Okamura K, Phillips M D, Tyler D M, et al. The regulatory activity of microRNA* species has substantial influence on microRNA and 3'UTR evolution. Nat Struct Mol Biol,2008,15 (4): 354-363.
    170. Omoto S, Fujii Y R. Regulation of human immunodeficiency virus 1 transcription by nef microRNA. J Gen Virol,2005,86 (3):751-755.
    171. Packer A N, Xing Y, Harper S Q, et al. The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease. J Neurosci,2008,28 (53): 14341-14346.
    172. Palatnik J F, Allen E, Wu X, et al. Control of leaf morphogenesis by microRNAs. Nature,2003, 425 (6955):257-263.
    173. Palatnik J F, Wollmann H, Schommer C, et al. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Dev Cell,2007,13 (1): 115-125.
    174. Pall G S, Hamilton A J. Improved northern blot method for enhanced detection of small RNA. Nat Protoc,2008,3 (6):1077-1084.
    175. Pant B D, Buhtz A, Kehr J, et al. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J,2008,53 (5):731-738.
    176. Pantaleo V, Szittya G, Moxon S, et al. Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J,2010,62 (6):960-976.
    177. Park J E, Heo I, Tian Y, et al. Dicer recognizes the 5'end of RNA for efficient and accurate processing. Nature,2011,475 (7355):201-205.
    178. Park M Y, Wu G, Gonzalez-Sulser A, et al. Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci USA,2005,102 (10):3691-3696.
    179. Park W, Li J, Song R, et al. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol,2002,12 (17):1484-1495.
    180. Parker J S, Roe S M, Barford D. Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature,2005,434 (7033):663-666.
    181. Pasquinelli A E, Reinhart B J, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature,2000,408 (6808):86-89.
    182. Pekker I, Alvarez J P, Eshed Y. Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell,2005,17(11):2899-2910.
    183. Petersen C P, Bordeleau M E, Pelletier J, et al. Short RNAs repress translation after initiation in mammalian cells. Mol Cell,2006,21 (4):533-542.
    184. Pfeffer S, Sewer A, Lagos-Quintana M, et al. Identification of microRNAs of the herpesvirus family. Nat Methods,2005,2 (4):269-276.
    185. Pfeffer S, Zavolan M, Grasser F A, et al. Identification of virus-encoded microRNAs. Science, 2004,304 (5671):734-736.
    186. Pillai R S, Bhattacharyya S N, Artus C G, et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science,2005,309 (5740):1573-1576.
    187. Priyanka B, Sekhar K, Reddy V D, et al. Expression of pigeonpea hybrid - proline - rich protein encoding gene (CcHyPRP) in yeast and Arabidopsis affords multiple abiotic stress tolerance. Plant Biotechnol J,2010,8 (1):76-87.
    188. Qi P, Han J X, Lu Y Q, et al. Virus-encoded microRNAs:future therapeutic targets? Cell Mol Immunol,2006,3 (6):411-419.
    189. Qi Y, Denli A M, Hannon G J. Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell,2005,19 (3):421-428.
    190. Rajagopalan R, Vaucheret H, Trejo J, et al. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev,2006,20 (24):3407-2425.
    191. Ramachandran V, Chen X. Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science,2008,321 (5895):1490-1492.
    192. Reinhart B J, Slack F J, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature,2000,403 (6772):901-906.
    193. Reinhart B J, Weinstein E G, Rhoades M W, et al. MicroRNAs in plants. Genes Dev,2002,16 (13): 1616-1626.
    194. Reyes J L, Chua N H. ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J,2007,49 (4):592-606.
    195. Rouha H, Thurner C, Mandl C W. Functional microRNA generated from a cytoplasmic RNA virus. Nucleic Acids Res,2010,38 (22):8328-8337.
    196. Ru P, Xu L, Ma H, et al. Plant fertility defects induced by the enhanced expression of microRNA167. Cell Res,2006,16 (5):457-465.
    197. Ruby J G, Jan C H, Bartel D P. Intronic microRNA precursors that bypass Drosha processing. Nature,2007,448 (7149):83-86.
    198. Ruiz-Ferrer V, Voinnet O. Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol,2009,60(1):485-510.
    199. Ruvkun G, Wightman B, Ha I. The 20 years it took to recognize the importance of tiny RNAs. Cell, 2004,116(2 Suppl):S93-S96.
    200. Saraiya A A, Wang C C. snoRNA, a novel precursor of microRNA in Giardia lamblia. PLoS Pathog,2008,4(11):e1000224.
    201. Sato S, Nakamura Y, Asamizu E, et al. Genome sequencing and genome resources in model legumes. Plant Physiology,2007,144 (2):588-593.
    202. Schmutz J, Cannon S B, Schlueter J, et al. Genome sequence of the palaeopolyploid soybean. Nature,2010,463 (7278):178-183.
    203. Schommer C, Palatnik J F, Aggarwal P, et al. Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol,2008,6 (9):e230.
    204. Schwab R, Palatnik J F, Riester M, et al. Specific effects of microRNAs on the plant transcriptome. Dev Cell,2005,8 (4):517-527.
    205. Shanfa L, Ying-Hsuan S, L. C V. Stress-responsive microRNAs in Populus. Plant J,2008,55 (1): 131-151.
    206. Shen B, Goodman H M. Uridine addition after microRNA-directed cleavage. Science,2004,306 (5698):997.
    207. Singh K, Paul A, Kumar S, et al. Cloning and differential expression of QM like protein homologue from tea [Camellia sinensis (L.) O. Kuntze]. Mol Biol Rep,2009,36 (5):921-927.
    208. Song L, Han M H, Lesicka J, et al. Arabidopsis primary microRNA processing proteins HYL1 and DCL1 define a nuclear body distinct from the Cajal body. Proc Natl Acad Sci USA,2007,104 (13): 5437-5442.
    209. Song Q X, Liu Y F, Hu X Y, et al. Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biol,2011,11 (1):5.
    210. Subramanian S, Fu Y, Sunkar R, et al. Novel and nodulation-regulated microRNAs in soybean roots. BMC Genomics,2008,9 (1):160.
    211. Sunkar R. MicroRNAs with macro-effects on plant stress responses. Semin Cell Dev Biol,2010,21 (8):805-811.
    212. Sunkar R, Kapoor A, Zhu J K. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell,2006,18 (8):2051-2065.
    213. Sunkar R, Zhu J K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell,2004,16 (8):2001-2019.
    214. Szekely G, Abraham E, Cseplo A, et al. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J,2008,53 (1):11-28.
    215. Tabata R, Ikezaki M, Fujibe T, et al. Arabidopsis auxin response factor6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes. Plant Cell Physiol,2010,51 (1):164-175.
    216. Todcsco M, Rubio-Somoza I, Paz-Ares J, et al. A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet,2010,6 (7):e1001031.
    217. Trevino M B, O'Connell M A. Three drought-responsive members of the nonspecific lipid-transfer protein gene family in lycopersicon pennellii show different developmental patterns of expression. Plant Physiol,1998,116(4):1461-1468.
    218. Tsuji H, Aya K, Ueguchi-Tanaka M, et al. GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers. Plant J,2006,47 (3):427-444.
    219. Varallyay E, Burgyan J, Havelda Z. MicroRNA detection by northern blotting using locked nucleic acid probes. Nat Protoc,2008,3 (2):190-196.
    220. Valdcs-Lopcz O, Yang S S, Aparicio-Fabre R, et al. MicroRNA expression profile in common bean (Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity. New Phytol,2010, 187(3):805-818.
    221. Varkonyi-Gasic E, Wu R, Wood M, et al. Protocol:a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods,2007,3 (1):12.
    222. Vasudevan S, Tong Y, Steitz J A. Cell cycle control of microRNA-mediated translation regulation. Cell Cycle,2008,7 (11):1545-1549.
    223. Vaucheret H. Post-transcriptional small RNA pathways in plants:mechanisms and regulations. Genes Dev,2006,20 (7):759-771.
    224. Vaucheret H. AGO1 Homeostasis Involves Differential Production of 21-nt and 22-nt miR168 Species by MIR168a and MIR168b. PLoS ONE,2009,4 (7):e6442.
    225. Vaucheret H, Vazquez F, Crete P, et al. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev,2004,18 (10): 1187.
    226. Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell,2009,136 (4):669-687.
    227. Wahid F, Shehzad A, Khan T, et al. MicroRNAs:synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta,2010,1803 (11):1231-1243.
    228. Wakiyama M, Takimoto K, Ohara O, et al. Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev,2007,21 (15):1857-1862.
    229. Wakiyama M, Yokoyama S. MicroRNA-mediated mRNA deadenylation and repression of protein synthesis in a mammalian cell-free system. Prog Mol Subcell Biol,2010,50:85-97.
    230. Wang J F, Zhou H, Chen Y Q, et al. Identification of 20 microRNAs from Oryza sativa. Nucleic Acids Res,2004,32 (5):1688-1695.
    231. Wang J W, Czech B, Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell,2009,138 (4):738-749.
    232. Wang J W, Park M Y, Wang L J, et al. miRNA control of vegetative phase change in trees. PLoS Genet,2011,7(2):e1002012.
    233. Wang J W, Schwab R, Czech B, et al. Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell,2008,20 (5):1231-1243.
    234. Wang J W, Wang L J, Mao Y B, et al. Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell,2005,17 (8):2204-2216.
    235. Wang Y, Li P, Cao X, et al. Identification and expression analysis of miRNAs from nitrogen-fixing soybean nodules. Biochem Biophys Res Commun,2009,378 (4):799-803.
    236. Warner J R, McIntosh K B. How common are extraribosomal functions of ribosomal proteins? Mol Cell,2009,34(1):3-11.
    237. Wei L Y, Zhang D F, Xiang F, et al. Differentially expressed miRNAs potentially involved in the regulation of defense mechanism to drought stress in maize seedlings. Int J Plant Sci,2009,170 (8): 979-989.
    238. Wheeler B M, Heimberg A M, Moy V N, et al. The deep evolution of metazoan microRNAs. Evol Dev,2009,11 (1):50-68.
    239. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell,1993,75 (5):855-862.
    240. Williams L, Grigg S P, Xie M, et al. Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development,2005,132 (16):3657-3668.
    241. Winter J, Jung S, Keller S, et al. Many roads to maturity:microRNA biogenesis pathways and their regulation. Nat Cell Biol,2009,11 (3):228-234.
    242. Wong C E, Zhao Y T, Wang X J, et al. MicroRNAs in the shoot apical meristem of soybean. J Exp Bot,2011,62 (8):2495-2506.
    243. Wool I G. Extraribosomal functions of ribosomal proteins. Trends Biochem Sci,1996,21 (5): 164-165.
    244. Wu G, Poethig R S. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development,2006,133 (18):3539-3547.
    245. Wu L, Fan J, Belasco J G. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA,2006,103 (11):4034-4039.
    246. Wu M F, Tian Q, Reed J W. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development,2006,133 (21): 4211-4218.
    247. Xie K, Wu C, Xiong L. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol, 2006,142(1):280-293.
    248. Xie Z, Allen E, Fahlgren N, et al. Expression of Arabidopsis MIRNA genes. Plant Physiol,2005, 138 (4):2145-2154.
    249. Xie Z, Kasschau K D, Carrington J C. Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol,2003,13 (9):784-789.
    250. Xiong L, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress. Plant Cell, 2002,14(suppl 1):S165-S183.
    251. Xu R, Deng K, Zhu Y, et al. A large-scale functional approach to uncover human genes and pathways in Drosophila. Cell Res,2008,18 (11):1114-1127.
    252. Yamasaki H, Hayashi M, Fukazawa M, et al. SQUAMOSA promoter binding protein-like7 Is a central regulator for copper homeostasis in Arabidopsis. Plant Cell,2009,21 (1):347-361.
    253. Yan Y, Cui H, Jiang S, et al. Identification of a novel marine fish virus, Singapore grouper iridovirus-encoded microRNAs expressed in grouper cells by Solexa sequencing. PLoS ONE,2011, 6(4):c19148.
    254. Yang T W, Xue L G, An L Z. Functional diversity of miRNA in plants. Plant Sci,2007,172 (3): 423-432.
    255. Yang Z, Ebright Y W, Yu B, et al. HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2' OH of the 3'terminal nucleotide. Nucleic Acids Res,2006,34 (2): 667-675.
    256. Yao Y, Guo G, Ni Z, et al. Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol,2007,8 (6):R96.
    257. Yao Y, Ling Q, Wang H, et al. Ribosomal proteins promote leaf adaxial identity. Development, 2008,135 (7):1325-1334.
    258. Yekta S, Shih I H, Bartel D P. MicroRNA-directed cleavage of HOXB8 mRNA. Science,2004,304 (5670):594-596.
    259. Yeom K H, Lee Y, Han J, et al. Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Res,2006,34 (16):4622-4629.
    260. Yu B, Bi L, Zheng B, et al. The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc Natl Acad Sci USA,2008,105 (29):10073-10078.
    261. Yu B, Wang H. Translational inhibition by microRNAs in plants. Prog Mol Subcell Biol,2010,50: 41-57.
    262. Yu B, Yang Z, Li J, et al. Methylation as a crucial step in plant microRNA biogenesis. Science, 2005,307 (5711):932-935.
    263. Yu J, Hu S, Wang J, et al. A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. indica). Science,2002,296 (5565):79-92.
    264. Yu L, Yu X, Shen R, et al. IIYL1 gene maintains venation and polarity of leaves. Planta,2005,221 (2):231-242.
    265. Yu N, Cai W J, Wang S, et al. Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana. Plant Cell,2010,22 (7):2322-2335.
    266. Zeng H Q, Zhu Y Y, Huang S Q, et al. Analysis of phosphorus-deficient responsive miRNAs and cis-elements from soybean (Glycine max L.). J Plant Physiol,2010,167 (15):1289-1297.
    267. Zeng Y, Yi R, Cullen B R. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J,2004,24 (1):138-148.
    268. Zhang B, Pan X, Cobb G P, et al. Plant microRNA: A small regulatory molecule with big impact. Dev Biol,2006,289(1):3-16.
    269. Zhang B H, Pan X P, Wang Q L, et al. Identification and characterization of new plant microRNAs using EST analysis. Cell Res,2005,15 (5):336-360.
    270. Zhang D S, Liang W Q, Yin C S, et al. OsC6, encoding a lipid transfer protein, is required for postmeiotic anther development in rice. Plant Physiol,2010,154 (1):149-162.
    271. Zhang L, Chia J M, Kumari S, et al. A genome-wide characterization of microRNA genes in maize. PLoS Genet,2009,5(11):e1000716.
    272. Zhang L, Hou D, Chen X, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1:evidence of cross-kingdom regulation by microRNA. Cell Res,2011:doi: 10.1038/cr.2011.1158.
    273. Zhang X M, Zhao H W, Gao S, et al. Arabidopsis Argonaute 2 regulates innate immunity via miRNA393*-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol Cell,2011,42 (3):356-366.
    274. Zhang Y Q, Chen D L, Tian H F, et al. Genome-wide computational identification of microRNAs and their targets in the deep-branching eukaryote Giardia lamblia. Comput Biol Chem,2009,33 (5): 391-396.
    275. Zhao B, Liang R, Ge L, et al. Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun,2007,354 (2):585-590.
    276. Zhao C Z, Xia H, Frazier T P, et al. Deep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.). BMC Plant Biol,2010,10 (1):3.
    277. Zhao L, Kim Y, Dinh T T, et al. miR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristems. Plant J,2007, 51 (5):840-849.
    278. Zhong R, Ye Z H. Regulation of HD-ZIP Ⅲ genes by microRNA 165. Plant Signal Behav,2007,2 (5):351-353.
    279. Zhou L, Liu Y, Liu Z, et al. Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot,2010,61 (15):4157-4168.
    280. Zhou M, Gu L, Li P, et al. Degradome sequencing reveals endogenous small RNA targets in rice (Oryza sativa L. ssp. indica). Front Biol,2010,5 (1):67-90.
    281. Zhou X, Wang G, Zhang W. UV-B responsive microRNA genes in Arabidopsis thaliana. Mol Syst Biol,2007,3(1):103.
    282. Zhou Z S, Zeng H Q, Liu Z P, et al. Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal. Plant Cell Environ, 2012,35(1):86-89.
    283. Zhu H, Hu F, Wang R, et al. Arabidopsis ArgonautelO specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell,2011,145 (2):242-256.
    284. Zhu Q-H, Helliwell C A. Regulation of flowering time and floral patterning by miR172. J Exp Bot, 2011,62 (2):487-495.
    285. Zhu Q H, Spriggs A, Matthew L, et al. A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res,2008,18 (9):1456-1465.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700