泡沫分离法分离蛋白质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泡沫分离蛋白质是利用蛋白质的表面活性对其进行分离的一种方法,分离过
    程中的条件温和,对蛋白质的活性影响较小,是一种成本较小、有着很好应用前
    景的分离方法。
     实验中,以两种蛋白质 BSA 和 HAS 作为分离模拟体系的目标蛋白质,利用
    自制的泡沫分离塔,作了一系列的泡沫分离实验,考察了各种操作参数对分离结
    果(回收率和增浓比)的影响。实验发现,液柱高度、泡沫层高度、鼓入气体的
    流速、进料流量和 pH 值、料液浓度以及温度等对分离的效果有着不同程度的影
    响:较低的进气速度、较高的泡沫高度与液柱高度、适宜的温度(BSA 在 25°C,
    HAS 在 35°C)、适当的 pH 值(蛋白质的等电点附近)以及较低的母液浓度有利
    于得到较高的富集比。在最佳条件下富集比最高可达 28.6,回收率可达 93.1%。
     结合实验的实际情况,假设吸附过程始终处于平衡态、气泡大小均一以及每
    一个气泡均为正十二面体,建立了分离的数学模型,得到可以求解的微分方程组。
    在对分离中的一些情况进行合理的假设,并忽略泡沫上升过程中气泡聚并破裂对
    分离的影响后,在合理的假设边界条件下,得到了方程求解所需要的参量的初始
    值,利用 Matlab 编程对微分方程组进行求解,对富集比与回收率在一定条件下
    随泡沫高度的变化趋势进行了预测,并对结果进行了分析。认为模型建立过程中
    对吸附过程的简化以及求解中对泡沫聚并的忽略是影响计算结果的主要原因。
Foam fractionation is known to have potential for separation of
    biological molecules with a range of surface activities because of its
    low cost and mild operation conditions.
     In this dissertation, fractionation of BSA and HAS was studied. The
    effects of gas velocity, pH, temperature, pool and foam height, initial
    feed concentration and feed rate on separation results were studied. The
    experimental results show that low velocity, high pool and foam levels,
    low initial concentration, and pH around isoelectric point of proteins
    are the beneficial conditions to get higher enrichment. The highest values
    of enrichment and recovery obtained were 28.6 and 93.1%,respectively.
     The Mathematic model was developed with many assumptions such as
    adsorption equilibrium, same size bubbles, dodecahedron substituting
    real bubble. Under reasonable initial and boundary conditions, the
    differential equations were solved without accounting for coalescence of
    bubbles by means of Matlab and the enrichment and recovery was predicted
    and the results were discussed. The simplification of the model and the
    neglect of bubbles coalescence resulted in lower enrichment and recovery.
引文
参考文献
    [1] Robert Lemlich, Adsorptive bubble separation techniques, Academic
     Press, 1972
    [2] P. Kouloheris, Foam: Friend and foe, Chemical Engineering, October
     26,1987,88~97
    [3] Robert D. Tanner, Effect of protein denaturation on void fraction
     in foam separation column, Applied biochemistry and biotechnology,
     2000,84-86:835-842
    [4] LG. Phillips, SE. Hawks, JB German, Structural characteristics and
     foaming properties of β-lactoglobin: effects of shear rate and
     temperature, J. Agriculture Food Chem.1995,43:613-619
    [5] Lynn Brown, Foam fractionation of globular proteins, Biotechnology
     and Bioengineering, 1990,36:947-959
    [6] A. Leonard , R. Lemlich, A study of interstitial liquid flow in
     foam : PartⅠ : Theoretical model and applications to foam
     fractionation. Am. Inst. Chem. Eng. J., 1965,11:18-15
    [7] 王立新等,连续泡沫分离蛋白质,化工冶金,1996,17(4):343-347
    [8] 谢继宏等,大豆蛋白质的泡沫分离研究,华东理工大学学报,1997,23(3)
     270-280
    [9] 殷钢等,糖-蛋白质混合体系泡沫分离过程研究,化学工程, 2000, 28(6)
     34-37
    [10] P. Sarkar, P. Bhatacharya and R. N. Mukherjea, Isolation and
     purification of protease from human placenta by foam fractionation,
     Biotechnology and Bioengineering, 1987,XXIX:934-940
    [11] Md. Monwar Hossain and Glenn Fenton, Concentration of proteins
     from single component solution using a semi-batch foaming process,
     Separation science and technology, 1998,33(11):1703-1721
    [12] S. Zaid Saleh and Md. M. Hossain, A study of the separation of
     proteins from multi-component mixtures by a semi-batch foaming
     process, Chemical engineering and process, 2001,40:371-378
     38
    
    
    参 考 文 献
    [13] Fukuji Yamashita,Effect of foam layer on gas holdup in a bubble
     column, J. Chemical engineering of Japan, 1995,28(6):837-840
    [14] Farooq Uraizee and Ganesan Narsimhan, Effects of kinetics of
     adsorption and coalescence on continuous foam concentration of
     proteins: comparison of experimental results with model predictions,
     Biotechnology and Bioengineering, 1996,51:384-398
    [15] F. A. Uraizee, G. Narishan, Surface equation of state for globular
     proteins at air-water interface.J.Coll.Interf.Sci.,1989,146-178
    [16] F .A. Uraizee, G. Narishan, Foam fractionation of proteins and
     enzymes : Part Ⅱ-Performance and
     modeling,Enz.Microb.Technol.1990,12:315-316
    [17] F. A. Uraizee, G. Narishan, A model for continuous foam
     concentration of proteins Effects of kinetics of adsorption of
     proteins and coalescence of foam, Sep. Sci. Tech., 1995,30:847-881
    [18] Syed Iftihar Ahmad, Lows of foam formation and foam
     fractionation, Separation science, 1975,10(6):689-700
    [19] James R. Hunter,etl.,β-casein adsorption at the air/water
     interface, J. Colloid and interface science, 1991,142(2):429-446()
    [20] G. A . Hughmark, Holdup and mass transfer in bubble columns, I&EC
     process design and development , 1967,6(2):218-220
    [21] Satoshi Andou, Effects of gas sparger type on operational
     characteristics of a bubble column under mechanical foam control, J.
     Chem. Tech. Biotechnol, 1996,66:65-71
    [22] Satoshi Andou, Performance characteristics of mechanical foam-
     breakers with rotating pars fitted to bubble
     column,J.chem.tech.biotechnol,68:94-100(1997)
    [23] Dlip Desai and Rajinder Kumar, Liquid holdup in semi-batch
     cellular foams, Chem. Eng. Sci., 1983,38(9),1525-1534
    [24] G. Narsimhan and E. Ruckenstein , Effect of bubble size
     distribution on the enrichment and collapse in foams, Langmuir,
     1986,2:4974-508
     39
    
    
    参 考 文 献
    [25] G. Narsimhan and E. Ruckenstein, Hydrodynamics, enrichment and
     collapse in foams, Langmuir, 1986,2:230-238
    [26] G.Narsimhan, A model for unsteady state drainage of a static foam,
     J. Food. Eng. 1991, 14:139-165
    [27] A. K. Brown, A. Kaul and J. Variey, Continuous foaming for
     protein recovery: part I. ecovery of β-casein, Biotechnology and
     bioengineering, 1999,62(3):278-290
    [28] Geoffrey Zubey,Biochemistry,Adison-wesley Publishing Company,
     1984
    [29] 林玉满,短裙竹荪多糖 Dd-S3P 的分离纯化及其性质的研究,生物化学杂
     志,1997,13(1)99-102
    [30] 陈彦等,白头翁糖蛋白的分离纯化及其性质,中国生化药物杂志,1997,
     18(4):180-183
    [31] 庞启深等,生螺旋藻抗辐射多糖的提纯和分析,生物化学与生物物理学报,
     1989,21(5):445-449
    [32] James R. Hunter, Ruben G. Carbonell and Peter K. Kilpatrick,
     Coadsorption and exchange of lysozyme/β-casein mixtures at the air-
     water interface, J. Colloid and Interface Science, 1991,143(1):37-
     52
    [33] D. E. Graham and M. C. Phillips, Proteins at liquid interfaces, J.
     Colloid and Interface Science, 1979, 73(3):403-414
    [34] Hideo Maruyama, Akra Suzuki, and Hideshi Seki, Adsorption of
     water-soluble proteins onto bubbles in continues foam separation, J.
     Colloid and Interface Science, 2000,224:76-83
    [35] Armando Monsalve, and Robert S. Schechiter, The stability of
     foams: Dependence of observation on the bubble size distribution, J.
     Colloid and Interface Science, 1984, Vol.97:327-335
    [36] E. J. Chou and Yoshiyuki Okamoto, Concentration effects on
     separation selectivity in foam fractionation , Separation Science
     and Technology,1395:439-448(1978)
    [37] Zdr. Lalchev and D. Exerowa, Concentration of proteins by
     foaming, Biotechnology and Bioengineering, 1981, xxxii: 669-676
     40
    
    
    参 考 文 献
    [38] Satoshi Takesono, Mechanical control of foaming in tower reactors,
     J. Chem. Tech. Biotechnol., 1994, 60:125-132
    [39] Kozo Koide, Effects of surface active substances on gas holdup and
     gas-liquid mass transfer in bubble column, J. Chemical Engineering
     of Japan, 1985,18(4):287-292
    [40] Xindu Geng and Fred Eregnier, Retention model for proteins
     reversed-phase liquid chromatography, J .Chromatography, 1984,296:
     15-13
    [41] Satoshi Takesono, Gas hold-up and volumetric mass transfer
     coefficient in bubble columns under foam control, J.
     Chem.Tech.Biotechnol, 1995,64:188-194
    [42] 杨博等,蛋白质的泡沫分离,食品与发酵工业,2001,27(2):76-79
    [43] 陆九芳等,分离过程化学,清华大学出版社,1993
    [44] 刘茉娥等,新型分离技术基础,浙江大学出版社,1993
    [45] 严希康,生化分离技术,华东理工大学出版社,1996
    [46] 邓修,吴俊生,化工分离工程,科学出版社 2000
    [47] 朱厚础译,蛋白质纯化与鉴定实验指南,科学出版社,1999
    [48] 大矢晴彦 著,张瑾译, 分离的科学与技术 ,中国轻工业出版社,1999
    [49] 武汉大学主编,分析化学,高等教育出版社,1982
    [50] 蒋维钧,新型传质分离技术,化学工业出版社,1992
    [51] 姚允斌,胶体与表面化学导论,南开大学出版社,1988
    [52] 陈洪钫,化工分离过程,化学工业出版社,1995
    [53] 严继民,吸附与凝聚,科学出版社,1979
    [54] 赵国玺,表面活性剂物理化学,北京大学出版社,1984
    [55] 北京大学化学系胶体化学教研室,胶体与表面化学实验,北京大学出版社,
     1992
    [56] 沈钟,王果庭,胶体与表面化学,化学工业出版社,1996
    [57] 吴树森,章燕豪,界面化学,华东化工学院出版社,1989
    [58] Karger B L, Separation Science,1967,2:401
     41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700