氩离子激光辐照对大豆幼苗生物学性能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用氩离子(Ar+)激光(波长分别为457、465、472、477、488、496、502、514nnm,功率密度=5.7mW/mm2)辐照高异黄酮品种大豆的萌发胚芽1、3、5、7min,通过对比分析水培激光辐照组(L)与对照组(ck)幼苗期的子叶和叶片的光合特性、蛋白质代谢、异黄酮含量和抗氧化性等差异,系统地讨论了大豆幼苗经Ar+激光辐照后生物学性能的变化规律。旨在较全面、深入了解低功率Ar+激光对生物组织的相互作用机理,为选育高异黄酮含量大豆提供理论和实验依据。完成的工作主要包括以下几个方面:
     1.大豆异黄酮含量与品质性状的相关性研究
     对来源不同的七个品种大豆中的6种异黄酮组分(染料木素、染料木苷、大豆苷元、大豆苷、黄豆黄素和黄豆黄苷)、蛋白质(清蛋白、谷蛋白、球蛋白、醇蛋白、7S球蛋白、11S球蛋白和总蛋白质)、粗脂肪和5种脂肪酸(软脂酸、硬脂酸、油酸、亚油酸和亚麻酸)进行定量分析。结果表明,不同品种大豆的异黄酮含量与蛋白质、脂肪含量相关性有所差异。其中,(1)6种大豆异黄酮分别与清蛋白、11S球蛋白、总蛋白质、蛋脂总量呈程度不同的正相关性,与谷蛋白、球蛋白和醇蛋白呈负相关性;(2)6种大豆异黄酮与亚油酸、亚麻酸均呈正相关,且与亚油酸的正相关性显著;(3)染料木素、染料木苷与大豆粗脂肪呈负相关性,而大豆苷元、大豆苷、黄豆黄素和黄豆黄苷与大豆粗脂肪呈正相关性。
     2.Ar+激光辐照对大豆幼苗生理生化指标的影响
     低功率Ar+激光辐照吉农19大豆种子胚芽后,其浸泡液电导率、含水速率,幼苗的株高、叶绿素、光合碳同化产物、可溶性蛋白质、热稳定性蛋白质、总游离氨基酸含量和碳酸酐酶(CA)、内源蛋白酶活性均有别于对照组(ck),激光辐照可以影响质膜、幼苗株高以及光合同化作用、蛋白质代谢。结果表明:457~502nm激光辐照可有效地修复了水胁迫下大豆种子质膜损伤,降低细胞内物质外流;在32组激光辐照组中,502nm激光辐照5min可有效地促进叶绿素的合成(10.09%);在提高Chla/Chlb比值(16.78%)、CA活性(118.25%)、热稳定性蛋白质含量(47.47%)、游离氨基酸含量(12.33%)的同时,降低了内源蛋白酶活性(34.85%)和幼苗株高(1.43%);即激光辐照可以在加速大豆幼苗光合碳同化产物、蛋白质代谢的同时,加速幼苗体内代谢进程。
     3.Ar+激光辐照对大豆幼苗异黄酮代谢的影响
     利用HPLC法对Ar+激光辐照组大豆幼苗子叶和叶片中染料木素、染料木苷、大豆苷元、大豆苷、黄豆黄素和黄豆黄苷6种异黄酮组分含量进行测定,其结果表明:32组激光辐照组中,50%幼苗子叶、15.6%幼苗叶片中6种异黄酮组分含量均高于对照组,其中以502nm激光辐照3min效果最为明显,大豆幼苗子叶、叶片中6种异黄酮物质合成的增加幅度分别为44.06%和117.46%:Ar~+激光辐照提高了大豆幼苗中染料木素、染料木苷、大豆苷元、大豆苷含量的同时,降低了黄豆黄素、黄豆黄苷含量,有效地提高了大豆幼苗生理活性强异黄酮物质比例;激光辐照影响了异黄酮合成前体物质苯丙氨酸(Phe)含量及异黄酮生物合成途径苯丙氨酸转氨酶(PAL)、肉桂酸羟化酶(C4H)、辅酶A连接酶(4CL)、异黄酮合成酶(SIF)活性,从而促进了异黄酮生物合成。
     4.Ar~+激光辐照对大豆幼苗抗氧化性的影响
     吉农19萌发大豆种子胚芽经Ar+激光辐照后,其幼苗子叶和叶片中超氧化岐化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)三种酶类抗氧化剂活性,抗坏血酸(AsA)、类胡萝卜素(Car)、脯氨酸(Pro)、紫外吸收物、还原型谷胱甘肽(GSH)非酶抗氧化物含量和膜脂过氧化产物之一丙二醛(MDA)含量均有别于对照组(ck),激光辐照可影响大豆幼苗酶类抗氧化剂活性及非酶类抗氧化剂含量。结果表明:激光辐照可以显著增加大豆幼苗SOD、CAT、POD活性及AsA、Car、Pro和紫外吸收物含量,降低叶片GSH、子叶Pro含量,提高了子叶GSH、叶片Pro含量;激光波长、辐照时间是影响幼苗抗氧化能力的两个因素,502nm激光辐照3min分别降低了子叶、叶片过氧化水平49.64%和65.56%,而496nm激光辐照1min分别降低了子叶、叶片过氧化水平73.27%和78.21%。因此,Ar+激光辐照大豆种子胚芽可以提高其幼苗的抗氧化性。
The germinating germ of soybean with high isoflavone content were irradiated by 5.7mW/mm2 Ar+ laser with wavelenth of 457,465,472,477,488,496,502,514 nm for different times of 1,3,5 and 7 minute(s). By comparing the differences of their biological characteristics between the experimental group (L) and the control (ck), such as seedling cotyledon and leaf photosynthesis, protein metabolism, isoflavone content and antioxidation, some systematic studies had been done about the biological effects before and after the irradiation. The aim was to fully understand biological stimulation mechanism of the low-power Ar+ laser irradiated on biomass and to provide some theoretical and experimental basis on breeding soybean with high isoflavone content by way of laser irradiation. Completed work includes the following main aspects:
     1. Study on correlations between isoflavones content and quality of soybean
     Isoflavone components (genistein, genistin, daidzein, daidzin, glycitein and glycitin), proteins (albumin, glutelin, globulin, gliadin,7S globulin,11S globulin and total protein), crude fat and five fatty acids (palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid) in seven different soybean germplasms were used for quantitative analysis. The results showed that:there were different correlations between isoflavone content and protein content and oil content in different soybean germplasms. Among them, (1) the six isoflavone components content had different significant positive correlations with the content of albumin, 11S globulin, total protein, total fat, and negative correlations with the content of glutelin, globulin, gliadin respectively. (2) the six soybean isoflavone components were positively correlated with linoleic acid and linolenic acid significantly, especially linoleic acid. (3) genistein, genistin were negatively correlated with soybean fat, while daidzein, daidzin, glycitein and glycitin had some positive correlations with soybean fat. After quality analysis of seven different soybean germplasms, Jinong 19, in which the total content of six isoflavones were 2437.28μg/g, was selected as an experimental material for the study of biological effects with Ar+ laser irradiation on soybean seedlings.
     2. Effect of Ar+ laser irradiation on the soybean seedlings in physiological and biochemical properties
     When the germ of the soybean seed (named as Jinong 19) were being irradiated by a low-power Ar+ laser, its conductivity of the soaking solution, moisture content, plant height, carbonic anhydrase (CA) activity, chlorophyll, photoassimilate, endogenous protease activity, soluble protein, the heat-stable protein, total free amino acids content behaved remarkable difference from the control group (ck). Laser irradiation could affect the plasma membrane, plant height and photosynthetic assimilation, protein metabolism. The results showed that: 457-502nm laser irradiation could effectively repair the plasma membrane injuries of soybean seeds under water stress, reduce the outflow of intracellular material. And among 32 sets of laser irradiation groups (L), laser irradiation with 502nm for 5 minutes could be effectively in promoting chlorophyll synthesis (10.09%), raising the Chla/Chlb ratio (16.78%), CA activity (118.25%), heat-stable protein content (47.47%) and total free amino acids content (12.33%), while reducing the endogenous protease activity (34.85%) and plant height (1.43%). Laser irradiation accelerates the product of soybean seedling photoassimilate, protein metabolism, at the same time, accelerates the process of metabolism of the seedlings.
     3. Effect of Ar+ laser irradiation on soybean seedlings in isoflavones metabolism
     HPLC method was applied in the measure of content of the six kinds of isofavone: genistein, genistin, daidzein, daidzin, glycitein, glycitin in the soybean seedlings cotyledons and leaves after Ar+ laser irradiation. The results showed that:among 32 irradiation groups, the content of 6 isoflavone components in seedling cotyledons and in leaves were 50% and 15.6% higher than that in ck respectively. The irradiation with 502nm for 3 minutes could be effective in promoting 6 isoflavone synthesis in soybean seedling cotyledons and leaves. And the increase rates were 44.06% and 117.46% respectively. There were certain constraints between biosynthesis system of the glycitein and glycitin, The activity of PAL, C4H,4CL, SIF and Phe content in soybean seedlings were the influencing factors of the level of the isoflavone content, while laser irradiation could change the content of Phe, which was the precursors substance of isoflavone, and the activity of related enzymes in biosynthesis. The impact differs from the laser wavelength and irradiation time. Phe level is the main factor, while the PAL, C4H,4CL, SIF activity have positive correlations with isoflavone content.
     4. Effect of Ar+ laser irradiation on soybean seedlings in antioxidation
     The activity of super oxide dismutase (SOD), peroxidase (POD), catalase (CAT), the content of ascorbic acid (AsA), carotenoids (Car), proline(Pro), UV-absorbing compounds, glutathione(GSH) and malondialdehyde (MDA) in cotyledons and leaves of Jinong 19 seedlings were different from the control group (ck) after the germinating soybean seeds germ were irradiated by Ar+ laser. Antioxidant enzyme activity and non-enzyme antioxidant content of soybean seedlings changed evidently. The results showed that:the activity of SOD, CAT, POD and the content of AsA, Car, Pro, and UV-absorbing compounds in soybean seedlings were significantly increased. The content of GSH in leaves, Pro in cotyledons were reduced, while the content of GSH in cotyledons, Pro in leaves increased. Laser wavelength and irradiation time were two main factors which could affect antioxidant capacity. Laser wavelength of 477,488,496 and 502nm and the laser irradiation time of 5,7 minutes could reduce the peroxidation of seedlings. Therefore, antioxidation of soybean seedling could be improved by Ar+ laser irradiation on seed germ.
引文
[1]Ham. J. O., chapman, K. M., et al. Endocrinological response to soy protein and fiber in mildly hypercholesterolemic men. Nutr. Res.1993,13:873-884.
    [2]魏勤芳,马春梅,孙聪姝,等.黑龙江省大豆脂肪与蛋白白质含量现状及对策分析.2005,(3):1-3.
    [3]毛峻琴,必鹤鸣.大豆异黄酮的研究进展.中草药,2000,31(1):61-64.
    [4]hiraiwa M., Yamauchi A., et al. Inheritance of group A saponin in soybean seed. Agric Biol Chem.1990,54(6): 1347-1352.
    [5]金其荣,徐勤.大豆低聚糖生产、生理功能及其应用.食品科学,1994,(11):7-12.
    16] 石彦国,任莉.大豆制品工艺学.北京,中国轻工业出版社,1998,29-31.
    [7]郑健仙.功能性食品.北京,中国轻工业出版社,1998,137-139.
    [8]Huang A S, Hsieh O L, Chang S S. Characterization of the nonvolatile minor constituents responsible for the objectionable taste of defatted soybean flour. J Food Sci,1981,29(1):19-23.
    [9]Coward L, Barnes N C, Setchell K D R, et al. Genistein, daidzein, and their P-glucoside conjugates:anti-tumor isoflacones in soybean foods from American and Asian diets. J Agric. Food Chem,1993,41(10):1961-1967
    [10]Fritz KL, Soppanem CM, Kumer, et al. The in vivo antioxidant activity of soybean isoflavones in human subjects. Natr Res,2003,23:479-487.
    [11]Valachovicova J, Slivova V, Sliva D. Cellular and physiological effects of soy flavonoids. Mini Rev Med Chem,2004, 4:881-887.
    [12]杨茂区,陈伟,冯磊.大豆异黄酮的生理功能研究进展.大豆科学,2006,25(3):320-324.
    [13]Mahesha H. G, Sridevi Annapurna Singh, Appu Rao A G. Inhibition of lipoxygenase by soy isoXavones as redox inhibitors. Archives of Biochemistry and Biophysics,2007,46(1):176-185.
    [14]Lu J W, Anderson K. E, Grady J J, et al. Decreased ovaria hermones during a soya diet:implications for breast cancer prevention. Cancer Research,2000,60:4112-4121.
    [15]Teede H J, Dalais F S, Kotsopoulce D, et al. Dietary soy has beth beneficial and potentially adverse cardiovascular effects:a placebo controlled study in men and postmenopausal women. Journal of Clinical Endocrinology & Metabolism,2001,86:3053-3060.
    [16]Watanabe S, Uesugi S, Kikuchi Y. Isoflavones for prevention of cancer, cardiovascular diseases, gynecological problems and possible immune potentiation. Biomedicine & Pharmacotherapy,2001,56:302-312.
    [17]Zittermann A, Geppert J, Baier S, et al. Short-tern effects of high soy supplementation on sex hormones, bone markers, and lipid parameters in young female adults. European Journal of Nutrition,2004,43:100-108.
    [18]虞丹.植物雌激素-大豆异黄酮的药理作用研究概况.海峡药学,2007,19(2):9-12.
    [19]张丹凤.蒙古黄芪异黄酮合成酶基因的克隆及序列分析:[硕士学位论文].北京:北京理工大学,1993.
    [20]刘志胜,李里特,辰已英三.大豆异黄酮及其生理功能研究进展.食品工业科技,2000,21(1):78-80.
    [21]苗惠,赵海,戚天胜.大豆异黄酮的研究进展.国外医学中医中药分册,2005,27(2):86-89.
    [22]朱新军,岳明.激光对植物的作用及其机理.科技情报开发与经济,2006,16(4):182-184.
    [23]张中卫,陈瑞品.激光生物诱导育种及辐照参数控制的机理分析.合肥T业大豆学报(自然科学版),2007,30(4):512-514.
    [24]韩亚萍,草岩,陈炳.大豆激光诱变育种发展趋势研究.大豆科学,2008,27(3):532-535.
    [25]赵新乐,金丽虹,申炳俊,等.Nd:YAG倍频激光对大豆幼苗异黄酮的影响.中国激光,2009,36(10):2728-2733.
    [26]郭金华,尹若春,徐剑,等.激光预处理种子提高大豆幼苗抗冷害的机理探讨.激光技术,2003,27(6):506-509.
    [27]余碧玉,李余慰,封国林,等.激光与DNA作用系统非线性共振实验初探.激光技术,2000,9(1):30-31.
    [28]张建东.陈怡平,王勋陵,等.CO2激光处理对大豆种子萌发及生理的影响[J].西北植物学报,2004,24(2):221-225.
    [29]蔡素文,齐智,马小来,等He-Ne激光对玉米幼苗可溶性蛋白合成的影响.中国激光,2000,27(3):284-288.
    [30]张娟,韩榕.He-Ne激光和UV-B辐射对小麦幼苗核酸酶的影响.中国激光,2009,36(10):2619-2624.
    [31]潘天春,李成佐,单成海,等.激光辐照洋葱L1代的生理效应研究.激光生物学,2000,9(3):194-197.
    [32]Drozd D, Szajsner H. Influence of presowing laser radiation on spring wheat characters. International Agrophysics, 1999,13(1):79-85.
    [33]Drozd D, Szajsner H. Effect of laser radiation on spring wheat genotypes. International Agrophysics,1999,13(2): 197-202.
    [34]HAO Li zhen. Survey of study on biological stimulating effect of laser. Overseas Laser,1990, (9):5-7.
    [35]付道林,王兰岚.微束激光转基因技术研究进展.激光生物学报,1999,8(1):70-74.
    [36]郝丽珍,侯喜林,王萍,等.激光在农业领域应用研究进展.激光生物学报,2002,11(2):149-153.
    [37]万贤国.我国植物激光诱变育种的概况.激光生物学报,1996,5(3):865-869.
    [38]向洋.激光诱变及生物学作用机制研究.光电子激光,1994,5(2):88.
    [39]向洋,丁志宝.激光生物学作用机理探讨.光电子激光,1997,8(6):475-478.
    [40]邱宗波.激光对干早胁迫小麦幼苗的防护和修复效应及机理研究:[博士学位论文].兰州:西北大学,2008.
    [41]韩榕.He-Ne激光对小麦增强UV-B辐射损伤的修复效应及机理:[硕士学位论文].兰州:西北大学,2002.
    [42]王惠文.激光与生命科学(第一版).北京:北京理工大学出版社1995,148-149
    [43]Wolbarscht M L. Laser applications in medicine and biology. New York:Pleun Press,1977,90-93.
    [44]Liu P H, Liu G G. Mechanism of lase-bionlo-gy. Beijing:SeiencePress,1989,261-265.
    [45]Wang H W. Laser & liefseience. Beijin:Bei-jing Institute of Technology Press,1995,142-151
    [46]Xiang Y. Laser biology. Changsha:Hunan Science & Technology press,1995,73-79.
    [47]Liu C Y, Gao Y Q, Liu S H. Bio-inofrmation model of low-energy laser irradiation. Acta Laser Biology Siniea,1997, 6(2):1040-1046.
    [48]Liu H F, Liu C Y, Xing D, et al. Mechanism on low intensity laser therapy and its clinic application. Aeta Laser Biology Sinica,1998,7(2):81-86.
    [49]Liu C Y, Liu S H. Biophotonics on low in-tensity laser. Chin J Laser Med Sugr,1997,6(3):125-131.
    [50]Huang GM, Liu CY, Liu SH. On the relationship of laser dose and its biologieale f-fects. Aeta Laser Biology Siniea, 1998,7(2):90-92.
    [51]Wilden L, Karthe IN. ImPort of radiation phe-nomena of eleetrons and therapeutic low-level laser in regard to the mitochondrial energy transfer. J Clin Laser Med Sugr,1998,16(3):159-165.
    [52]Chichuk TV, Starashkevieh IA, Klebanov Gl. Free radical mechanisms of low-intensive lase rra-diation. Vestn Ross Akad Med Nauk,1999, (2):27-32.
    [53]Klebanov Gl, Teselkin YO, Babenkova IV, et al. Low-power laser irradiation induces leuko-cyte priming. Gen physiol Biophys,1998,17(4):365-376.
    [54]郭桂云,王友好,李玉滨He-Ne激光辐射番茄种了最适剂量的研究.中国激光,1990,17:189-192.
    [55]Li Yu-urn, et al. A Study on CO2 laser irradiation effct on vitality cucumber seeds. Acta User Biology Siniea,1997, 6(1):1001-1005.
    [56]Li Yu-urn, et al. Selection of the best dose of CO2 laser irradiation effet on watennelon seeds and the mathematics simulation. Acta Lser Biolology Sinica,1999,8(4):291-293.
    [57]Hao Li-zhen, et al. Mathematical simulation of the vigor index by laser CO2 irradiation on rape seeds. Acta Laser Biology Sinica,2000,9(3):161-164.
    [58]Zhang Jin-wen, et al. Mathematieal simulation of the vigor index by laser CO2 irradiation on asparagus seeds. Acta Laser Biology Sinica,2000,9(2):285-288.
    [59]张育薪,等.遗传,1988,10(6):181-183.
    [60]许梅芬.激光对小麦的生物学效应研究.应用激光,1995,15(3):131-134.
    [61]蔡素雯,苑春慧,崔小慧,等.He-Ne激光对玉米幼苗POD和CAT酶活性的影响.应用激光,1993,13:181-183.
    [62]胡能书,吴秀山.激光油菜的生物学特性及同工酶分析(2).应用激光,1982,2:119-121.
    [63]齐智,蔡素雯,王勋陵.He-Ne激光对玉米幼苗可溶性蛋白质谱代的影响.西北大学学报,2000,30:47-51.
    [64]胡能书,向洋.激光辐射对水稻的生理生化基础研究(2).应用激光,1982,(2):37-40.
    [65]许梅芬,王桂贞,罗廷礼.激光对小麦诱变效应的研究.应用激光,1989,9:177-179.
    [66]胡能书,等.应用激光.1985a,5(2):9-11.
    [67]万贤国,庞国良.阜灿“湘激80-82”选育兼激光育种.应用激光,1988,8:280-283.
    [68]刘福全.激光对玉米种子的辐射及诱变作用.沈阳农业大学学报,1987,18:45-51.
    [69]张隽清.安徽农学院学报,1988,(3):50
    [70]刘学华.激光诱变选育AC10菜用大青豆的研.激光生物学报,1997,6(2):1082-1084.
    [71]刘学华,应用激光,1985,5(2):43-45.
    [72]张玲琪,陈有为,周凌云,等.激光诱变遗传的共振激发及非线性作用机理分子.中国激光,1998,25(1):91-95.
    [73]封国林,曹永忠,邵耀椿.激光育种机理非线性研究.激光生物学报,1998,7(1):62-63.
    [74]李恩新,王佐臣.He-Ne激光与生物组织相互作用的信息传递机理研究.激光杂志,2004,25(5):82-84.
    [75]许林,张灿邦,温元斌,等.激光与生物膜相互作用热、电效应的微观机理分析.2008,17(6):716-719.
    [76]邵耀椿,封国林.激光与DNA作用系统的随机共振研究.红外与微米波学报,1996,15(6):450-455.
    [77]张灿邦,周凌云,刘枢晓.不同激光对纤维蛋白白原分了中C-C键作用的非线性振动分析.激光杂志,2004,25(4):91-92.
    [78]宋小义.He-Ne激光对DNA固体纤维诱变的拉曼光谱分析:[硕士学位论文].贵州:贵州大学,2008.
    [79]陈震古,等.安徽农学院学报,1989,4:258-62.
    [80]陈震古,等.安徽农学院学报,1985,1:80-84.
    [81]Matter.B.E. Mutation Res.,1971,12:417.
    [82]彭绍民,应用激光,1985b,5(2):37-39.
    [83]郝丽珍,李雨润.CO2激光对油菜生物学基础影响的研究.内蒙古农牧学院学报,1993,14(4):84-91.
    [84]郝丽珍,李雨润.CO2激光对石刁柏种子活力影响的研究.内蒙古农牧学院学报,1993,14(1):26-30.
    [85]李耀维,张素梅.He-Ne激光对白术种了萌发与幼苗生长的影响.应用激光,1996,16:37-41.
    [86]郭桂云,王友好,李玉滨.氦-氖激光辐射番茄种了最适剂量的研究.中国激光,1990,17:189-192.
    [87]蔡素雯,赵雪松,卢春涛,等.He-Ne激光对玉米幼苗活性氧代谢的影响.中国激光,1994,A21:767-772.
    [88]陈怡平,王勋陵.He-Ne激光预处理菘蓝种了的生化效应研究.激光技术,2003,27(6):544-546.
    [89]陈怡平,王勋陵.He-Ne激光顶处理对大青叶品质和产量的影响.中草药,2003,30(11):1054-1056.
    [90]Day T A, Howells B W, Ruhland C T. Changes in growth and pigment concentrations with leaf age in pea under modulated UV-B radiation field treatments. Plant Cell Enriron,1996,19(1):101-106.
    [91]林植芳,林桂珠,彭长连,等.亚热带植物叶片UV-B吸收化合物的积累.生态学报,1998,8(1):90-95.
    [92]崔洪斌.编著.大豆生物活性物质的开发与应用.北京,中国轻工业出版社,2001.
    [93]刘丽,金宏.大豆异黄酮抗氧化作用的研究进展.中华放射医学与防护杂志,2003,4:132-134.
    [94]Matti J, Tikkanen, Herman Adlercreutz. Dietary soy-derived isoflavone phytoestrogens. Biochemical Pharmacology, 2000,60:1.
    [95]董李平.大豆异黄酮代谢机理的研究:[硕士学位论文].武汉:西南农业大学,2003.
    [96]周玲,苏黎红,侯金玲.大豆异黄酮研究概况.时珍国医国药,2001,12(2):157-158.
    [97]Kudou S, Fleury Y, Welti D, et al. Malonyl isoflavones glycosides in soybean seeds (Glyeine max Merri). Agric Biol Chem,1991,55:2227-2233.
    [98]史宜明等.大豆异黄酮的提取与精致.中国油脂,2001,26(2):3-5.
    [99]Mituso M, et al. Antimutagcnic Activity of isoflavones from Soybean Seeds (Glycine max Merrill). J Agric Food Chem,1999,47(4):1346-1349.
    [100]赵晓峰,吴荣书.大豆异黄酮的保健功能及开发前景.粮油加工与食品机械,2004,(8):39-41.
    [101]井乐刚,张永忠.大豆异黄酮的物理化学性质.中国农学通报,2006,22(1):85-87.
    [102]朱仕房,等.大豆异黄酮提取条件的研究.食品科学,2001,22(3):54-57.
    [103]Coward L, et al. Gonistein, Daidzein and Thei β-glucoside Conjugates:Anfitumor isoflavones in soybean foods from American and asian diets. J Agric Food Chem,1993,41(11):1961-1967.
    [104]Wang H J, et al. Isoflavone content in commercial soybean foods. J Agric Food Chem,1994,42(8):1666-1673.
    [105]Ghosh P, el al. Improved method for gas chromatographic analysis of genistein and daidzein from soybean (Glycinc max) seeds. J Agric Food Chem,1999,47(9):3455-3456.
    [106]Brenda Winkel-Shirley, Flavonoid Biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol,2001,126:485-493.
    [107]李贺勤.野葛异黄酮类化合物生物合成新途径酶学证据的初步研究:[硕士学位论文].合肥:安徽农业大学,2008
    [108]Neff L. Quantitative determination of biochanin A in red clover samples by means of an isotope dilution method. J South African Vet Med Assoc.1957,39(1):73-75.
    [109]Graham T L. A rapid, high-resolution high performance liquid chromatography profiling procedure for plant and nicrobial aromatic secondary metabolites. Plant physiol,1991,95:584-593.
    [110]Koes R E, Francesca Q, Joseph N MM. The flavonoid biosynthetic pathway in plants:Function and evolution. Bio Essays,1994,16:123-132.
    [111]Kreuzaler F, Hahlbrock K. Enzymatic synthesis of aromatic compounds in higher plants. Formation of naringenin from pcoumaroyl coenzyme A and malonyl coenzyme A. FEBS Lett,1972,28:69-72.
    [112]Heller W, Hahlbrock K. Highly purified "flavanone synthase" from parsley catalyzes the formation of naringenin chalcone. Arch Biochem Biophys,1980,200:617-619.
    [113]Sutfeld R, Wiermann R. chalcone synthesis with enzyme extracts from tulip anther tapetum using a biphasic enzyme assay. Arch Biochem Biophys,1980,210:64-72.
    [114]谢灵玲,赵武玲,沈黎明.光照对大豆叶片苯丙氨酸裂解酶(PAL)基因表达及异黄酮合成的调节.植物学通报,2000,17(5):443-449.
    [115]Bilwell G P, Sap J, Cramer C L, et al. L-phenylalanine ammonia-lyase from phaseolus vulgaris:Partial degradation of enzyme subunits in vitro and in vivo. Biochimica et Biophysica Acts,1986,811-210
    [116]Natividad Chaves, J Carlos Eseudero, Carlos Gutierez-Merino. Role of Ecological Variables in the Seasonal Variation of Flavonoid Content of Cistus ladanifer Exudate. Annu Rev Phytopathol,1998,36:311-327.
    [117]李莉,赵越,马君兰.苯丙氨酸代谢途径关键酶:PAL、C4H、4CL研究新进展.生物信息学,2006,5(4):187-189
    [118]Fahrendorf T, Dixon R A. Stress responses in alfalfa (Medicago sativa L.) XVIII. Molecular cloning and expression of the elicitor-inducible cinnamic acid 4_hydroxylase cytochrome P450. Arch Biochem Biophys,1993,305:509-515.
    [119]Mizutani M, Ward E, Di Maio J, et al. Molecular cloning and sequencing of a cDNA encoding nung bean cytochrome P450 possessing cinnamate4 hydroxylase activity. Biochem Biophys Res Commun,1993,190:875-880.
    [120]Teutsch H G, Hasenfralz M P, Lesot A, et al. Isolation and sequence of a cDNA encodingthe Jerusalem artichoke cinnamate4-hydroxylase, a major plant cytochrome P450 involved in the general phenyl propanoid pathway. Proc. Natl. Acad Sci. USA,1993,90:119-126.
    [121]赵淑娟,刘涤,胡之璧.植物4-香豆酸:辅酶A连接酶.植物生理学通讯,2006,42(3):529-539.
    [122]范丙友,陆海,蒋湘宁.重组毛白杨4-香豆酸:辅酶A连接酶的酶学性质研究.北京林业大学学报,2007,29(5):62-66.
    [123]李双双,饶国栋,范内友,等.重组毛白杨4-香豆酸:辅酶A连接酶催化不同肉桂酸衍生物的酶促动力学研究.成都大学学报(自然科学版),2009,28(1):14
    [124]从斌,杨茂成,粟波,等.小麦根尖细胞分化过程中木质素合成及其相关酶的活性变化.复旦学报(自然科学版),1997.36(5):550-555.
    [1251 Feinbaum R L, Ausubel F M. Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Molecular and Cellular Biology,1988,8:1985-1992.
    [126]Feinbaum R L, Storz G, Ausubel F M. High intensity and blue light regulated expression of chimeric chalcone synthase genes in transgenic Arabidopsis thaliana plants. Molecular and General Genetics,1991,226:449-456.
    [127]Kubasek W L, Shirley B W, Mc Killop A, et al. Regulation of flavonoid biosynthetic genes in germinating Arabidopsis seedlings. Phant Cell,1992,4:1229-1236.
    [1281 Burbulis I E, Winkel-Shirley B. Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway. Proc Natl Acad Sci USA,1999,96(22):12929-12934.
    [1291Gensheimer M, Mushegian A. Chalcone isomerase family and fold:No longer unique to plants. Protein Sci,2004, 13(2):540-544.
    [130]李琳玲,程华,许峰,等.植物查尔酮异构酶研究进展.生物技术通讯,2008,19(6):935-937.
    [131]周发俊,王逸群,陈由强.植物查尔酮异构酶分子生物学研究进展.河北科技师范学院学报,2008,22(1):73-77.
    [132]陈年来,朱振家,安翠香,等.诱抗处理对甜瓜叶片防卫酶活性的影响.西北植物学报,2008,28(7):1354-1358.
    [133]孙君明,韩粉霞.植物次生代谢产物异黄酮的调控机理.西北农业学报,2005,18(5):663-667.
    [134]马君兰.李成,魏颖,等.异黄酮的生物合成途径及其调控.东北农业大学学报,2007,38(5):692-696.
    [135]吕显刚.大豆异黄酮组合物的制备及其生物合成的初步研究:[硕士学位论文].沈阳:沈阳药科大学,2004
    [136]Setchell K. D. R, Cassidy A. Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. J Nutr,2001,131(suppl 4):1362S-1375S.
    [137]Nagata C, Takatsuka N, Kawakami N, et al. Soy product intake and hot flashes in Japanese women:results from a community-based prospective study. Am J Epidemiol,2001,15,153(8):790-793.
    [138]殷丽君,李里特,李再贵.大豆异黄酮的研究近况与展望.食品科学,2002,23(4):152-154.
    [139]Lee HP, Gourley L, Duffy SW, et al. Dietary effects on breast cancer risk in Singapore. Lancet,1996,14(3):235.
    [140]Severson RK, Nomura AMY, Grove JS, et al. A prosperctive study of demographics in Hawaii. Cancer Res,1989,49: 1857.
    [141]Nagai M, Hashimoto T, Yanagava H, et al. Relationship of diet to the incidence of esophageal and stomach cancer in Japan. Nutr Cancer,1982,3:257.
    [142]Steele VE, et al,. Nutr,1995,125:713s-716s.
    [143]Constaninou AI, et al,. Anticancer Res,1996,16(6A):3293-3298.
    [144]刘贺荣,李国莉,刘秀英,等.大豆异黄酮对小鼠抗氧化酶活性的影响.宁夏医学院学报,2005,27(3):196-198.
    [145]Teruki-Oki, et al,. FEBS Lett,2004, (577):55-59.
    [146]汤容,樊瑞霞.大豆异黄酮抗癌作用进展.中国药学杂志,1999,34(7):435-538
    [147]Coword, L. et al,. Agric. Food Chem.1993,41:196-197.
    [148]白白凤梅,蔡同一.类黄酮生物活性及其机理的研究进展.食品科学,1999,11:12.
    [149]阎祥华,顾景范,孙存普.大豆异黄酮的抗癌作用机制研究进展.生理科学进展,1997,28(4):362-364.
    [150]Ravindranath MH, Muthugounder S, Presser N, et al,. Anticancer therapeutic potential of soy isoflavone, genistein. Adv Exp Med Biol,2004,546:121-165.
    [151]Record IR, Dreosti IE Mclnermey LK. The antioxidant activity of genistein in vitro. J Nutr Biochem,1995,6:481.
    [152]Wei HC, Bowen R, Cai Q, et al. Antioxidant and antipromotional effects of the soybean isoglavone genistein. Proc Soc Exp Biol Med,1995,208(1):124.
    [153]Hodgson JM, Croft KD, Puddey IB, et al. Soybean isoflavonoids and their metabolic products inhibit in vitro lipoprotein oxidation in serum. J Nutr Biocherm,1996,7:664.
    [154]黄毓礼,林华,杨州,等翻译.食品添加剂最新发展.北京,化学工业部科学技术情报研究所出版,1986,10-12.
    [155]陈新谦.近十年来抗衰老药地研究进展.中国药学杂志,1995,30(9):515.
    [156]张海德,张小华.酱油中的生理活性物质.食品科学,1999,20(1):7.
    [157]路新强,张福,胡燕,等.异黄酮衍生物对心肌缺血损伤的保护作用.军事医学科学院院刊,1997,21(4):251-253.
    [158]马兰英,陈伟.中药抗氧化剂丹参的研究和应用前景.中草药,1999,30(5):391.
    [159]Kanazawa T, et al. J.Nutr,1995,123:639s.
    [160]Forsythe WA, Soy Protein. Thyroid Regulation and cholesterol Metabolism. J Nutr,1995,125(3):619-623
    [161]王义和,王升,何瑞荣.植物雌激素三羟基异黄酮抑制麻醉大鼠颈动脉窦压力感受器反射.生理学报,2002,54(4):354-358.
    [162]陈友梅.中药化学.济南,山东科学技术出版社,1988:162.
    [163]Mary S, er al.. J.Nutr,1995,125:639s
    [164]Yan CH, Han R. Effect of cell skeleton-connected protein tyrosine phosphorylation in differentiation of murine melanoma cells. Science Bull,1998,43:1842.
    [165]郑高利.大豆异黄酮的药理作用Ⅱ.中国现代应用药学,1998,15(3):8-9.
    [166]杨镇洲.大豆异黄酮的抗癌效应研究进展.国外医学肿瘤学分册,2001,28(2):107-110.
    [167]张玉梅.大豆异黄酮的生物利用度.国外医学卫生分册,2001,28(2):104-106.
    [168]L'homme R, Brouwers E, Al-Maharik N, et al. Time-resolved fluoroimmunoassay of plasma and urine o-desmethylangolensin. Journal of Steroid Biochemistry & Molecular Biology,2002,81:353-361.
    [169]Bowey E, Adlercreutz H, Rowland I. Metabolism of isoflavones and lignans by the gutmicroflora:a study in germ-free and human flora associated rats. Food and Chemical Toxicology,2003,41(5):631-636.
    [170]Xu X, Wang HJ, Murphy PA, et al. Daidzein is a more bioacailable soymilk isoflavone than genitein in adule women. Nuri.,1994,124(6):825-832.
    [171]李丽.大豆异黄酮毒性作用研究进展.国外医学卫生学分册,2005,32(6):338-342.
    [172]Asada K. Ascorbate peroxidase a hydrogen peroxide-scavenging enzyme in plants. Physio Plant,1992,85:235-241.
    [173]Kurepa J, Herouart D, Montagu MV, et al. Differential expression of Cu/Zn and Fe-superoxide dismutase genes of tobacco during development, oxidative stress and hormonal treatments. Plant Cell Physiol,1997,38:463-470.
    [174]Mittler R. Oxidative stress. antioxidants and stress tolerance. Review Trends in plant science,2002,7(9):405-410.
    [175]王建华,刘鸿先,徐同.超氧化物歧化酶(SOD)在植物逆境和衰老生理中的作用.植物生理学通讯,1989(1):1-7.
    [176]Horvath Eszter, Janda Tibor, Szalai Gabriella, et al. In vitro salicylic acid inhibition of catalase activity in maize: differences between the isozymes and a possible role in the induction of chilling tolerance. Plant Science,2002, 163:1129-1135.
    [177]岳晓翔.不同表型盐地大蓬叶片抗氧化系统的研究:[硕士学位论文].济南:山东师范大学,2008.
    [178]陆长梅,芮云,张卫明,等.蒲公英植株中抗氧化成分的测定和分析.中国野生植物资源,2000,20(3):18-19
    [179]Zu Y Q, Li Y, Chen H Y. Intraspecific differences in physiological responses of 20 soybean cultivars to enhanced ultraviolet-B radiation under field conditions. Environ Experi Bot,2003,50(1):87-97.
    [180]杨庆凯.论大豆蛋白质与油份含量品质的变化及影响的因素.大豆科学,2000,19(4):386-391.
    [181]杨雪峰,齐宁,林红,等.不同类型大豆蛋白白质、脂肪含量与异黄酮含量的相关性研究.大豆科学,2007,25(5):705-708.
    [182]岳爱琴,杜维俊,赵晋忠,等.不同大豆品种品质分析.华北农学报,2005,20(2):30-32.
    [183]李力文.吃大豆食品——21世纪的时尚.健康,2000,(3):122.
    [184]骆清铭,刘贤德,李再光.低功率激光治疗作用机理的探讨.中国激光医学杂志,1944,3(1):39-40.
    [185]徐锦海.扁豆子叶对其幼苗形成的生理效应研究.西江大学学报,1997,(3,4):53-54.
    [186]张建东,陈怡平,张晋豫,等.CO2激光对玉米种子萌发及幼苗生长发育的影响.激光技术,2004,28(5):494-497.
    [187]王小花,刘海峰,韩榕.He-Ne激光和UV-B辐射对小麦幼苗蛋白质代谢的影响.西北植物学报,2008,28(1):103-108.
    [188]蛋白白质测定的国际规定方法[GB/T 5009.5-1985].
    [189]周新安,盖钧镒,马育华.大豆种子贮存蛋白组成及其相关分析.大豆科学,1992,11(3):191-197.
    [190]赵亚华.生物化学实验技术教程.广东:华南理工大学出版社,2000.
    [191]陈学玲.大豆11S、7S球蛋白的功能特性及其与淀粉相互作用研究:[硕士学位论文].武汉:华中农业大学,2005.
    [192]刘顺湖,周瑞宝,盖钧镒.大豆蛋白质11S和7S组分及亚基分析方法的研究述评.河南工业大学学报(自然科学版),2007,28(4):1-6.
    [193]苗兴芬,朱命喜,徐文平.大豆脂肪酸组分的快速气相色谱分析.大豆科学,2009,29(2):358-340.
    [194]张颖君,高慧敏,蒋春志.大豆种子脂肪酸含量的快速测定.大豆科学,2008,27(5):859-862.
    [195]金益,吕龙石.生物统计与田间试验.哈尔滨:哈尔滨工业大学出版社,1998,184-200.
    [196]张文明,郑文寅,任冲,等.电导法测定大豆种子活力的初步研究.种子,2003,128(2):34-37.
    [197]陈福明,陈顺佛.混合液法测定叶绿素含量的研究.浙江林业科技,1984,3
    [198]Wu Y Y, Wu X M, Li P P. Comparison of photosynthetic activity of Orychophragmus violaceus and oilseed rape. Photosynthetic,2005,43(2):299-302.
    [199]吴沿友,吴德勇,张红萍,等.大豆子叶中的碳酸酐酶活性和光合特性研究.河南农业科学,2007,2:43-45.
    [200]李琳,焦新之.应用蛋白染色剂考马斯亮蓝G-250测定蛋白质的方法.植物生理学通讯,1980,6:52-55.
    [201]王学奎.植物生理生化实验原理和技术.北京:高等教育出版社,2006,202-204.
    [202]韩雅珊.食品化学实验指导.北京:中国农业大学,1996
    [203]李先佳,宋清焕,任丽平.紫外辐射对大豆异黄酮含量变化的影响.大豆科学,2009,28(2):357-359.
    [204]何向远,尚杰,滕世云.盐胁迫下龙爪稷愈伤组织内脯氨酸和丙酮酸含量变化的关系.山东大学学报(自然科学版),1996,31(2):237-239.
    [205]刘亚光,李海英.大豆品种的抗病性与叶片内苯丙氨酸解氨酶活性关系的研究.大豆科学,2002,21(3):195-198.
    [206]宛国伟.诱导了对丹参酚酸类化合物含量及合成酶的影响,[硕士学位论文].兰州:西北农林科技大学.2008,14-22.
    [207]李金花.杨树4CL基因调控木质素生物合成的研究.[硕士学位论文].北京:中国林业科学研究院.2005,54-56.
    [208]范丙友,赵艳玲,陆海,等.应用液相色谱仪测定烟草4CL酶活性.河南科技大学学报(自然科学版),2007,28(5):57-59.
    [209]曹磊.稀土元素对怀槐培养细胞异黄酮合成及氧化还原态的影响.[硕士学位论文].合肥:合肥工业大学.2007,16.
    [210]Foyer CH, Noetor G. Oxygen proeessing in photosynthesis:regulation and signaling. New Phytol,2000,146: 359-388.
    [211]朱新军,钱增强,王勋陵,等.He-Ne激光处理不同时期蚕豆幼苗对抗氧化系统的影响.激光生物学报,2006,15(6):554-558
    [212]王学奎.植物生理生化实验原理和技术.北京:高等教育出版社,2006,172-173,169-170.
    [213]刘云.食品、生物样品和药物中抗坏血酸的检测.化学试剂,1994,16(5):282-288.
    [214]夏静,刘琼霞.双光束剩余染料差减比色法测定蔬菜中的抗坏血酸含量.安徽农业科学,1997,25(4):371-372.
    [215]郭黎平,刘国良,张卓勇,等.荧光光度法测定大豆提取液中还原型谷胱甘肽.东北师大自然科学版,2001,33(1):34-38.
    [216]Hendry GA F, Price A H. Stress indicatiors:chlorophylls and carotenoies. Hendry G A F. and Grime J P.(Eds) Methods in comparative plant ecology,1993,148-152.
    [217]刘山莉,朱祥春.大豆叶组织游离脯氨酸含量的测定.农业与技术,1997,(4):36-38.
    [218]徐贵森,刘合年,杨淑霞,等.缺血再灌注脊髓丙二醛含量和超氧化物岐化酶活性的变化.西南军医,2006,8(2):10-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700