大豆的杂种优势和杂种产量的数量遗传学解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
借鉴玉米、高粱和水稻等作物上的成功经验,利用杂种优势是实现大豆产量突破的重要途径。随着大豆“三系”的配套和杂交种的选育成功,大豆杂种优势的研究愈来愈受到关注。但是要使杂交种真正应用于生产,仍然有许多问题需要研究和探索,大豆杂种优势相关的遗传基础研究必须引起高度重视。
     本研究选用来源于我国黄淮地区和美国的熟期组Ⅱ~Ⅳ的8个大豆亲本品种,2002-2004年每年按Griffing方法Ⅳ配制28个双列杂交组合,2003-2005年连续3年进行田间农艺性状鉴定和室内品质检测。选用300个SSR标记,对8个大豆亲本品种进行全基因组扫描。本研究分析了该组大豆亲本间杂种主要农艺与品质性状的表现和杂种优势、产量性状的亲本配合力、遗传距离与杂种优势的相关性;应用基于数量性状主基因+多基因遗传模型的主-微位点组分析方法,解析了杂种产量的主、微位点组遗传构成及其效应;并应用基于回归的单标记分析方法,检测与大豆产量相关的SSR标记位点,剖析杂交组合的等位变异构成。为深入理解杂种优势的遗传构成和大豆杂种产量的聚合育种提供依据。主要研究结果如下:
     1黄淮大豆亲本间主要农艺与品质性状的杂种优势
     黄淮地区8个大豆亲本间普遍存在中亲优势,产量、单株荚数和单株粒数相对较大,百粒重无优势。生育期及品质性状(蛋白质和脂肪含量)不明显。大豆亲本间存在产量超亲优势,超亲优势率平均20.39%,组合间差异甚大,变幅-5.34%~76.88%,优选出4个高产高优势组合,即豫豆22×晋豆27、淮豆4号×晋豆27、诱变30×蒙90-24和菏豆12×晋豆27,超亲优势率分别为76.88%、29.90%、34.42%和43.16%,超标率均在19%以上。
     2黄淮大豆主要产量性状的亲本配合力分析
     8个大豆亲本间产量的一般配合力和特殊配合力存在显著差异,且与年份存在显著互作,一般配合力与年份互作大于特殊配合力与年份互作,由加性和非加性基因共同决定。3个亲本即晋豆27、诱变30和淮豆4号表现出较好的一般配合力效应。2个组合即豫豆22×晋豆27和诱变30×蒙90-24表现出较好的特殊配合力效应。
     大豆亲本间产量杂种优势既与双亲一般配合力之和及特殊配合力有关,又不完全相关。高优势高产组合的亲本产量配合力特点为亲本之一具有较高的一般配合力,或双亲具有较高的一般配合力之和,兼有较高的特殊配合力。单株荚数和单株粒数的情况与产量一致。
     3黄淮大豆亲本间遗传距离与杂种优势的相关性分析
     8个大豆亲本品种间的分子标记遗传距离为0.4367~0.8635,平均0.6877;系谱遗传距离为0.3124~1.0000,平均0.7679。按亲本系数聚类和按SSR标记遗传相似系数聚类揭示的8个大豆亲本间的遗传关系相对一致,均分为两组,一组包含6个黄淮中、南部品种,另一组包含1个山西和1个美国品种。大豆亲本间遗传距离与产量中亲优势之间的相关程度中等,尤其是分子标记遗传距离与中亲优势之间的相关系数为0.5209,达极显著水平。
     要获得高优势高产大豆杂交组合,亲本间必须具有一定的遗传距离,但遗传距离大的并不一定都高产高优势,还有其他因素决定杂种优势,其中生态适应性十分关键。
     4黄淮大豆杂种产量的主-微位点组遗传解析
     8个大豆亲本间产量由6个主位点组加微位点组构成,主位点组、微位点组分别解释表型变异的75.98%和10.81%,广义遗传率为86.79%。主位点组加性效应(aJ)分别为140.10、259.65、1.95、151.35、-32.70和45.00(kg hm-2),显性效应(dJ)分别为177.15、314.25、105.75、75.90、242.85和171.00(kg hm-2).
     8个大豆亲本间杂种产量的遗传构成包括主位点组杂合显性效应、主位点组纯合加性效应、微位点组杂合显性效应和微位点组纯合加性效应4部分,相对重要性依次递减,以显性效应为主,加性效应为辅。大豆产量主、微位点组及其遗传效应的解析阐释了各杂交组合的遗传特点,还提供了进一步挖掘大豆遗传潜力进行产量优势改良的基础。
     5黄淮大豆杂种产量相关的SSR位点及等位变异剖析
     在300个SSR标记中,检测有38个与杂种产量显著相关的标记基因位点,分布于17个连锁群上,其中D1a和M等连锁群上较多,有8个位于连锁定位的QTL区段内(±5cM)。单个位点分别解释杂种产量表型变异的11.95%~30.20%。
     8个大豆亲本间杂种产量的位点构成包括有增效显性杂合位点、增效加性纯合位点、减效加性纯合位点和减效显性杂合位点4部分,其相对重要性依次递减。以杂合位点为主,纯合位点为辅。从38个显著相关的SSR标记位点中,遴选出Satt449.Satt233和Satt631等9个优异标记基因位点,Satt449-A311、Satt233-A217和Satt631-A152等9个优异等位变异,以及Satt449-A291/311、Satt233-A202/207和Satt631-A152/180等9个优异杂合基因型位点。这些结果为理解杂种优势的遗传构成和大豆杂种产量的聚合育种提供了依据。
     6黄淮大豆优良杂交组合产量的数量遗传学解析
     4个大豆优良杂交组合产量的位点效应构成中,杂合位点占主导地位,且显性效应相对较大;纯合位点占次要地位,且加性效应相对较小。不同的优良组合具有不同优异杂合位点。一个优良的杂种应该具备杂合和纯合位点两方面的优势,聚合更多的杂合位点,实现优良位点基因型值的最大化。
The exploitation of heterosis was one of few milestones in the revolution of agricultural sciences and technologies leading to big jump in crop improvement in 20th century. Utilization of heterosis is one of the most effective ways to increase yield and improve quality in several major crops, including maize, sorghum and rice. In order to apply heterosis more efficiently, scientists have made every effort for a long time to probe into the genetic basis and the method of prediction for heterosis. The development of molecular markers and its application in biological researches had provided technological base for dissecting heterosis in crops.
     Soybean [Glycine max (L.) Merr.] is the leading oilseed crop produced in the world, and one of the most important sources of vegetable protein and edible oil worldwide, however the yield is relatively low compared to other important field crops such as maize, rice etc. The use of hybrid could not only increase the yield but also accelerate the genetic gain per year. Soybean breeders keep trying to find ways to use heterosis. Even through the first hybrid "HybSoyl" was released in 2002, its commercialization has not been achieved in large scale yet. In recent years, breeding for hybrid cultivars of soybean for utilization of heterosis has been paid great attention, but there are few reports published on the fundamental aspects regarding the heterosis in soybean. In fact, for a real utilization of hybrid soybean, the important prerequisite is high heterosis. Therefore, a fundamental effort in hybrid breeding is the choice of parents and identification of superior hybridized combinations.
     In this study,8 summer soybean cultivars (lines) from different origins from Huang-Huai Valley of China and US in maturity groupⅡ-Ⅳ, were used to develop 28 crosses according to a GriffingⅣmating design in 3 years (2002-2004). These crosses, together with their parents, were used to test for yield and quality traits in 3 years (2003-2005) in Huaian, Jiangsu, China. The genotyping data of 300 SSR polymorphic markers on 8 accessions were obtained. The present study was aimed at evaluating the heterosis performed in F1 generation of 14 yield and quality traits as to provide guidelines of parental selection in breeding for hybrid cultivars. In the paper, combining ability of yield-related traits was analyzed, and relationships between F1 yield heterosis and its pedigree-based and SSR-based genetic distances were investigated. Furthermore, the analysis of major-minor locus groups of yield based on major gene plus polygene mixed inheritance model was used to explore the genetic structure of hybrids among a group of soybean materials, additive and dominance effects of major-minor locus groups were estimated. Finally, the molecular data of 300 SSR markers on 8 parental materials were analyzed for association between SSR markers and hybrid yield using the single marker regression analysis. The hybrids were dissected into their allele constitution and the effects of alleles and genotypic value of each locus was estimated. The main objectives of this study were to understand the genetic basis of heterosis and lay a foundation for hybrid soybean breeding by design. The main results were as follows:
     1 Study on heterosis of agronomic and quality traits in hybrid soybean in Huang-Huai Valley
     There appeared mid-parent heterosis among 8 soybean parents. Heterosis of yield, pods and seeds per plant was relatively larger, while no obvious heterosis for 100-seed-weight, and no obvious heterosis in days to flowering and maturity and quality (protein and oil contents) traits. There were heterobeltiosis in yield among 8 soybean parents with average of 20.39%, and a big difference among hybridized combinations with a range from-5.34% to 76.88%. Among the combinations, Yudou 22 X Jindou 27, Huaidou 4 X Jindou 27, Youbian 30 X Meng 90-24 and Hedou 12 X Jindou 27 had the heterobeltiosis in yield of 76.88%,29.90%,34.42% and 43.16%, respectively.
     2 Analysis on combining ability of yield-related traits among key parental materials in soybean in Huang-Huai Valley
     There were significant differences among the parents for general combining ability (GCA) and crosses for specific combining ability (SCA) for yield-related traits studied. The GCA variance was significant, and larger than SCA variance, which indicated that yield traits were controlled by additive and non-additive gene effects. The interaction of year by GCA and SCA was significant, and the interaction of year by GCA was larger than the interaction of year by SCA. Among the parents, Jindou 27, Youbian 30 and Huaidou 4 were the best general combiners for yield. The best specific crosses for yield were Yudou 22 X Jindou 27 and Youbian 30×Meng 90-24. Yield heterosis among parents was related to GCA and SCA. One of soybean parents has high GCA or both have high GCA and high SCA in high-yield crosses. Combining ability of pods and seeds per plant was relatively in accord with combining ability for yield.
     3 Relationship between parental genetic distance measured by SSR markers and pedigree with heterosis in soybean in Huang-Huai Valley
     Genetic distance among 8 soybean cultivars measured by SSR markers varied from 0.4376 to 0.8635 with the mean of 0.6877 and from 0.3124 to 1.0000 with the mean of 0.7679 based on the pedigree. SSR-based and pedigree-based cluster analysis revealed that genetic relationships for 8 soybean parents were basically consistent, and 8 soybean parents were grouped into 2 groups, one including 6 cultivars from middle and south of Huang-Huai Valley, the other consisting of one from Shanxi and one from America.The correlation between the genetic distance and mid-parent heterosis was moderate, especially, the correlative coefficient was 0.5209 which was significant at 0.01 level between mid-parent heterosis and the genetic distance measured by SSR between parents. Therefore, certain genetic distance is required for a cross with high heterosis and high yield, but genetic distance is not an only determinant factor for high heterosis and yield.
     4 Genetic analysis in terms of major-minor locus group constitutions of yield of hybrid soybean in Huang-Huai Valley
     There were 6 major locus groups plus minor locus groups detected in the genetic system of the 8 soybean parents and their hybrids. Genetic variation of the major locus groups and the minor locus groups explained 75.98% and 10.81% of the phenotypic yield variation, respectively, which indicated that major locus groups were the major source of genetic variation, with their additive effects (aJ) of 140.10,259.65,1.95,151.35,-32.70 and 45.00 (kg hm-2) and dominance effects (dJ) of 177.15,314.25,105.75,75.90,242.85 and 171.00 (kg hm-2), respectively, while the minor locus groups were a supplement source among the soybean hybrid. The genetic constitutions of the soybean hybrids were composed of heterozygous dominance effects of major locus groups, homozygous additive effects of major locus groups, heterozygous dominance effects of minor locus groups and homozygous additive effects of minor locus groups, with their relative importance in a descending order. The dissection of the relative importance of the genetic effects of major-minor locus groups helps to explain the genetic characteristics of the hybrid among the parents and provides the genetic basis for further mining the genetic potential of the soybean parental materials in the improvement of hybrid.
     5 Analysis of SSR loci and alleles associated with hybrid yield in soybean in Huang-Huai Valley
     38 SSR loci located on 17 linkage groups were identified to associate with hybrid yield in the diallel crosses with more loci on linkage groups D1a, M, etc, and 8 of the 38 loci were located within a region of±5 cM apart from known QTL identified from family-based linkage (FBL) mapping in the literature. Each of the loci explained 11.95%~30.20% of the phenotypic variance of hybrid yield. The allele pairs of the hybrids were composed of 4 parts, i.e. positive dominant heterozygous loci, positive additive homozygous loci, negative additive homozygous loci and dominant heterozygous loci, with their relative importance in a descending order. Among the 38 loci associated with hybrid yield, nine elite loci such as Satt449, Satt233 and Satt631 and nine elite alleles such as Satt449-A311, Satt233-A217 and Satt631-A152 were identified. Meanwhile, nine heterozygous allele pairs such as Satt449-A291/311, Satt233-A202/207 and Satt631-A152/180 were detected. These results will provide with some relevant information for understanding the genetic basis of heterosis and lay a foundation for hybrid soybean breeding by design.
     6 Quantitative genetic dissection of yield of elite crosses in soybean in Huang-Huai Valley
     Among genetic composition of hybrid yield in the 4 elite soybean crosses, heterozygous loci played a leading role, and the dominance effects were relatively larger; homozygous loci located in a secondary position, and the additive effects were relatively smaller. Different elite crosses had different elite heterozygous loci. A superior hybrid should take advantages of both heterozygous and homozygous loci, pyramiding more heterozygous loci to maximize the genotypic value of elite loci.
引文
1 白羊年,陈健,喻德跃,等.大豆雄性不育系和大豆资源有关开花授粉性状的研究[J].大豆科学,2002,21(1):18-24
    2 白羊年,盖钧镒.大豆质核互作雄性不育系NJCMS2A的选育及其雄性育性恢复的研究[J].中国农业科学,2003,36(7):740-745
    3 鲍文奎.机会与风险—40年育种研究的思考[J].植物杂志,1990,17(4):4-5
    4 程宁辉,高燕萍,杨金水,等.水稻杂种一代与亲本幼苗基因表达差异的分析[J].植物学报,1997,39(4):379-38
    5 程宁辉,杨金水,高燕萍,等.玉米杂种一代与亲本基因表达差异的初步研究[J].科学通报,1996,41(5):451-454
    6 丁德荣,盖钧镒,崔章林,等.大豆质核互作雄性不育系NJCMS1A的选育与验证[J].科学通报,1998,43(17):191-192
    7 东北农学院农学系大豆课题组.大豆杂交种第一代优势的研究[J].遗传学报,1977,4(3):228-232
    8 盖钧镒.美国大豆育种的进展和动向[J].大豆科学,1983,2(4):327-341
    9 盖钧镒.我国大豆遗传改良和种质研究.见徐匡迪主编:中国科学技术前沿(第5卷)[M],中国工程院版.北京:高等教育出版社,2002:667-684
    10 盖钧镒.作物育种学各论(第二版)[M].北京:中国农业出版社,2006:223-266
    11 盖钧镒,丁德荣,崔章林,等.大豆质核互作雄性不育系NJCMS1A的选育及其特性研究[J].中国农业科学,1999,32(5):23-27
    12 盖钧镒,管荣展,王建康.植物数量性状QTL体系检测的遗传试验方法[J].世界科技研究与发展,1999,21(1):34-40
    13 盖钧镒,马育华,胡蕴珠.中美大豆品种间F1和F3杂种优势与配合力分析[J].大豆科学,1984,3(3):183-191
    14 盖钧镒,章元明,王建康.植物数量性状遗传体系[M].北京:科学出版社,2003:8-25
    15 管荣展.双列杂交设计在杂种组合优势改良和亲本间位点组检测中的应用[D].南京:南京农业大学,1997
    16 管荣展,盖钧镒.用双列杂交设计检测一组亲本间QTL的加性-显性遗传模型[J].生物数学学报,2001,16(5):545-552
    17 郭平仲,张金栋,甘为牛,等.距离分析方法与杂种优势[J].遗传学报,1989,16(2):97-104
    18 何光华,侯磊,李德谋,等.利用分子标记预测杂交水稻产量及其构成因素[J].遗传学报,2002,29(5):438-444
    19 何光华,袁祚廉,郑家奎,等.水稻籽粒蛋白质、游离氨基酸含量的配合力与杂种优势分析[J].作物学报,1996,22(2):192-196
    20 贺建波,管荣展,盖钧镒.双列杂交设计的主-微位点组遗传分析方法研究[J].作物学报,2010(已接受)
    21 胡建广,杨金水,陈金婷.作物杂种优势的遗传学基础[J].遗传,1999,21(2):47-50
    22 黄承运,满为群,陈怡,等.东北大豆种质的拓宽与改良Ⅰ.品种间杂交F1代杂种优势与配合力分析[J].大豆科学,1993,12(3):190-196
    23 金冬雁,黎孟枫译.分子克隆实验指南[M].第二版.北京:科学出版社,1996
    24 孔繁玲.植物数量遗传学[M].北京:中国农业大学出版社,2006:271-424
    25 李磊,杨庆芳,胡亚敏,等.栽培大豆双亲基因互作型不育材料的发现及其遗传推断[J].安徽农业科学,1995,23(4):304-306
    26 李良壁,张正东,谭克辉.植物叶绿体互补作用的研究Ⅰ.杂交双亲叶绿体的互补作用[J].遗传学报,1978,5(3):196-203
    27 李明顺,张世煌,李新海,等.根据产量特殊配合力分析玉米自交系杂种优势群[J].中国农业科学,2002,5(6):600-605
    28 李卫华,曹连莆,艾尼瓦尔,等.不同蛋白质含量小麦品种籽粒蛋白质及其组分含量的配合力和杂种优势研究[J].作物学报,2001,27(6):1007-1012
    29 廖伏明,周坤炉,盛孝邦,等.籼型三系杂交水稻主要农艺性状配合研究[J].作物学报,1999,25(5):622-631
    30 廖佩言.水稻主要性状配合力的分析[J].遗传,1980,2(5):22-24
    31 刘春光,吴郁文,侯宁,等.小麦族内的核质互作研究进展[J].麦类作物学报,2000,20(2):73-77
    32 刘显华.大豆杂种第二代种子蛋白质、脂肪及其组份的配合力与遗传力分析[J].作物学报,1988,14(4):304-309
    33 龙漫远.玉米遗传距离测量方法及其与产量的杂种优势和特殊配合力的关系[J].作物学报,1987,13(3):193-200
    34 卢瑶,凌英华,杨正林,等.用二组法和三组法预测杂交稻米直链淀粉和蛋白质含量[J].农业生物技术学报,2008a,16(2):309-314
    35 卢瑶,杨正林,赵芳明,等.分子标记增效座位在不同生长环境下预测籼型杂交稻籽粒外观性状的效应[J].分子植物育种,2008b,6(1):41-48
    36 罗小金.江西东乡野生稻与栽培稻杂种优势位点分析及增产QTL精细定位[D].北京:中国农业大学,2006:13-26
    37 马朝芝,刘后利.甘蓝型优质油菜新品系的配合力分析[J].华中农业大学学报,1994,13(6):553-559
    38 马育华.植物育种的数量遗传学基础[M].南京:江苏科学技术出版社,1982:376-426
    39 马育华,盖钧镒,胡蕴珠.大豆杂种世代的遗传变异研究Ⅰ.杂种优势及其自交衰退[J].中国农业科学,1983,9(5):1-6
    40 马育华,盖钧镒,胡蕴珠.大豆杂种世代的遗传变异研究Ⅱ.配合力及有关遗传参数[J].作物学报,1983,9(4):249-258
    41 倪先林,张涛,蒋开锋,等.杂交稻特殊配合力与杂种优势、亲本间遗传距离的相关性[J].遗传,2009,31(8):849-854
    42 彭玉华,杨国保,袁建中,等.一个对播种期反应敏感的不育大豆特征分析[J].作物学报,1998,24(6):1010-1013
    43 戚存扣,盖钧镒.不同遗传来源甘蓝型油菜开花期的基因型差异和遗传效应分析[J].作物学报,2002,28(4):455-460
    44 戚存扣,浦惠明,张洁夫,等.油菜千粒重性状主位点组遗传分析[J].江苏农业学报,2005,21(1):1-5
    45 沈金雄,傅廷栋,杨光圣.甘蓝型油菜SSR、ISSR标记的遗传多样性及其与杂种表现的关系[J].中国农业科学,2004,37(4):477-483
    46 宋启建,盖钧镒,马育华.大豆品种蛋白质、油分含量在杂种后代的优势表现及分离变异[J].作物学报,1994,20(5):542-547
    47 孙寰,赵丽梅,黄梅.大豆质-核互作不育系研究[J].科学通报,1993,38(16):1535
    48 孙寰,赵丽梅,王曙明,等.大豆杂种优势利用研究进展[J].中国油料作物学报,2003,25(1):92-96
    49 王曙明,孙寰,王跃强,等.大豆杂种优势及其高优势组合选配的研究Ⅰ.F1代籽粒产量的杂种优势与高优势组合选配[J].大豆科学,2002,21(3):161-167
    50 武耀廷,张天真,朱协飞,等.陆地棉遗传距离与F1、F2杂种产量及杂种优势的相关分析[J].中国农业科学,2002,35(1):22-28
    51 熊冬金,赵团结,盖钧镒.1923-2005年中国大豆育成品种种质的地理来源及其遗传贡献[J].作物学报,2008,34(2):175-183
    52 徐新福,唐章林,李加纳,等.基于加性-显性效应的杂种表现分子标记预测模型[J].中国农业科学,2008,41(10):2963-2972
    53 许占友,李磊,邱丽娟,等.大豆三系的选育及恢复基因的SSR初步定位研究[J].中国农业科学,1999,32(2):32-38
    54 杨爱国,张世煌,李明顺,等CIMMYT和我国玉米种质群体的配合力及杂种优势分析[J].作物学报,2006,32(9):1329-1337
    55 杨福愉,邢菁如.用匀浆互补法测试杂种优势的研究(Ⅱ)[J].科学通报,1979,24(1):42
    56 杨金水.杂种优势机理探讨[C]//李竞雄,周洪生:作物雄性不育及杂种优势研究进展(Ⅰ).北京:中国农业出版社,1996:1-12
    57 杨庆利,王建飞,丁俊杰,等.7个水稻品种苗期耐盐性的遗传分析[J].南京农业大学学报,2004,27(4):6-10
    58 杨太兴,段章雄,郭乐群,等.同工酶与玉米杂种产量优势预测的研究[J].植物学报,1995,37(6):432-436
    59 余四斌,李建雄,徐才国,等.上位性效应是水稻杂种优势的重要遗传基础[J].中国科学(C辑),1998,28(4):333-342
    60 袁力行,傅骏骅,刘新芝,等.利用分子标记预测玉米杂种优势的研究[J].中国农业科学,2000,33(6):6-12
    61 翟虎渠,曹树青,唐运来,等.籼型杂交水稻光合性状的配合力及遗传力分析[J].作物学报,2002,28(2):154-160
    62 翟虎渠,王建康.应用数量遗传(第二版)[M].北京:中国农业科学技术出版社,2007:185-204
    63 张博,邱丽娟,常汝镇.利用大豆育成品种的SSR标记遗传距离预测杂种优势的初步研究[J].大豆科学,2003,22(3):166-171
    64 张军,赵团结,盖钧镒.我国黄淮和南方主要大豆育成品种家族产量和品质优异等位变异在系谱中遗传的研究[J].作物学报,2009,35(2):191-202
    65 张磊,戴瓯和.大豆质核互作不育系W931A的选育研究[J].中国农业科学,1997,30(6):90-91
    66 张磊,戴瓯和,黄志平,等.大豆质核互作M型雄性不育系的选育及其育性表现[J].中国农业科学,1999a,32(4):34-38
    67 张磊,戴瓯和,张丽亚.大豆质核互作雄性不育系W945A、W948A的选育[J].大豆科学,1999b,18(4):327-330
    68 张磊,黄志平,李杰坤,等.M型杂交大豆蛋白质和油分含量的初步分析[J].中国油料作物学报,2004,26(1):17-21
    69 张天真.作物育种学总论[M].北京:中国农业出版社,2003:144-159
    70 张向群.玉米自交系两种配合力在杂种一代的表现[J].作物学报,1987,13(2):89-96
    71 赵丽梅,孙寰,黄梅.大豆细胞质雄性不育系ZA的选育和初步研究[J].大豆科学,1998,17(3):268-270
    72 赵丽梅,孙寰,王曙明,等.大豆杂交种“杂交豆1号”选育报告[J].中国油料作物学报,2004,26(3):15-17
    73 赵团结.大豆雄性不育性的自然变异、种质发掘与选育研究[D].南京:南京农业大学,2006
    74 赵团结,崔章林,盖钧镒.中国大豆育成品种中江苏种质58-161的遗传贡献[J].大豆科学,1998,17(2):120-128
    75 周蓉,陈海峰,王贤智,等.大豆产量和产量构成因子及倒伏性的QTL分析[J].作物学报,2009,35(5):821-830
    76 朱鹏,孙国荣,肖翔华,等.MDH和GDH活性与水稻杂种优势预测[J].武汉大学学报(自然科学版),1991,(4):89-94
    77 朱军,季道藩,许馥华.作物品种间杂种优势遗传分析的新方法[J].遗传学报,1993,20(3):262-271
    78 朱军.遗传模型分析方法[M].北京:中国农业出版社,1997
    79 朱军.数量性状遗传分析的新方法及其在育种中的应用[J].浙江大学学报(农业与生命科学版),2000,26(1):1-6
    80 Abe J, Komatsu K, and Shimamoto Y. A new gene for insensitivity of flowering to incandescent long daylength (ILD) [J]. Soybean Genetics Newsletter,1998,25:92
    81 Ajmone M P, Castiglioni P, Fusari F, et al. Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers [J]. Theoretical and Applied Genetics,1998,96:219-227
    82 Bahrenfus J B and Fehr W R. Registration of Pella soybean [J]. Crop Science,1980,20: 415
    83 Bai Y N and Gai J Y. Development of a new cytoplasmic-nuclear male-sterility line of soybean and inheritance of its male-fertility restorability [J]. Plant Breeding,2006,125: 85-88
    84 Baker R J. Issues in diallel analysis [J]. Crop Science,1978,18:533-536
    85 Bao J Y, Lee S Y, Chen C, et al. Serial analysis of gene expression study of a hybrid rice strain (LYP9) and its parental cultivars [J]. Plant Physiology,2005,138:1216-1231
    86 Beckman L, Scandalios J G, and Brewbaker J L. Genetics of leucine aminopeptidase isozymes in maize [J]. Genetics,1964,50:899-904
    87 Benchimol L L, De Souza C L, Garcia A A F, et al. Genetic diversity in tropical maize inbred lines:heterotic group assignment and hybrid performance determined by RFLP markers [J]. Plant Breeding,2000,119:491-96
    88 Bernardo R. Relationship between single-cross performance and molecular heterozygosity [J]. Theoretical and Applied Genetics,1992,83:628-634
    89 Bhatnagar S, Betran F J, and Rooney L W. Combining abilities of quality protein maize inbreds [J]. Crop Science,2004,44:1997-2005
    90 Birchler J A, Auger D L, Riddle N C. In search of the molecular basis of heterosis [J]. Plant Cell,2003,15:2236-2239
    91 Birchler J A, Yao H, and Chudalayandi S. Unraveling the genetic basis of hybrid vigor [J]. The Proceedings of the National Academy of Sciences (US),2006,103:12957-12958
    92 Bohn M, Utz H F and Melchinger A E. Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs, and SSRs and their use for predicting progeny variance [J]. Crop Science,1999,39:228-237
    93 Boppenmaier J, Melchinger A E, Seiltz G, et al. Genetic diversity for RFLPs in European maize inbreds Ⅲ. Performance of crosses within versus between heterotic groups for grain traits [J]. Plant Breeding,1993,111:217-226
    94 Brim C A and Cockerham C C. Inheritance of quantitative characters in soybeans [J]. Crop Science,1961,1:187-190
    95 Bruce A B. The Mendelian theory of heredity and the augmentation of vigor [J]. Science, 1910,32:627-628
    96 Buckler E S, Holland J B, Bradbury P J, et al. The Genetic architecture of maize flowering time[J]. Science,2009,325:714-718
    97 Burton J W and Brim C A. Recurrent selection in soybeans Ⅲ. Selection for increased percent oil in seeds [J]. Crop Science,1981,21:31-34
    98 Burton J W and Brownie C. Heterosis and inbreeding depression in two soybean single crosses[J]. Crop Science,2006,46:2643-2648
    99 Camussi A, Ottaviano E, Calinski T, et al. Genetic distances based on quantitative traits [J]. Genetics,1985,111:945-962
    100 Cerna F J, Cianzio S R, Rafalski A, et al. Relationship between seed yield heterosis and molecular marker heterozygosity in soybean [J]. Theoretical and Applied Genetics,1997, 95:460-67
    101 Charcosset A, Essioux L. The effect of population structure on the relationship between heterosis and heterozygosity at marker loci [J]. Theoretical and Applied Genetics,1994,89: 336-343
    102 Charcosset A, Lefort-Buson M, Gallais A. Relationship between heterosis and heterozygosity at maker loci:a theoretical computation [J]. Theoretical and Applied Genetics,1991,81:571-575
    103 Cho Y I, Park C W, Kwon S W, et al. Key DNA markers for predicting heterosis in F1 hybrids of Japonica rice [J]. Breeding Science,2004,54:389-397
    104 Cockerham C C. Random and fixed effects in plant genetics [J]. Theoretical and Applied Genetics,1980,56:119-131
    105 Cockerham C C and Zeng Z B. Design III with marker loci [J]. Genetics,1996,143: 1437-1456
    106 Comstock R E and Robinson H F. The components of genetic variance in population of biparental progenies and their use in estimating the average degree of dominance [J]. Biometrics,1948,4:254-266
    107 Comstock R E and Robinson H F. Estimation of average dominance of genes. In:Gowen J W (ed.) Heterosis [M]. Iowa State College Press, Ames IA.1952:494-516
    108 Coors J G and Pandey S (ed.). The Genetics and Exploitation of Heterosis in Crops [C]. American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc., Madison, WI,1999
    109 Cox T S, Kiang Y T, Gorman M B, et al. Relationship between coefficient of parentage and genetic similarity indices in the soybean [J]. Crop Science,1985a,25:529-532
    110 Cox T S, Lookhart G L, Walker D E, et al. Genetic relationships among hard red winter wheat cultivars as evaluated by pedigree analysis and gliadin ployacrylamide gel electrophoretic patterns [J]. Crop Science,1985b,25:1058-1063
    111 Crow J F. Alternative hypotheses of hybrid vigor [J]. Genetics,1948,33:477-487
    112 Crow J F.90 Years Ago:The beginning of hybrid maize [J]. Genetics,1998,148:923-928
    113 Curnow R N. Sampling the diallel crosses [J]. Biometrics,1963,19:398-306
    114 Darwin C R. The Effects of Cross and Self Fertilization in the Vegetable Kingdom [M]. John Murray, London,1876
    115 Davenport C B. Degeneration, albinism and inbreeding [J]. Science,1908,28:454-455
    116 Davis W H. Route to hybrid soybean production. United States Patent. No.4545146 [P], 1985-10-08
    117 De Vicente M C and Tanksley S D. QTL analysis of transgressive segregation in an interspecific tomato cross [J]. Genetics,1993,134:585-596
    118 Diers B W, McVetty P B E, Osborn T C. Relationship between heterosis and genetic distance based on restriction fragment length polymorphism markers in oilseed rape (Brassica napus L.)[J]. Crop Science,1996,36:79-83
    119 Ding D, Cui Z, Gai J. Development and cytological features of the cytoplasmic-nuclear male sterile soybean line NJCMS1A [J]. Soybean Genetics Newsletter,1998,25:34-35
    120 Ding D, Gai J, Cui Z, et al. Development of a cytoplasmic-nuclear male-sterile line of soybean [J]. Euphytica,2002,124:85-91
    121 Doyle J J, Doyle J L. Isolation of plant DNA from fresh tissue [J]. Focus,1990,12:13-15
    122 Dreisigacker S, Melchinger A E, Zhang P, et al. Hybrid performance and heterosis in spring bread wheat, and their relations to SSR-based genetic distances and coefficients of parentage [J]. Euphytica,2005,144:51-59
    123 Dudley J W. A method for identifying lines for use in improving parents of a single cross [J]. Crop Science,1984,24:355-357
    124 Dudley J W. Modification of methods for identifying populations to be used for improving parents of elite single crosses [J]. Crop Science,1987a,27:940-943
    125 Dudley J W. Modification of methods for identifying inbred lines useful for improving parents of elite single crosses [J]. Crop Science,1987b,27:944-947
    126 Dudley J W. Evaluation of maize populations as sources of favorable alleles [J]. Crop Science,1988,28:486-491
    127 Dudley J W, Saghai-Maroof M A, and Rufener G K. Molecular markers and grouping of parents in maize breeding programs [J]. Crop Science,1991,31:718-723
    128 Dudley J W, Saghai-Maroof M A and Rufener G K. Molecular marker information and selection of parents in corn breeding programs [J]. Crop Science,1992,32:301-304
    129 Duvick D N. Genetic Contributions to Yield Gains of U.S. Hybrid Maize,1930 to 1980 [M]. In:Fehr W R (ed.) Genetic Contributions to Yield Gains of Five Major Crop Plants. Madison, WI, USA. CSSA Special Publication No.7. Crop Science Society of America, American Society of Agronomy,1984:15-47
    130 Duvick D N. Heterosis:Feeding People and Protecting Natural Resources [C]. In:Coors J G and Pandey S (ed.) The Genetics and Exploitation of Heterosis in Crops. Madison, WI. American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc.,1999:19-29
    131 East E M. Heterosis[J]. Genetics,1936,21:375-397
    132 Eta-Ndu J T and Openshaw S J. Epistasis for grain yield in two F2 populations of maize [J]. Crop Science,1999,39:346-352
    133 Fan X M, Zhang Y M, Yao W H, et al. Classifying maize inbred lines into heterotic groups using a factorial mating design [J]. Agronomy Journal,2009,101:106-112
    134 Fisher R A. The correlation between relatives on the supposition of Mendelian inheritance [J]. Transactions of the Royal Society of Edinburgh,1918,52:399-33
    135 Fujita R, Ohara M, Okazakl K, et al. The Extent of natural cross-pollination in wild soybean (Glycine soja)[J]. The Journal of Heredity,1997,88:124-128
    136 Fyfe J L and Gilbert N E G. Partial diallel crosses [J]. Biometrics,1963,19:278-286
    137 Gai J, Cui Z, Ren Z, et al. A report on the nuclear cytoplasmic male sterility from a cross between two soybean cultivars [J]. Soybean Genetics Newsletter,1995,22:55-58
    138 Gai J Y. Segregation analysis on genetic system of quantitative traits in plants [J]. Frontiers of Biology in China,2006,1:85-92
    139 Ghaderi A, Adams M W and Nassib A M. Relationship between genetic distance and heterosis for yield and morphological traits in dry edible bean and faba bean [J]. Crop Science,1984,24:37-42
    140 Gilbert N E G. Diallel cross in plant breeding [J]. Heredity,1958,12:477-492
    141 Godshalk E B, Lee M and Lamkey K R. Relationship of restriction fragment length polymorphisms to single-cross hybrid performance of maize [J]. Theoretical and Applied Genetics,1990,80:273-280
    142 Grant-Downton R T, Dickinson H G. Epigenetics and its implications for plant biology I. The epigenetic network in plants [J]. Annals of Botany,2005,96:1143-1164
    143 Griffing B. Concept of general and specific combining ability in relation to diallel crossing system [J].Australian Journal of Biological Sciences,1956,9:463-93
    144 Hallauer A R. Temperate maize and heterosis [C]. In:Coors J G, Pandey S (eds.), The Genetics and Exploitation of Heterosis in Crops. ASA-CSSA-SSSA, Madison, WI.1999: 353-361
    145 Hayman B I. The theory and analysis of diallel crosses [J]. Genetics,1954a,39:789-809
    146 Hayman B I. The analysis of variance of diallel tables [J]. Biometrics,1954b,10:235-244
    147 Hayman B I. Interaction, heterosis and diallel crosses [J]. Genetics,1957,42:336-355
    148 Hayman B I. The theory and analysis of diallel crosses Ⅱ. [J]. Genetics,1958,43:65-85
    149 Hallauer A R and Miranda Fo. J B. Quantitative Genetics in Maize Breeding [M]. Iowa State University Press, Ames.1988
    150 He G M, Luo X J, Tian F, et al. Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice [J]. Genome Research,2006,16:618-626
    151 Hochholdinger F and Hoecker N. Towards the molecular basis of heterosis [J]. Trends in Plant Science,2007,12:427-432
    152 Hua J P, Xing Y Z, Xu C G, et al. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance [J]. Genetics,2002,162:1885-1895
    153 Hua Jinping, Xing Yongzhong, Wu Weiren, et al. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid [J]. The Proceedings of the National Academy of Sciences (US), 2003,100:2574-2579
    154 Hull F H. Recurrent selection for specific combining ability in corn [J]. Journal of the American Society of Agronomy,1945,37:134-145
    155 Jinks J L. The analysis of continuous variation in a diallel cross of Nicotiana rustica varieties I. The analysis of F1 data [J]. Genetics,1954,39:767-788
    156 Jinks J L. The F2 and backcross generations from a set of diallel crosses [J]. Heredity,1956, 10:1-30
    157 Johnson H W, Robison H F, Comstock R E. Estimates of genetic and environmental variability in soybean [J]. Agronomy Journal,1955,47:314-318
    158 Johnson L P V. Applications of the Diallel-cross Techniques to Plant Breeding [M]. In: Statistical Genetics and Plant Breeding,1963:561-570
    159 Jones D F. Dominance of linked factors as a means of accounting for heterosis [J]. Genetics,1917,2:466-479
    160 Kabelka E A, Diers B W, Fehr W R, et al. Putative alleles for increased yield from soybean plant introductions [J]. Crop Science,2004,44:784-791
    161 Kempthorne O, Curnow R N. The partial diallel cross [J]. Biometrics,1961,17:229-250
    162 Lackey J A. Chromosome numbers in the Phaseoleae (Fabaceae:Faboideae) and their relation to taxonomy [J]. American Journal of Botany,1980,67:595-602
    163 Lamkey K R, Schnicker B S and Melchinger A E. Epistasis in an elite maize hybrid and choice of generation for inbred line development [J]. Crop Science,1995,35:1272-1281
    164 Lee M, Godshalk E B, Lamkey K R, et al. Association of restriction fragment length ploymorphisms among maize inbreeds with agronomic performance of their crosses [J]. Crop Science,1989,29:1067-1071
    165 Leffel R C and Weiss M G. Analyses of diallel crosses among ten varieties of soybeans [J]. Agronomy Journal,1958,50:528-534
    166 Lefort-Buson M, Dattee Y, Guillot-Lemoine B. Heterosis and genetic distance in rapeseed (Brassica napus L.):Crosses between European and Asiatic selfed lines [J]. Genome,1987, 29:413-418
    167 Lewers K S. Production, evaluation, and utilization of hybrid soybeans [Glycine max (L.) Merr.] [D], Ph. D. Diss.,1996, Iowa State University, Ames
    168 Lewers K S, Martin S K St, Hedges B R, et al. Testcross evaluation of soybean germplasm [J]. Crop Science,1998,38:1143-1149
    169 Li B and Wu R. Genetic causes of heterosis in juvenile aspens:A quantitative comparison across intra- and inter-specific hybrids [J]. Theoretical and Applied Genetics,1996,93: 380-391
    170 Li Z K, Luo L J, Mei H W, et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice I. Biomass and grain yield [J]. Genetics, 2001,158:1737-1753
    171 Li Z K, Pinson S R M, Park W D, et al. Epistasis for three grain yield components in rice (Oryza sativa L.) [J]. Genetics,1997,145:453-65
    172 Liao C Y, Wu P, Hu B, et al. Effects of genetic background and environment on QTLs and epistasis for rice (Oryza sativa L.) panicle number [J]. Theoretical and Applied Genetics, 2001,103:104-111
    173 Liu R, Qian W, Meng J. Association of RFLP markers and biomass heterosis in trigenomic hybrids of oilseed rape (Brassica napus (?) B.campestris) [J]. Theoretical and Applied Genetics,2002,105:1050-1057
    174 Liu Xiao Chun, Ishiki Koshun, and Wang Weixia. Identification of AFLP markers favorable to heterosis in hybrid rice [J]. Breeding Science,2002,52:201-206
    175 Liu Z Q, Pei Y, Pu Z J. Relationship between hybrid performance and genetic diversity based on RAPD markers in wheat, Triticum aestivum L [J]. Plant Breeding,1999,118: 119-123
    176 Loiselle F, Voldeng H D, Turcotte P, et al. Analysis of agronomic characters for an eleven-parent diallel of early-maturing soybean geneotypes in Eastern Canada [J]. Canadian Journal of Plant Science,1990,70:107-115
    177 Luo L J, Li Z K, Mei H W, et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice Ⅱ. Grain yield components [J]. Genetics, 2001,158:1755-1771
    178 Manjarrez-Sandoval P, Carter T E Jr, Webb D M, et al. RFLP genetic similarity estimates and coefficient of parentage as genetic variance predictors for soybean yield [J]. Crop Science,1997a,37:698-703
    179 Manjarrez-Sandoval P, Carter T E Jr, Webb D M, et al. Heterosis in soybean and its prediction by genetic similarity measures [J]. Crop Science,1997b,37:1443-1452
    180 Mansur L M, Orf J H, Chase K, et al. Genetic mapping of agronomic traits using recombinant inbred lines of soybean [J]. Crop Science,1996,36:1327-1336
    181 Mantel N A. The detection of disease clustering and a generalized regression approach [J]. Cancer Research,1967,27:209-220
    182 Maric S, Bolaric S, Martincic J, et al. Genetic diversity of hexaploid wheat cultivars estimated by RAPD markers, morphological traits and coefficients of parentage [J]. Plant Breeding,2004,123:366-369
    183 Martin J M, Talbert L E, Lanning S P, et al. Hybrid performance in wheat as related to parental diversity [J]. Crop Science,1995,35:104-108
    184 Mather K. The balance of polygenic combinations [J]. Journal of Genetics,1942,43: 309-336
    185 Mather K, Jinks J L. Biometrical Genetics,3rd edn [M]. Chapman and Hall, London,1982
    186 May M L and Wilcox J R. Pollinator density effects on frequency and randomness of male-sterile soybean pollinations [J]. Crop Science,1986,26:96-99
    187 McDaniel R G and Sarkissian I V. Heterosis:Complementation by mitochondria [J]. Science,1966,152:1640-1642
    188 Melchinger A E. Genetic diversity and heterosis [C]. In:Coors J G, Pandey S (eds.), The Genetics and Exploitation of Heterosis in Crops. ASA-CSSA-SSSA Madison.WI 1999: 99-108
    189 Melchinger A E, Lee M, Lamkey K R, et al. Genetic diversity for restriction fragment length polymorphisms:relation to estimated genetic effects in maize inbreds [J]. Crop Science,1990,30:1033-1040
    190 Mendel G. Experiments in Plant Hybridization [EB/OL].1865. http://www.mendelweb.org
    191 Nei M and Li W H. Mathematical model for studying genetic variation in terms of restriction endonucleases [J]. The Proceedings of the National Academy of Sciences (US), 1979,76:5269-5273
    192 Nelson R L and Bernard R L. Production and performance of hybrid soybeans [J]. Crop Science,1984,24:549-553
    193 Ni Z F, Kim E D, Ha M, et al. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids [J]. Nature,2009,457:327-331
    194 Omholt S W, Plahte E, Oyehaug L, et al. Gene regulatory networks generating the phenomena of additivity, dominance and epistasis [J]. Genetics,2000,155:969-980
    195 Orf J H, Chase K, Jarvik T, Mansur L M, et al. Genetics of soybean agronomic traits I. Comparison of three related recombinant inbred populations [J]. Crop Science,1999,39: 1642-1651
    196 Orf J H, Diers B W, Boerna H R. Genetic Improvement: Conventional and Molecular Based Strategies [M]. In: Boerna H R, Specht J E (Eds.). Soybean:Improvement, Production and Uses (3rd ed). Agronomy Monograph. Vol.16. ASA and CSSA, Madison, WI, USA.2004: 417-450
    197 Ortiz-Perez E, Cianzio S R, Wiley H, et al. Insect-mediated cross-pollination in soybean [Glycine max (L.) Merrill] I. Agronomic performance [J]. Field Crops Research,2007,101: 259-268
    198 Palmer R G, Albertsen M C and Heer H. Pollen production in soybeans with respect to genotype, environment, and stamen position [J]. Euphytica,1978,27:427-33
    199 Palmer R G, Gai J Y, Sun H, et al. Production and Evaluation of Hybrid Soybean [M]. Plant Breeding Reviews,2001,21:263-307
    200 Palmer R G, Ortiz-Perez E, Cervantes-Martinez I G, et al. Hybrid soybean-current status and future outlook [C]. In: Proceedings of the 33rd Soybean Seed Research Conference. American Seed Trade Association Seed Expo,2003
    201 Paschal E H, II and Wilcox J R. Heterosis and combining ability in exotic soybean germplasm [J]. Crop Science,1975,15:344-349
    202 Pathan M S and Sleper D A. Advances in Soybean Breeding [M]. In:Stacey G (ed.), Genetics and Genomics of Soybean. Springer Science+Business Media, LLC. 2008: 113-133
    203 Powers L. An expansion of Jones's theory for the explanation of heterosis [J]. The American Naturalist,1944,78:275-280
    204 Raut V M, Halwankar G B and Patil V P. Heterosis in soybean [J]. Soybean Genetics Newsletter,1988,15:57-60
    205 Redona E D, Mackill D J. Genetic variation for seedling-vigour traits in rice [J]. Crop Science,1996,36:285-290
    206 Richey F D and Sprague G F. Experiments on hybrid vigor and convergent improvement in corn [J]. USDA Techical Bulletin,1931,267:1-22
    207 Rodgers D M, Murphy J P and Frey K J. Impact of plant breeding on the grain yield and genetic diversity of spring oats [J]. Crop Science,1983,23:737-740
    208 Rohlf F J. NTSYS-pc:Numerical Taxonomy and Multivariate Analysis System (Version 2.10e) [M/CD]. New York: Exeter Software,1989
    209 Romagnoli S, Maddaloni M, Livini C, et al. Relationship between gene expression and hybrid vigor in primary root tips of young maize (Zea mays L.) plantlets [J]. Theoretical and Applied Genetics,1990,80:769-775
    210 Saghai-Maroof M A, Yang G P, Zhang Q, et al. Correlation between molecular marker distance and hybrid performance in U.S. Southern long grain rice [J]. Crop Science,1997, 37:145-150
    211 Sarkissian I V and Srivastava H K. High efficiency, heterosis, and homeostasis in mitochondria of wheat [J]. The Proceedings of the National Academy of Sciences (US), 1969,63:302-309
    212 Satterthwaite F E. An approximate distribution of estimates of variance components. Biometrics Bulletin,1946,2:110-114
    213 Schrag T A, Maurer H P, Melchinger A E, et al. Prediction of single-cross hybrid performance in maize using haplotype blocks associated with QTL for grain yield [J]. Theoretical and Applied Genetics,2007,114:1345-1355
    214 Schwartz D. Genetic studies on mutant enzymes in maize: Synthesis of hybrid enzymes by heterozygotes [J]. The Proceedings of the National Academy of Sciences (US),1960,46: 1210-1215
    215 Severson D W, Erickson E H. Quantitative and qualitative variation in floral nectar of soybean cultivars in southeastern Missouri [J]. Environmental Entomology,1984,13: 1091-1096
    216 Shull G H. The composition of a field of maize [J]. American Breeders Association Report, 1908,4:296-301
    217 Smith O S, Smith J S C, Bowen S L, et al. Similarities among a group of elite maize inbreds as measured by pedigree, F1 grain yield, grain yield, heterosis, and RFLPs [J]. Theoretical and Applied Genetics,1990,80:833-840
    218 Sneller C H. Pedigree analysis of elite soybean lines [J]. Crop Science,1994,34: 1515-1522
    219 Soller M, Brody T, Genizi A. On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines [J]. Theoretical and Applied Genetics,1976,47:35-39
    220 Song T, Messing J. Gene expression of a gene family in maize based on oncollinear haplotypes [J]. The Proceedings of the National Academy of Sciences (US),2003,100: 9055-9060
    221 Specht J E, Chase K, Macrander M, et al. Soybean response to water: A QTL analysis of drought tolerance [J]. Crop Science,2001,41:493-509
    222 Sprague G F, Tatum L A. General vs. specific combining ability in single crosses of corn [J]. Journal of the American Society of Agronomy,1942,34:923-932
    223 Srivastava H K. Heterosis and Intergenomic Complementation Mitochondria, Chloroplast, and Nucleus [M]. In:Frankel R (ed), Heterosis, Reappraisal of Theory and Practice. Springer Berlin Heidelberg, New York,1983:260-286
    224 Stuber C W, Lincoln S E, Wolff D W, et al. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers [J]. Genetics,1992,132:823-839
    225 Sun Huan, Zhao Limei, Huang Mei. Methods for producing cyto-plasmic genetic male sterile soybean and hybrid soybean. United States Patent. No.6320098 Bl [P].2001-11-20
    226 Sun Q X, Wu L M, Ni Z F, et al. Differential gene expression patterns in leaves between hybrids and their parental inhreds are correlated with heterosis in a wheat diallel cross [J]. Plant Science,2004,166:651-657
    227 Tang JiHua, Ma XiQing, Teng WenTao, et al. Detection of quantitative trait loci and heterotic loci for plant height using an immortalized F2 population in maize [J]. Chinese Science Bulletin,2007,52:477-183
    228 Tollenaar M, Ahmadzadeh A, Lee E A. Physiological basis of heterosis for grain yield in maize [J]. Crop Science,2004,44:2086-2094
    229 Tsaftaris S A. Molecular aspects of heterosis in plants [J]. Physiologia Plantarum,1995,94: 362-370
    230 Tsaftaris S A and Kafka M. Mechanism of heterosis in crop plants [J]. Journal of Crop Production,1998,1:95-111
    231 Turbin N V. Heterosis and Genetical Balance[M]. In:Heterosis.-Minsk,1961:3-34
    232 U.S. Department of Agriculture, Foreign Agricultural Service,2007/08:World Agricultural Production [EB/OL], Washington, D.C. http://www.fas.usda.gov
    233 Vasal S K, Srinivasan G, Han G C, et al. Heterotic paterns of eighty-eight white subtropical CIMMYT maize lines [J]. Maydica,1992,37:259-270
    234 Veatch C. Vigor in soybeans as affected by hybridity [J]. Journal of the American Society of Agronomy,1930,22:289-310
    235 Weber C R, Empig L T and Thorne J C. Heterotic performance and combining ability of two-way F1 soybean hybrids [J]. Crop Science,1970,10:159-160
    236 Wei G, Tao Y, Liu G Z, et al. A transcriptomic analysis of super hybrid rice LYP9 and its parents [J]. The Proceedings of the National Academy of Sciences (US),2009,106, 7695-7701
    237 Weiss M G, Weber C R and Kalton R R. Early generation testing in soybeans [J]. Journal of the American Society of Agronomy,1947,39:791-811
    238 Wentz J B and Stewart R T. Hybrid vigor in soybeans [J]. Journal of the American Society of Agronomy,1924,16:534-540
    239 Wyrick J J, Young R A. Deciphering gene expression regulatory networks [J]. Current Opinion in Genetics and Development,2002,12:130-136
    240 Xiao Jinhua, Li Jiming, Yuan Longping, et al. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers [J]. Genetics,1995, 140:745-754
    241 Xiao J, Li J, Yuan L, et al. Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR-based markers [J]. Theoretical and Applied Genetics, 1996,92:637-643
    242 Xiong L Z, Xu C G, Saghai Maroof M A, et al. Patterns of cytosine methylation in an elite rice hybrid and its parental lines detected by a methylation-sensitive amplification polymorphism technique [J]. Molecular Genetics and Genomics,1999,261:439-46
    243 Xiong L Z, Yang G P, Xu C G, et al. Relationships of differential gene expression in leaves with heterosis and heterozygosity in a rice diallel cross [J]. Molecular Breeding,1998,4: 129-136
    244 Xu Z C, Zhu J. An approach for predicting heyerosis based on an additive, dominance and additive×additive model with environment interaction [J]. Heredity,1999,82:510-517
    245 Yamamoto T, Lin H, Sasaki T, et al. Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny [J]. Genetics,2000,154:885-891
    246 Yang S P, Duan M P, Meng Q C, et al. Inheritance and gene tagging of male fertility restoration of cytoplasmic-nuclear male-sterile line NJCMS1A in soybean [J]. Plant breeding,2007,126:302-305
    247 Yu S B, Li J X, Xu C G, et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid [J]. The Proceedings of the National Academy of Sciences (US),1997,94: 9226-9231
    248 Yu S B, Li J X, Xu C G, et al. Identification of quantitative trait loci and epistatic interactions for plant height and heading date in rice [J]. Theoretical and Applied Genetics, 2002,104:619-625
    249 Zha R M, Ling Y H, Yang Z L, et al. Prediction of hybrid grain yield performances in Indica Rice (Oryza sativa L.) with effect-increasing loci [J]. Molecular Breeding,2008,22: 467-76
    250 Zhang Q, Gao Y, Yang S, et al. A diallel analysis of heterosis in elite hybrid rice based on RFLPs and microsatellites [J]. Theoretical and Applied Genetics,1994,89:185-192
    251 Zhang Q, Gao Y J, Saghai-Maroof M A, et al. Molecular divergence and hybrid performance in rice [J]. Molecular Breeding,1995,1:133-142
    252 Zhang Q, Zhou Z Q, Yang G P, et al. Molecular marker heterozygosity and hybrid performance in indica and japonica rice [J]. Theoretical and Applied Genetics,1996,93: 1218-1224
    253 Zhang Y D and Kang M S. DIALLEL-SAS:A SAS program for Griffing's diallel analyses [J]. Agronomy Journal,1997,89:176-182
    254 Zhang Y D, Kang M S and Lamkey K R. DIALLEL-SAS05:A comprehensive program for Griffing's and Gardner-Eberhart analyses [J]. Agronomy Journal,2005,97:1097-1106
    255 Zhao M F, Li X H, Yang J B, et al. Relationship between molecular marker heterozygosity and hybrid performance in intra-and inter-subspecific crosses of rice [J]. Plant Breeding, 1999,118:139-144
    256 Zhao T J and Gai J Y. Discovery of new male-sterile cytoplasm sources and development of a new cytoplasmic-nuclear male-sterile line in NJCMS3A in soybean [J]. Euphytica,2006, 152:387-396

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700