空间变化地震动下变形敏感大跨度结构响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大跨度结构是人类现代文明的重要组成部分,负有重要的社会职能,它们的安全性受到了格外的重视。地震时地面运动是一个复杂的时间—空间过程,以前的抗震设计研究往往把注意力放在地震动的时变特性上,而对地震动的空间变化特性考虑较少。行波效应、不相干效应和局部场地效应是地震动空间变化主要原因。对于平面尺寸较大的结构物,考虑地面运动的空间变化是一种更加合理的输入方式。
     本文主要围绕空间变化地震动下变形敏感大跨度结构的响应分析展开。
     在对本领域研究理论进行系统综述(第一章)的基础上,本文第二章主要讨论地震地面运动随机过程模型及参数的确定。在本章中,首先回顾了常见的地震动随机模型,归纳总结了基于过滤白噪声模型的改进模型,并对它们的滤波特性,低频特性及高频特性进行了对比分析。结合随机振动的最大反应估计理论求解单自由度体系在平稳地震动输入下的反应谱,运用等效平稳的方法求解非平稳地震动输入下的反应谱。运用随机振动的理论,采用迭代法实现了功率谱与反应谱转换。以我国现行《建筑抗震设计规范》(GB50011—2001)给出的建筑结构地震影响系数曲线为目标反应谱,采用迭代法编制了规范反应谱转换为功率谱程序RSTOPS,进而形成了与规范反应谱相对应的功率谱库。运用非线性拟合的最小二乘法对功率谱库曲线进行洪峰—江近仁谱的参数拟合,给出了高通滤波器参数ω_h和谱强因子G_0的数值。
     第三章主要讨论了一致及多点激励地震动合成方法。在本章中,首先回顾了地震动三要素及其衡量的物理量。介绍了拟合反应谱的一致激励人工波合成原理,提出了功率谱与幅值谱联合调整的方法,编制了与规范反应谱相一致人工地震波合成程序。运用随机过程的理论推导了多点地震动的幅值谱及相位谱与互功率谱矩阵元素之间的关系,通过对互功率谱密度函数矩阵的简化,提出了一种多点地震动合成的简化方法。该方法只需要对迟滞相干函数这一实对称矩阵进行Cholesky分解,不需要对互功率谱矩阵这一复数矩阵进行分解,避免了复杂的复数矩阵运算,从而提高了合成的效率。运用这一简化方法编制了多点地震动合成程序。
     第四章主要讨论了多点激励时程分析法及其应用。在本章中,首先介绍了多点地震动激励下结构的运动方程及一种无条件收敛的数值求解方法:Wilson-θ法。本章的重点是以某体育场大跨度拱式钢结构为工程背景,运用时程分析法对其进行计算分析。主要内容包括:有限元模型的建立,时程分析所需一致及多点激励地震波的合成,大质量法在多点激励时程分析法的实现,分析了计算结果并得出了一些结论。
     第五章主要探讨了多点激励反应谱分析方法及其应用。在本章中,首先介绍了一致及多点激励反应谱的基本原理。对比分析了常用的多点激励反应谱分析方法:B-K法,H-V法,MSRS法及Y-T法。MSRS(Multiple-Support Response Spectrum Method)法是基于严格的随机振动理论推导出来的,因此理论依据充分,可以看作CQC方法在多点激励情况下的推广。本章采用MSRS方法计算了两种形式的两跨连续梁:柔性梁和刚性梁,分析了空间变化地震动对这两种形式梁反应的影响特点并得出了一些有益的结论。
Large span structure being a part of modern civilization undertakes importantsocial functions. Safety of large span structure is given special consideration. Seismicground motion is a complicated time-space process. Previous seismic design and-research are always concerned with seismic time variation characteristics instead ofits spatial variation. Wave-passage effect, incoherence effect and local site effect aremain factors of spatial variation of seismic ground motion. Considering spatialvariation is a more feasible input method to structures with large planar dimension.
     The dissertation is mainly concerned in response analysis for deformationsensitive large span structure under spatial variation seismic ground motion.
     Based on the systematical summarization on the past research work in the field(Chapter 1), random process model of seismic ground motion is discussed and itsparameters are specified in Chapter 2. Firstly, common random models of seismicground motion are reviewed in this chapter. Then modified models based on filteredwhite noise model are summed up. Analysis and contrast of wave filtering lowfrequency and high frequency characteristics are carded out. With maximum responseestimate theory of random vibration, response spectrum of single degree of freedom(SDF) system under stationary seismic ground motion is calculated. Throughequivalent stationary method, response spectrum under non-stationary seismic groundmotion is calculated. By adopting random vibration theory, conversion between powerspectrum and response spectrum is realized by iteration method By adopting seismiceffect factor curve of Chinese current structure seismic design code (GB50011-2001)as object response spectrum, conversion program between power spectrum andresponse spectrum (RSTOPS) is compiled by iteration method, thus power spectrumarchive compatible with response spectrum of seismic code is built. By adoptingnonlinear fitting method, parameters of Hong feng-Jiang jin ten model are fitted withcalculated power spectrum and its two parameters:ω_h,G_0 are given in this Chapter.
     Chapter 3 mainly discusses generation method of seismic ground motion. Firstly,three main factors of seismic ground motion and physical descriptive variables arereviewed in this chapter. Generation principle of uniform excitation artificial seismicground motion compatible with response spectrum of Chinese seismic code isintroduced. The method of power spectrum with amplitude spectrum modification isproposed in this chapter. Program of generation of artificial seismic ground motion compatible with response spectrum of Chinese code is complied. Based on randomprocess theory, a method of simulation of spatial correlated multi-point ground motionhas been proposed by simplification of cross power spectral density matrix. Onlydecomposition of lagged coherent density matrix is required instead of Choleskydecomposition of cross power spectral density matrix. Thus complex matrixcomputation is avoided and simulation efficiency is improved. A correspondingprogram has been compiled using the method.
     Chapter 4 mainly discusses time history analysis method and its application.Firstly, structural motion equilibrium under multi-point seismic ground motionexcitation is built. An unconditioned convergence solving method (wilson-θmethod) is introduced in this chapter. The emphasis of this chapter is applying timehistory analysis method to calculate seismic response of a steel large span arch of astadium. The main contents conclude: build of finite element model, seismic wavegeneration under uniform and multi-point excitation, apply big mass method to timehistory method. Calculation results are analyzed and some conclusions are given.
     Chapter 5 mainly discusses response spectrum method of multi-point excitationand its application. Firstly, basic principles of response spectrum method underuniform and multi-point excitation are introduced. Contrast and analysis of responsespectrum methods under uniform and multi-point excitation which include: B-Kmethod, H-V method, MSRS method and Y-T method. MSRS (Multiple-SupportResponse Spectrum Method)method is deduced by strict random vibration theory andregarded as an application of CQC method. Responses of two types of continuousbeams with two span: flexible beam and stiff beam are calculated by MSRS method.Responses characteristics of two types of beam under spatial variation seismic groundmotion are analyzed and some conclusions are given.
引文
[1] 李桂青.抗震结构计算理论和方法.北京:地震出版社,1985
    [2] 王子平,陈非比,王绍比.地震社会学初探.北京:地震出版社,1989
    [3] 胡聿贤.地震工程学.北京:地震出版社,1988
    [4] Kiureghian A D, Neuenhofer A. Response spectrum method for multi-support seismic excitations. Earthquake Engineering and Structural Dynamics, 1992, 21: 713-740
    [5] Ernesto H Z, Vanmarcke E H. Seismic random vibration analysis of multi-support structural systems. ASCE, Journal of Engineering Mechanics, 1994, 120: 1107-1128
    [6] Kiureghian A D, Neuenhofer A. A discussion on 'Seismic random vibration analysis of multi-support structural systems'. ASCE, Journal of Engineering Mechanics, 1995, 121: 1037
    [7] Ernesto H Z, Vanmarcke E H. Closure on the discussion. ASCE, Journal of Engineering Mechanics, 1995, 121: 1038
    [8] Carassale L, Tubino F, Solari G. Seismic response of multi-supported structures by proper orthogonal decomposition. Proc. Int. Conf. On Advances in Structural Dynamics (ASD2000), Hong Kong, Elsevier Science Ltd., 2000, 827-834
    [9] Lin Y K, Zhang R, Yong Y. Multiple supported pipeline under seismic rave excitations. Journal of Engineering Mechanics, 1990, 116: 1094-1108
    [10] 苗家武,胡世德,范立础.大型桥梁多点激励效应的研究现状与发展.同济大学学报,1999,27(2):189-193
    [11] Kiureghian A D. A coherency model for spatially varying ground motions. Earthquake Engineering and Structural Dynamics, 1996, 25: 99111
    [12] Perotti F. Structural response to non-stationary multi-support random excitation. Earthquake Engineering and Structural Dynamics, 1990, 19: 513-527
    [13] Becrah M, Kausel E. Response spectrum analysis of structures subjected to spatially varying motions. Earthquake Engineering and Structural Dynamics, 1992, 21: 461-470
    [14] Dumanoglu A A, Severn R T. Stochastic response of suspension bridges to earthquake forces. Earthquake Engineering and Structural Dynamics, 1990, 19: 133-152
    [15] Harichandran R S, nawwari A, Sweidan B N. Response of long-span bridges to spatially varying ground motion. Journal of Structural Engineering ASCE. 1996, 122: 476-484
    [16] 廖松涛.工程场地地震动相干函数数值分析.博士学位论文,同济大学,2001
    [17] 王淑波.大型桥梁抗震反应谱分析理论及应用研究.博士学位论文,同济大学,1997
    [18] 夏友柏.多点地震动输入抗震分析方法及大跨度网架结构的响应分析.博士学位论文,中国人民解放军理工大学,2002
    [19] 屈铁军.地面运动的空间变化特征研究及地下管线地震反应分析.博士学位论文,国家地震局工程力学研究所,1995
    [20] 屈铁军,王前信.多点输入下地震反应分析研究的进展.世界地震工程,1993,(1):30-36
    [21] 李小军,赵风新,胡聿贤.空间相关地震动场模拟的研究.地震学报,1997,19(2):212-215
    [22] 屈铁军,王前信.空间相关的多点地震动合成(Ⅰ):基本公式.地震工程与工程振动,1998,18(1):8-15
    [23] 屈铁军,王前信.空间相关的多点地震动合成(Ⅱ):合成实例.地震工程与工程振动,1998,18(2):25-32
    [24] 屈铁军,宋金峰,陈厚群.拱坝自由场地地震动模拟.水利学报,1998,(2):1-8
    [25] Ramadan O, Novak M. Simulation of spatially incoherent random ground motions. Journal of Engineering mechanics, 1993, 119(5): 997-1016
    [26] 项海帆.斜拉桥在行波作用下的地震反应.同济大学学报,1983,(2):1-9
    [27] 袁万城.大跨桥梁空间非线性地震反应分析.博士学位论文,同济大学,1990
    [28] Nzzmy A S, Abdel-Ghffor A M. Effect of ground motion spatial variability on the response of cable-stayed bridges. Earthquake Engineering & Structural Dynamics, 1992, 21(1): 1-20
    [29] 王前信,伍国朋.地震多点输入时非正交杆链体系的振动.地震工程与工程振动,1982,2(2):26-43
    [30] 王前信,伍国酮.地震多点输入或扰力多点输入时框架的反应.地震工程与工程振动,1983,3(2):1-14
    [31] 王前信,伍国酮,李云林.拱式结构对地震多点输入的反应.地震工程与工程振动,1984,4(2):48-81
    [32] Hao H. Arch responses to correlated multiple excitations. Earthquake Engineering & Structural Dynamics, 1993, 22: 389-404
    [33] Hao H. Response of multiple supported rigid plate to spatially correlated seismic excitations. Earthquake Engineering & Structural Dynamics, 1991, 20(9): 821-838
    [34] Hao H, Duan X N. Seismic response of asymmetric structures to multiple ground motions. Journal of Structural Engineering, 1995, 121(2): 1557-1564
    [35] Hao H, Duan X N. Multiple excitation effects on response of symmetric buildings. Engineering structure, 1996, 18(6): 732-740
    [36] Hao H. Characteristics of torsional ground motions. Earthquake Engineering & Structural Dynamics, 1996, 25(6): 599-610
    [37] Hao H. Torsional response of building structures to spatial random ground excitation. Engineering Structures, 1997, 19(2): 105-112
    [38] Hao H. Response of two-way eccentric building to non-uniform base excitation. Engineering Structures, 1998, 20(8): 677-684
    [39] Hao H. Ground motion spatial variation effects on circular arch response. Journal of Engineering Mechanics, 1994, 120(11): 2326-2341
    [40] Hao H. A parametric study of the required seating length for bridge decks during earthquake. Earthquake Engineering & Structural Dynamics, 1998, 27(1): 91-103
    [41] Harichandran R S, Wang W. Response of simple beam to spatially varying earthquake excitation. Journal of Engineering Mechanics, ASCE, 1988, 114(9): 1526-1541
    [42] Harichandran R S, Wang W. Response of indeterminate two-span beam to spatially varying seismic excitation. Earthquake Engineering & Structural Dynamics, 1990, 19(2): 173-187
    [43] Harichandran R S. Correlation analysis in space-time modeling of strong ground motion. Joumal of Engineering Mechanics, ASCE, 1987, 113(4): 629-634
    [44] Harichandran R S. Stochastic analysis of rigid foundation filtering. Earthquake Engineering & Structural Dynamics, 1987, 15(7): 889-899
    [45] Harichandran R S, Hawvari A, Sweidan B. Response of long-span bridges to spatially varying ground motion. Journal of structural Engineering, ASCE, 1996, 125(5): 476-484
    [46] Harichandran R S, Chen M T. Reliability of an earth dam excited by spatially varying earthquake ground motion. Proceedings of the 11th World Conference on Earthquake Engineering, Elsevier, Amsterdam, 1996, Paper No. 1287
    [47] Harichandran R S. An efficient adaptive algorithm for large-scale random vibration analysis. Earthquake Engineering & Structural Dynamics, 1993, 22(7): 151-165
    [48] Harichandran R S. Random vibration under propagation excitation: closed-form solutions. Journal of Engineering mechanics, 1992, 118(3): 575-586
    [49] Harichandran R S, Vanmarke H. Stochastic ground motion of earthquake ground motion in Space. Journal Of Engineering Mechanics, 1986, 112(4): 154-174
    [50] Zerva A. Lifeline response to spatially variable ground motions. Earthquake Engineering & Structural Dynamics, 1988, (7): 361-379
    [51] Zerva A. Differential response spectra for the seismic response of lifeline. Structural Dynamics, Proceedings of the 4th European Conference on structural Dynamics, EUEODYN'99 A. A. Balkema, Rotterdam, 1999: 1153-1158
    [52] Zerva A. Effeet of spatial variability and propagation of seismic ground motions on the response of multiply supported structures. Probabilistic Engineering Mechanics, 1991, 7: 217-226
    [53] Zerva A. Effect of spatial variation of ground motions on bridges. Proceedings of the 5th ASCE Specially Conference on Probabilistic Methods, 1988: 253-256
    [54] Zerva A. Seismic loads predicted by spatial variability models. Structural Safety. 1992, 11: 227-243
    [55] Zerva A. Response of multi-span beams to spatially incoherent seismic ground motions. Earthquake Engineering & Structural Dynamics, 1990, 19: 819-832
    [56] Zerva A, Harada T. Effect of surface layer stochastic on seismic ground motion coherence and strain estimates. Soil Dynamics and Earthquake Engineering, 1997, 16: 445-457
    [57] Zerva A, Shinozuka M. Stochastic differential ground motion. Structural Safety, 1991, 10(1): 129-143
    [58] Zerva A. Seismic ground motion simulations from a class of spatial variability models. Earthquake Engineering & Structural Dynamics, 1992, 21(2): 351-361
    [59] 林家浩.随机地震响应的确定性算法.地震工程与工程振动,1985,5(1):89-94
    [60] 林家浩.随机地震响应功率谱快速算法.地震工程与工程振动,1990,10(4):38-46
    [61] 林家浩,张文首,钟万勰.大跨度结构随机地震响应.固体力学学报,1991,12(4):319-328
    [62] 林家浩.多相位输入结构随机响应.振动工程学报,1992,5(1):73-77
    [63] Lin J H. A fast CQC algorithm of PSD matrices for random seismic Responses. Computers &Structures, 1992, 44(3): 683-687
    [64] Lin J H, Zhang W S, Li J J. Structural responses to arbitrarily coherent stationary random excitations. Computers & Structures, 1994, 50(5): 629-633
    [65] Lin J H, Zhang W S, Williams F W. Pseudo-excitation algorithm for non-stationary random seismic response. Engineering Structures, 1994, 16(4): 270-276
    [66] 林家浩.剪切梁随机地震响应的李兹法.应用力学学报,1994,11(3):241-247
    [67] 李建俊.随机地震响应分析的虚拟激励法.博士学位论文,大连理工大学工程力学研究所,1994
    [68] 林家浩,李建俊,郑浩哲.任意相干多激励随机响应.应用力学学报,1995,12(1):97-103
    [69] Lin J H, Shen W P, Williams F W.Accurate high-speed computation of non-stationary random structure response. Engineering Structures, 1997,19(7):586-593
    [70] 林家浩,张亚辉,孙东科,孙勇.受非均匀调制演变随机激励结构响应快速精确算法.计算力学学报,1997,14(1):2-8
    [71] Lin J H, Li J J, Zhang W S,Williams F W.Non-stationary random seismic responses of multi-support structures in evolutionary inhomogeneous random fields. Earthquake Engineering and Structural Dynamics, 1997,26:135-145
    [72] Lin Jiahao, Sun Dongke, Sun Yong, F W Williams. Structure response to non-uniformly modulated evolutionary random seismic excitations. Communications in Numerical Methods in Engineering, 1997,13:605-616
    [73] Lin Jiahao, Wang X C,F W Williams. Asynchronous parallel computing of structural non-stationary random seismic responses. Int. J. Num. Meth. in Eng.,1997,40:2133-2148
    [74] 林家浩,钟万勰.关于虚拟激励法与结构随机响应的注记.计算力学学报,1998,15(2):217-223
    [75] 潘旦光,楼梦麟,范立础.多点输入下大跨度结构地震反应分析研究现状.同济大学学报,2001,29(10):1213-1219
    [76] Berrah M, Kausel E.A model combination rule for spatially varying seismic motions. Earthquake Engineering & Structural Dynamics, 1993,22:791-800
    [77] Yamamura N, Tanaka H. Response analysis of flexible MDF systems for multiple-support seismic excitation. Earthquake Engineering & Structural Dynamics, 1990,19:345-357
    [78] Trifunac M D, Todorovska M I. Response spectra for differential motion of column. Earthquake Engineering & Structural Dynamics, 1997,26:251-268
    [79] 王君杰,王前信,江近仁.大跨度拱桥在空间变化地震动下的响应.振动工程学报,1995,8(2):119-126
    [80] Kiureghian A D, Neuenhofer A. Response spectrum method for multi-support seismic excitations. Earthquake Engineering & Structural Dynamics, 1992,21(8): 713-740
    [81] Kiureghian A D, Neuenhofer A.A response spectrum method for multiple-support seismic excitations. UCB/EERC-91/08, Berkeley, Earthquake Engineering Research Center, University of California, Aug. 1991,66 pages
    [82] Loh C H, Ku B D. An efficient analysis of structural response for multiple-support seismic excitations. Engineering structure, 1995,17(1):15-26
    [83] Burdisso R A, Singh M P. Multiply supported second systems part Ⅰ: Response spectrum analysis. Earthquake Engineering & Structural Dynamics, 1987,15:35-72
    [84] Burdisso R A, Singh M P. Multiply supported second systems part Ⅱ: Seismic inputs. Earthquake Engineering & Structural Dynamics, 1987,15:73-90
    [85] 霍俊荣.近场强地面运动衰减规律的研究.博士学位论文,国家地震局工程力学研究所,1989
    [86] 蒋溥,梁小华,雷军著.工程地震动时程合成与模拟.地震出版社,1991
    [87] 俞载道.结构动力学基础.同济大学出版社,1988
    [88] Clough R W, Penzien J. Dynamics of structures(2nd edition). Computers and Structures Inc., 2003
    [89] Bolotin V V. Statistical theory of aseismic design of structures. Proc. of the 2nd WCEE, Tokyo-Kyoto, Japan, vol. 2: 1365-1374
    [90] 林家浩,张亚辉.随机振动的虚拟激励法.北京:科学出版社,2004
    [91] Papadimitriou K, Beck J L. Stochastic characterization of ground motion and applications to structural response. Proc. of the 10th WCEE, Madrid, Spain, vol. 2: 835-844
    [92] Kanai K. An empirical formula for the spectrum of strong earthquake motion, BSSA. vol. 5: 85-95
    [93] Tajimi H. A statistical model of determining the maximum response of a structure during an earthquake. Proc. of the 2th WCEE, Tokyo-Kyoto, Japan
    [94] Shinozuka M, Sato Y. Simulation of nonstationary random process, Journal of the Engineering Mechanics Division, ASCE, vol. 93, No. EM1: 11-40
    [95] Levy R, Kozin F. Processes for earthquake simulation, Journal of the Engineering Mechanics Division, ASCE, vol. 94, No. EM6: 1597-1601
    [96] Levy R, Kozin F, Moorman R B. Random processes for earthquake simulation, Journal of the Engineering Mechanics Division, ASCE, vol. 97, No. EM2: 495-517
    [97] 常中仁.两自由度地震动模型在结构抗震设计中的应用.重庆建筑大学硕士学位论文,1995
    [98] 俞载道,曹国敖著.随机振动理论及其应用.同济大学出版社,1988
    [99] 胡聿贤,周锡元.弹性体系在平稳和平稳化地面运动下的反应.中国科学院土木建筑研究所地震工程研究报告集,第一集,科学出版社,1962
    [100] 牛荻涛.基于弹塑性随机动力分析的抗震结构概率设计理论与方法.哈尔滨建筑大学博士学位论文,1991
    [101] 欧进萍,牛获涛,杜修力.设计用随机地震动的模型及其参数确定.地震工程与工程振动,11卷3期:45-54
    [102] 叶天义.结构抗震的随机振动理论及应用研究.重庆建筑大学硕士学位论文,1993
    [103] 赖明,叶天义,李英民.地震动的双重过滤白嗓声模型.土木工程学报,28卷6期:60-66
    [104] 洪峰,江近仁,李玉亭.地震地面运动的功率谱模型及其参数的确定.地震工程与工程振动,14卷2期:46-52
    [105] 杜修力,陈厚群.地震动随机模拟及其参数确定方法.地震工程与工程振动,14卷4期:1-5
    [106] Safak E. Adaptive modeling, identification and control of dynamic structural systems(Ⅰ): Theory. Journal of EngineeringMechanics, ACE, vol. 115, No.11: 2386-2405
    [107] 吕扬生,边奠英.随机信号处理导论.天津大学出版社,1988
    [108] Iyengar R N, Iyengar K T S R. A nonstationary random process model for earthquake accelerograms. BSSA, vol. 59, No. 3: 1163-1188
    [109] Saragoni G R, Hart G C. Simulation of artificial earthquakes, EESD, vol. 2, No. 3: 249-267
    [110] 江近仁,陆钦年,孙景江等.强震运动谱的统计特性.国家地展局工程力学研究所研究报告,编号87-032,1987
    [111] Lai, Shih-sheng P. Statistical characterization of strong ground motions using power spectral density function. BSSA, vol. 72, No.1: 259-274
    [112] Levy R, Kozin Fand Moorman. Random processes for earthquake simulation, Journalof the Engineering Mechanics Division, ASCE, Vo1.97 ,No. EM2:495-51
    [113] Lutes L D, Lilhanand K. Frequency content in earthquake simulation, Journal of the Engineering Mechanics Division, ASCE, Vol. 105, No.EM1:143-158
    [114] Kung Shyh-Yuan, Pecknold D A. Effect of ground motion characteristics on the seismic response of torsionally coupled elastic systems. A Report on a Research Project Sponsored by the NSF, University of Illinoisat Urbana-Champaign, Urbana, Illinois, 1982
    [115] Davenport A G. Note on the distribution of the largest value of a random function with application to gust loading. Proc. Inst. Civil Eng.,28:187-196
    [116] Vanmarcke E H. Properties of spectral moments with applications to random vibration. J. Eng. Mech. Div. Proc., ASCE, 98(EM2), 1972
    [117] 赵凤新,刘爱文.地震动功率谱与反应谱的转换关系.地震工程与工程振动,21(2):30-35
    [118] Amin M, Ang A H S. Nonstationary Stochastic Model of Earthquake Motion. J. Engineering Mechanics Division, ASCE, ,1968, 94(EM2):559-584
    [119] 张治勇,孙柏涛,宋天舒.新抗震规范功率谱模型参数的研究.世界地震工程,2000,16(3):33-38
    [120] 薛素铎,王雪生,曹资.基于新抗震规范的地震动随机模型参数研究.土木工程学报,2003,36(5):5-10
    [121] 欧进萍,牛荻涛,杜修力.设计用随机地震动的模型及其参数确定.地震工程与工程振动,1991,11(3):45-53
    [122] 洪峰,江近仁,李玉亭.地震地面运动的功率谱模型及其参数的确定.地震工程与工程振动,1994,14(2):46-51
    [123] 欧进萍,牛荻涛.地震地面运动随机过程模型的参数及其结构效应.1990,23(2):24-34
    [124] 胡聿贤,周锡元.弹性体在平稳和平稳化地面运动下的反应[A].地震工程研究报告集第一集[C].北京:科学出版社,1962,33-50
    [125] 建筑抗震设计规范GB50011-2001.北京:中国建筑工业出版社,2001
    [126] 孙景江,江近仁.与规范反应谱对应的金井清谱的谱参数.世界地震工程,1990,8(1):42-48
    [127] 胡聿贤,何训.考虑相位谱的人造地震动反应谱拟合.地震工程与工程振动,6(2):37-51
    [128] 陈永祁,刘锡荟,龚思礼.拟合标准反应谱的人工地震波.建筑结构学报,1981(4):34-42
    [129] 胡聿贤,张敏政.缺乏强震观测资料地区地震动参数的估算方法.地震工程与工程振动,4卷1期:1-11
    [130] 李杰,李国强.地震工程学导论,地震出版社,1992
    [131] Ohsaki Y, Watabe M, Tohdo M. Analysis on seismic ground motion parameters including vertical components. Proc. of the 7th WCEE, Istanbul, Turkey, Vol. 2, PartⅡ:97-104
    [132] Bolt B, Abrahamson N A. New attenuation relations for peak and expected accelerations of strong ground motion, BSSA, Vol.72, No. 6:2307-2321
    [133] Seed H B, Idriss I M. Influence of soil conditions on building damage potential during earthquakes. Journal of Structural Division, ASCE, Vol. 97, No. ST2:639-663
    [134] Vanmarcke E H, Lai S S P.A measure of duration of strong ground-motion. Proc. of the7th WCEE, Istanbul, Turkey, Vol. 2, PartⅡ:537-544
    [135] Schnabel P B, Seed H B. Accelerations in rock for earthquakes in the western United States. BSSA, Vol. 63,No. 2:501-516
    [136] McCann M W, Boore D M。Variability in ground motion:Root mean square acceleration and peak acceleration for the 1971 San Femando. California, Earthquake, BSSA, Vol. 73, No. 2:615-632
    [137] Hudson D E. Parameters for seismic hazard mapping-A review. Bulletin of the Indian Society of Earthquake Technology. Vol. 29, No. 3:1-14
    [138] Dowrick D J. Earthquake Resistant Design. John Wiley and Sons Press
    [139] 蒋溥,戴丽思.工程地震学概论.地震出版社,1993
    [140] Ohsaki Y.On the significance of phase content in earthquake ground motions. E ESD, Vol. 7. No. 5:427-439
    [141] Izumi M, Watanabe T, Katakura H. Interrelations of fault mechanisms, phase inclinations and nonstationarities of seismic waves. Proc. of the 7th WCEE, Istanbul, Turkey, Vol. 1:89-96
    [142] Nigam N C. Phase properties of a class of random processes. EESD, Vol. 10, No. 5: 711-717
    [143] Nigam N C. Phase properties of earthquake ground acceleration records. Proc. of the 8th WCEE, San Francisco, USA, Vol. Ⅱ:549-556
    [144] Kubo T. Analysis of phase angle properties and simulation of earthquake strong motions. Proc. of the 8th WCEE, San Francisco, USA, Vol. Ⅱ:565-572
    [145] 金星,廖振鹏.地震动强度包线函数与相位差谱频数分布函数的关系.地震工程与工程振动,10卷4期:20-26
    [146] Sawada T. Application of phase differences to the analysis of nonstationary of earthquake ground motion. Proc. of the 8th WCEE, San Francisco, USA, Vol. Ⅱ:557-564
    [147] 朱昱,冯启民.相位差谱的分布特征和人造地震动.地震工程与工程振动,12卷1期:37-44
    [148] 朱昱,冯启民.地震加速度相位差谱分布的数字特征.地震工程与工程振动,13卷2期:30-37
    [149] 赵凤新,胡聿贤.地震动非平稳性与幅值谱和相位差谱的关系.地震工程与工程振动,14卷2期:1-6
    [150] Takizawa H, Jennings P C. Collapse of a model for ductile reinforced concrete frame under extreme earthquake motions. EESD, Vol. 8, No. 2:117-144
    [151] Mahin S A. Effects of duration and aftershocks on inelastic design earthquakes. Proc. of the 7th WCEE, Istanbul, Turkey, Vol. 5:677-680
    [152] 章在墉.地面运动持续时间的研究现状和前景.中国科学院工程力学研究所研究报告,1979
    [153] 谢礼力,张晓志.地震动记录持时和工程持时.地震工程与工程振动,8卷1期:31-38
    [154] Bolt B A. Duratio of strong ground motion. Proc, of the 5th WCEE,Rome, Italy, Vol. 1:1304-1313
    [155] Trifunac M D, Brady A G.A study on the duration of strong earthquake ground motion, BSSA, Vol.65, No. 3:581-626
    [156] Dobry R, Idriss I M, Ng E. Duration characteristics of horizontal components of strong motion earthquake records. BSSA, Vol. 68, No. 5:1487-1520
    [157] Vanmarcke E H, Lai S S P. Strong motion duration and RMS amplitude of earthquakes. BSSA, Vol. 70, No. 4:1293-1307
    [158] Perez V. Response time duration of selected United States strong motion earthquake records. Proc. of the 6th WCEE, Vol. 1:923
    [159] Perez V. Spectra of amplitudes sustained for a given number of cycles: An introduction of response duration for strong motion earthquake records. BSSA, Vol. 70, No. 5:1943-1954
    [160] ZahrahT, Hall W L. Earthquake energy absorption in SDOF structures. Journal of Structural Engineering Division, ASCE, Vol. 110, No. ST8:1757-1772
    [161] Xie lili, Zhang Xiaozhi. Engineering duration of strong motion and its effects on seismic damage. Proc. of the 8th WCEE, San Francisco, USA, Vol. Ⅱ:307-312
    [162] 吴育才,黄宗明,王金海.单层厂房震例及其应用.山东科学技术出版社,1991
    [163] Feng Q M, Hu Y X. Spatial correlation of earthquake motion and its effects on structural response. Proc. US-PRC Bilateral Workshop on Earthquake Engineering, Vol. 1, 1982
    [164] Harichandran R S, Vanmarcke E H. Stochastic variation of earthquake ground motion in space and time. J. Engng. Mech.,Vol. 112, No. 2,1986
    [165] Hao H. Effects of spatial variation of ground motions on large multiply-supported structures, Report No. UCB/EERC-89-06, 1989
    [166] 王君杰.多维地震动随机模型及结构的反应谱分析方法.国家地震局工程力学研究所博士学位论文,1992
    [167] Abrahamson N A, Bolt B A, Darragh R B, Penzien 3, Tsai Y B. The SMART 1 accelerograph array(1980-1987):A review. Earthquake spectra, Vol. 3, NO. 2, 1987
    [168] Loh C H, Lin S G. Directioality and simulation in spatial variation of seismic waves. Eng. Struct. Vol. 12, No. 3:134-143,1990
    [169] Loh C H, Yeh Y T. Spatial variation and stochastic modeling of seismic differential ground movement. EESD, Vol. 16,No. 4,1988
    [170] 中山大学数学力学系.概率论及数理统计.人民教育出版社,1987
    [171] 王耕禄,史荣昌.矩阵理论.国防工业出版社,1988
    [172] ANSYS动力学分析培训手册
    [173] 王有智,夏卫华.用大质量法计算东风EQ140汽车前面罩的强迫运动响应.力学与实践,1998,20(5):32-34
    [174] 杨德庆.考虑星—箭动力耦合作用结构瞬态响应分析.宇航学报,2003,24(2):213-216
    [175] 陈幼平,周宏业.斜拉桥地震反应分析.中国铁道科学,1996,17(1):1-8
    [176] 史志坚,周立志.大跨度桥梁抗震设计和振动控制的研究和应用现状.城市道桥与防洪,2002(4):7-13
    [177] Der Kiureghian A. Structural response to stationary excitation. J. Engng Mech.,1980,106:1195-1213
    [178] Der Kiureghian A.A response spectrum method for random vibration analysis of MDF system. Earthquake Eng. Struct. Dyn, 25:99-111
    [179] Berrah M, Kausel E. Response spectrum analysis of structures subjected to spatially varying motions. Earthquake Engng Struct. Dyn, 1992, (21):461-470
    [180] Berrah M, Kausel E.A model combination rule for spatially varying seismic motions. Earthquake Engng Struct. Dyn, 1993, (22):791-800
    [181] Heredia- Zavoni E, Vanmarke E H. Seismic random-vibration analysis of multisupport- structural systems. J Eng Mech, 1994,120 (5):1107-1128
    [182] Der Kiureghian, Armen, Neuenhofer Ansgar. A response spectrum method for multiple-support seismic excitations. Report No. UCB/EERC-91/08, Earthquake Engineering Research Center, University of California at Berkeley, 1991
    [183] Kiureghian A D, Neuenhofer A. Response spectrum method for multi-suppport seismic excitations. Earthquake Engineering and Structural Dynamics. 1992,21: 713-740
    [184] Nakamura, Yutaka, Der KiureghianArmen, Liu Wen David.Multiple-support response spectrum analysis of the Golden Gate Bridge. Report No. UCB/EERC-93/05, Earthquake Engineering Research Center, University of California at Berkeley, 1993
    [185] Der Kiureghian Armen, Keshishian, Petros G, Hakobian Ashot. Multiple support response spectrum analysis of bridges including the site-response effect & the MSRS code. Report No. UCB/EERC-97/02, Earthquake Engineering Research Center, University of California at Berkeley, 1997
    [187] 李宏男.结构多维抗震理论与设计方法.北京:科学出版社,1998
    [188] Yamamura N, Tanaka H. Response analysis of flexible MDF systems for multiple-support seismic excitation. EESD, 1990, 19: 345-357
    [189] Chopra A K. Dynamics of Structures: Theory and Applications to Earthquake Engineering(second edition).北京,清华大学出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700