空间网格结构土—结构相互作用模型与地震反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前大跨空间网格结构抗震研究主要把屋盖结构作为分析对象,有关抗震分析理论比较成熟。实际的空间网格结构是由屋盖结构、支承结构、下部基础以及地基组成。大跨空间网格结构的支承结构一般由柱子或框架结构组成。基础一般为独立基础,条形基础,筏板基础以及桩基础。土-结构相互作用的一般作用机理为如果地表存在建筑物,地震将迫使地基与上部结构一起振动。由于地震产生的上部结构振动在建筑物内部经过多次折射后将有一部分再次传入地基引起基础地基新的振动后再作用于上部结构,如此反复的这种现象称为地震作用下的结构-地基动力相互作用,简称为土-结构相互作用。地震作用下考虑结构-地基相互作用与刚性地基假定相比较可归纳为两方面:结构动力特性改变,包括自振频率降低、振型改变;结构的整体阻尼增加。本文主要以带支承的平板网架和带支承的单层网壳结构为分析模型,研究空间结构屋盖-支承结构-地基耦合效应,以及土-结构相互作用对空间结构地震响应的影响。主要研究内容如下:
     (1)适合于空间网格结构土-结构相互作用分析模型研究
     在Gazatas半无限空间模型的基础上,提出在强震作用下的浅基础与土分离的改进分析模型。在群桩基础模型中,提出考虑竖向桩-土相互作用的空间网格结构三维非耦合分析模型。并以一个空间桁架结构为例,通过本文所提出的非耦合分析模型与完全耦合模型的桩基础以及上部结构地震反应的对比,验证所提空间网格结构非耦合桩-土相互作用模型的正确性。并且通过对比也验证所提强震作用下浅基础与土分离的改进分析模型的正确性。
     (2)地震动特性和土-结构相互作用双重因素对平板网架地震反应影响研究
     在提出强震作用下浅基础与土分离的改进分析模型基础上,研究地震动特性和土-结构相互作用双重因素对结构地震反应的影响。考虑土-结构相互作用后,结构的周期将会变长。近场地震动具有长周期的速度大脉冲,远场地震动也具有长周期分量。研究近场地震动与远场地震动对于考虑土-结构相互作用的平板网架的地震反应的影响。
     (3)土-结构相互作用对平板网架地震反应影响中辐射阻尼的影响研究
     在上述平板网架结构的浅基础土-结构相互作用研究中,一是延长了结构的周期,二是通过上部结构与下部结构的相互作用增加了结构的整体阻尼比。在本文的研究中,主要基于平板网架第一阶模态求出土-结构相互作用对于结构整体阻尼比的增加。分析考虑辐射阻尼对于空间结构土-结构相互作用的影响。
     (4)以柱支承的空间桁架结构为分析模型,研究完全耦合的桩-土相互作用对上部桁架结构地震反应的影响以及参数化分析。
     在建模中主要应用动力非线性p-y弹簧模拟水平桩-土相互作用、动力非线性t-z弹簧模拟桩-土相互作用的摩擦力、以及用动力非线性q-z弹簧模拟桩端的非线性力-位移关系来描述桩-土非线性相互作用关系。主要研究不排水抗剪强度,极限主应力为一半时的应变值以及最大桩侧横向磨阻力与承载力比值对上部结构地震反应影响并进行参数化研究。
     (5)以单层网壳结构为研究对象,非线性桩-土相互作用对单层网壳结构的地震反应影响研究。
     运用非线性弹簧单元模型分别模拟三维动力非线性桩土相互作用中的p-y曲线,t-z曲线以及q-z曲线,使得非线性弹簧的骨架曲线与上述非线性p-y曲线,t-z曲线以及q-z非线性曲线近似并且假设上述三种非线性弹簧单元的非线性滞回规律。在此基础上,研究三维非线性桩-土相互作用对单层网壳结构的地震反应影响规律。
     (6)在空间网格结构桩-土相互作用研究的基础上,以三维动力非线性桩-土相互作用模型在地震作用下的地震反应为对比标准,选取嵌固法模型,阻抗函数法模型以及“m值”模型三种桩-土相互作用简化模型,对比三种桩-土相互作用简化模型在地震输入下的地震反应的对比,找到了适合于单层网壳结构的桩基础抗震设计简化模型。
The roof structure is chosen as the analysis model in the current seismic researchof the long-span latticed spatial structure and the relevant seismic theory is mature.The real latticed spatial structure includes the roof structure, the supporting structureand the soil medium. The supporting structure in the long-span latticed spatialstructure is the column or the frame. In most cases, the foundation includes theindependent foundation, the strip foundation, the raft foundation and the pilefoundation. When the structure is on the soil medium, the soil medium and thesuperstructure will vibrate simultaneously under the earthquake. At the same time,some of the energy from the vibration of superstructure will be transmitted to thesurrounding soil medium, and then the vibration in the soil medium will acted uponthe superstructure. This phenomenon is called the soil structure interaction under theseismic actions. Compared with the rigid foundation assumption, the effect of the soilstructure interaction under the seismic actions could be categorized as the followingtwo aspects: the change of the dynamic characteristic which including the decrease ofthe frequency and the change of the mode shape, the increase of the damping ratio.This paper, where the reticulated space structure and the sphere shell with supportingstructure is the analysis model, mainly analyze the interactions between the roof, thesupporting structure and the soil medium and the effect of the interaction on theseismic response of the roof. The main research in this paper is as follows:
     (1) Suitable soil structure interaction model for the latticed spatial structure.
     Based on the half-space model by Gazatas, a new model, which considers thecrack between the foundation and the soil under strong earthquake, is put forward. Inthe pile group model, the3-D non-coupling model considering vertical soil-pileinteraction is put forward. With one spatial truss as one example, the new shallowfoundation and the pile group model is verified by the comparison between thecoupling model and the un-uncoupling model.
     (2) The effect of the dynamic characteristics of the ground motion and soilstructure interaction on the seismic response of spatial structure.
     Based on the shallow foundation model considering the crack between thefoundation and soil, the effect of two factors including the ground motion characterand the soil structure interaction on the seismic response of spatial structure is studied.When the soil structure interaction is considered, the period of the structurewill be increased. The near field ground motion has the characteristic of the velocitypulse with long period and the high frequency in the far field ground motion will befiltered during the propagation, so both kinds of the ground motions have thecharacteristic of the long period. The effect of the two kinds of the ground motions onthe response of the reticulated spatial structure incorporating the soil structureinteraction is studied.
     (3) Effect of the radiation damping on the seismic response of the reticulatedspatial structure incorporating the soil structure interaction
     There are two main effects in the study of the soil structure interaction on theseismic response of the latticed space structure with shallow foundation. One is theelongation of the period of the structure, second is the increase of the overall radiationdamping ratio. In this paper, the increase of the overall radiation damping is mainlybased on the elongation of period of the first mode shape. The effect of the radiationdamping on the seismic response of the roof structure is mainly considered in the soilstructure interaction analysis.
     (4) Effect of fully coupling soil pile interaction on the seismic response of thespatial truss supported by the column and the parametric analysis by the softwareopensees.
     In the analysis model, the nonlinear p-y spring is to model the horizontal soil-pileinteraction; the nonlinear t-z spring is to model the vertical soil–pile frictionsinteraction; the nonlinear q-z spring is to model the soil–pile interactions between thesoil and the force at the end of the pile.
     (5) Effect of the nonlinear soil pile interaction on the seismic response of thelatticed shell by the software SAP2000.
     In the analysis model, the skeleton curve of the nonlinear spring in the SAP2000is equal to the skeleton curve of the p-y curve, the t-z curve and the q-z curverespectively. The hysteretic models are assumed for the three springs respectively.Based on the above, the3D soil pile interaction on the seismic response ofsingle-layer shell is studied. Some important conclusions are drawn.
     (6)Simplified pile analysis model in the seismic design of the single-layerlatticed shell.
     On the basis of the seismic response of the single-layer latticed shellincorporating the3D nonlinear soil-pile interaction, the seismic response of the single –layer latticed shell incorating the nD rigid model, the impedence function model andthe m model are compared. By the comparison, the simplified soil-pile interactionmodel in the seismic response of spatial model is found.
引文
[1]曹资,薛素铎.空间结构抗震理论与设计.北京:科学出版社,2005
    [2]丁阳,张笈玮.。行波效应对大跨度空间结构随机地震响应的影响.地震工程与工程振动,2008,28(1):24~31
    [3]丁阳,林伟.大跨度空间结构多维多点非平稳随机地震反应分析.工程力学,2007,24(3):97~103
    [4]薛素铎,潘云.超长大跨结构考虑地震输入空间变化效应的响应特征.北京工业大学学报,2008,34(12):1264~1269
    [5]王多智,范峰.冲击荷载下单层球面网壳的失效机理.爆炸与冲击,2010,30(2):169~177
    [6]支旭东,范峰.凯威特型单层球面网壳在强震下的失效研究.工程力学,2008,25(9):7~12
    [7]支旭东,范峰.材料损伤累积在网壳强震失效研究中的应用.哈尔滨工业大学学报,2008,40(2):169~173
    [8]薛素铎,蔡炎城.被动控制技术在大跨空间结构中的应用概况.世界地震工程,2009,25(3):25~33
    [9]薛素铎,李雄彦. Control devices incorporated with shape memory alloy.地震工程与工程振动:英文版,2007,6(2):159~169
    [10]薛素铎,赵伟.摩擦摆支座在单层球面网壳结构中的隔震分析.世界地震工程,2007,23(2):41~45
    [11] Myung-Chae Cheong, Shiro Kato. Pushover analysis of a double layer latticed dome. IASSsymposium,2001,TP081.
    [12] Shiro KATO, Shoji Nakazawa. Estimation of static seismic loads for latticed domessupported by substructure frames with braces deteriorated due to bulcking. Journal of theinternational association for shell and spatial structures: J.IASS,2007,48(2):71~86.
    [13] T.Takeuchi, T.Ogawa. Seismic response evaluation of lattice shell roofs using amplificationfactors. Journal of the international association for shell and spatial structures: J.IASS,2007,48(3):197~210
    [14] Yue Yin, Xin Huang. Study on the accuracy of response spectrum method for long-spanreticulated shells. International Journal of space structure,2009,24(1):29~35.
    [15]刘先明.大跨度空间网格结构多点输入反应谱理论的研究和应用.东南大学博士学位论文,2003。
    [16]梁嘉庆,叶继红.多点输入下大跨度空间网格结构的地震反应分析.东南大学学报:自然科学版,2003,33(5):625~630.
    [17]孙建梅,叶继红.多点输入反应谱方法的简化.东南大学学报:自然科学版,2003,33(5):647~651
    [18]孙建梅,叶继红.多点输入下大跨空间网格结构的可靠度分析.应用力学学报,2005,22(4):560~566
    [19] S.D Xue, X.S. Wang and Z. Cao, Multi-Dimensional Pseudo Excitation Method forNonstationary Random Seismic Analysis of Spatial Lattice Shells. International Journal of SpaceStructures,2004,19(3),129~136.
    [20]王雪生,薛素铎.结构多维地震作用研究综述及展望.世界地震工程,2001,17(4):27~33
    [21]薛素铎,王雪生.结构多维地震作用研究综述及展望分析方法及展望.世界地震工程,2002,18(1):34~40.
    [22]曹资,张超,张毅刚.网壳屋盖与下部支承结构动力相互作用研究.空间结构,2001,7(2):19~26.
    [23]曹资,薛素铎.空间结构抗震分析中的地震波选取与阻尼比取值.空间结构,2008,14(3):3~8.
    [24]储烨,叶继红.大跨空间网格结构多点输入下的弹塑性地震响应分析.空间结构,2006,12(2):28~33
    [25]储烨,叶继红.老山自行车馆多点输入下地震响应及强度破坏分析.防灾减灾学报,2007,27(3):275~283
    [26] Koichiro Ishikawa, Shoji Okubo. Evaluation method for predicting dynamic collapse ofdouble layer latticed space truss structures due to earthquake motion.International journal of spacestructures,2000,15(3):249~257.
    [27] J.P.Wolf. Dynamic soil structure interaction. Prentice-Hall.1985.
    [28] Kausel,Eduardo, Whitman,Robet. Dynamic analysis of embedded structures. Transactions ofthe4thinternational conference on structural mechanics in reactortechnology,sanfrancisco,California,USA,1977,K2/6
    [29] Little.R.R., Raftopoulo,d.d. Vertical soil structure interaction effects. Bulletin of theseismological society of America,1979,69(1):221~236
    [30] Scavuzzo,R,J, Isenberg,J.Effect of foundation rotation on seismic inertial forces of thenuclear power plant structure. Nuclear engineering and design,1973,24(2):195~202
    [31]戚承志,钱七虎.核电站抗震研究综述.地震工程与工程振动,2000,20(3):76-86
    [32]梁万顺.核电厂结构的随机地震反应分析.天津大学博士论文,2005.
    [33] H.L.Graves, H.T.Tang. Large-scale seismic test program at Hualien Taiwan.Nuclearengineering and design,1996,163:323~332
    [34] Yoshio Kitada, Tsutomu Hirotani. Model test on dynamic structure-structure interaction ofnuclear power plant buildings. Nuclear engineering and design,1999,192:205~216.
    [35] Richard Dobry, George Gazetas. Dynamic response of arbitrarily shaped foundations [J].Journal of geotechnical engineering,1986,112(2):109~135
    [36] Sekhar Chandra Dutta, Koushik Bhattacharya. Response of low-rise buildings under seismicground excitation incorporating soil-structure interaction. soil dynamics and earthquakeengineering,2004,24:893~914.
    [37] K.Galal,M.Naimi. Effect of soil conditions on the response of reinforced concrete tallstructures to near fault earthquakes.2008,17:541~562
    [38]李培正.结构-地基动力相互作用体系的振动台实验及计算模拟分析.2002,同济大学博士学位论文
    [39]李培振,程磊.可液化土-高层结构地震相互作用振动台试验.同济大学学报:自然科学版,2010,38(4):467~474
    [40]吕西林,任红梅.液化场地自由场体系的数值分析及振动台试验验证.岩石力学与工程学报,2009,28(2):4046~4053
    [41]任红梅.液化场地桩-土-高层结构相互作用体系的振动台实验及计算分析.2009,同济大学博士学位论文
    [42] Boris Jeremic, Sashi Kunnath. Influence of soil-foundation interaction on seismic reponse ofthe I-880viaduct. Engineering structures,2004,26:391~402
    [43] Penzien J, Scheffey C F, Partnelee R A. Seismic analysis of bridges on long piles.ASCE,1964,90:223~254
    [44]孙利民,张晨南.桥梁桩土相互作用的集中质量模型及参数确定.同济大学学报,2002,30(4):409~415
    [45]范立础.桥梁抗震.上海:同济大学出版社,1996:91~92
    [46] M.Hesham EI Naggar. Dynamic analysis for laterally loaded piles and dynamic p-y curves.Canadian geotechnical journal,2000,37:1166~1183.
    [47] M.Hesham EI Naggar. Simplified BNWF model for nonlinear seismic response analysis ofoffshore piles with nonlinear input ground motion analysis [J]. Canadian geotechnical journal,2005,42:365~380.
    [48] Wanchalearm Kornkasem. Seismic behavior of pile-supported bridges. Ph.D disertation,University of Illinois at Urbana-Champaign,2001.
    [49] B.B.Sonji. Influence of soil–structure interaction on the response of seismically isolatedcable-stayed bridge. Soil dynamics and earthquake engineering,2008,28:245-257.
    [50] Matthew E.Boweryanyan. Seismic fragility curves for a typical highway bridge inCharleston,SC considering soil structure interaction and liquefaction effects. ClemsonUniversity,2007.
    [51] Conte,J.P. Nonlinear seismic analysis of bridge ground system.15th ASCE engineeringmechanics conference, Columbia university, New York, NY.
    [52] Yan,L. Bridge–Foundation-Ground system:3D seismic response model.3rdInternationalconference on earthquake engineering, Nanjing, China.
    [53] Anoonshirvan Shamsabadi, Three dimensional nonlinear seismic soil abutment foundationstructure interaction analysis of the skewed bridges, PhD dissertation, University of southernCalifornia,2007
    [54] Ross W.Boulanger. Seismic soil-pile-structure interaction experiments and analysises.Journal of geotechnical and geoenvironmental engineering,1999,125(9):750~759
    [55]刘忠.单桩横向非线性动力响应简化分析方法研究.湖南大学博士学位论文,2004.
    [56] Chopra, Anil K. Earthquake response of concrete gravity dams including hydrodynamic andfoundation interaction effects. EERC Report, UCB/EERC-80/01.
    [57] Zhang liping. Computation of spatially varying ground motion and foundation-rockimpedance matrix for seismic analysis of arch dams. EERC Report, UCB/EERC-91/06.
    [58] Wang jinting, Chopra, Anil k. Three dimensional earthquake analysis of the concrete damsconsidering spatially varying ground motion, EERC Report, UCB/EERC-2008/04.
    [59] Bycroft,G.N.,Mork,P.N. The seismic response of dam with soil structure interaction. Journalof engineering mechanics,1987,113(9):1420~1428
    [60] Cervera,Miguel, Oliver,Javier. Seismic evaluation of concrete dams via continuum damagemodel. Earthquake engineering&Structural dynamics,1995,24(9):1225~1245
    [61] Tsai,C.S., Chen, Ching-shyang. Seismic behavior of dam-reservoir-foundation andunbounded media. American Society of mechanical engineers, pressure vessel and piping division,1999,387:193~200
    [62]杜修力,赵建军.考虑土-结构相互作用效应的结构地震响应时域子结构分析法.北京工业大学学报,2007,33(5):517~523.
    [63] Anil K. Chopra. Comparing response of SDOF syatem to near-fault and far-fault earthquakemotions in the context of spectral regions. Earthquake engineering&structural dynamics,2001,30:1769~1789.
    [64] Praveen K. Malhotra. Response of building to near-field pulse-like ground motions.Earthquake engineering&structural dynamics,1999,28:1309-1326.
    [65] Wen-I Liao. Earthquake responses of RC moment frames subjected to near-fault groundmotions. Earthquake engineering&structural dynamics,2001,10:219-229.
    [66] Wen-I Liao. Comparison of dynamic response of isolated and non-isolated continuous girderbridges subjected to near-fault ground motions. Engineering structures,2004,26:2173~2183.
    [67] Murat Dicleli. Effect of near-fault ground motion and damper characteristics on the seismicperformance of chevron braced steel frames. Earthquake engineering&structural dynamics,2007,36:927~948.
    [68] K. Galal. Effect of soil conditions on the response of reinforced concrete tall structures tonear-fault earthquakes. The structural design of tall and special buildings,2008,17:541~562.
    [69] N.N. Ambraseys, J.Douglas. Near-field horizontal and vertical earthquake ground motion [J].Soil dynamics and earthquake engineering,2003,23:1~18
    [70] Sashi K.Kunnath. Effect of near-fault vertical ground motions on seismic response ofhighway overcrossings. Journal of bridge engineering,2008,13(3):282~290.
    [71] Amr S. Elnashai, Luigi Di Sarno. Fundamentals of earthquake engineering.2008:161~163
    [72] Nau,J.M, Hall,W.J. Scaling methods for earthquake response spectrum. Journal of structuralengineering, ASCE,1984,110(7):1533~1548.
    [73] Matsumura, k. On the intensity measures of strong motions related to structural failures.Proceedings of the10th world congress on earthquake engineering,1992:375~380.
    [74] Baker J.W. Vector-value ground motion intensity measures for probabilistic seismic demandanalysis. Ph.D. Dissertation, Department of civil and environmental engineering, StanfordUniversity, California,2005
    [75] Jonathan Hancock, Julian J.Bommer. Using spectral matched records to explore the influenceof strong motion duration on inelastic structural response. Soil Dynamics and earthquakeengineering.2007,27:291~299
    [76] C. Allin Cornell. Engineering seismic risk analysis. Bulletin of the seismological society ofAmerica,1968,58(5):1583~1606.
    [77] Robin K. McGuire. Probabilistic seismic hazard analysis: early history. Earthquakeengineering&Structural dynamics,2008,37:329~338
    [78] Jack W. Backer. Conditional mean spectrum: Tool for ground-motion selection. Journal ofstructural engineering, ASCE,2011,137(3):322~331.
    [79] A.S.veletsos, Lateral and rocking vibrations of footing. Journal of the soil mechanics andfoundation division, ASCE,1971,97:801~815
    [80] Y.X.Cai, P.L.Gould, Nonlinear analysis of3D seismic interaction of soil-pile-structuresystems and application. Engineering structures,2000,22:191~199.
    [81] Matin P P, One dimensional dynamic ground response analysis. Journal of geotechnicalengineering,ASCE,1982,108(7):935~954
    [82] Hardin B O,Shear modulus and damping in soils design equations and curves. Journal of soilmechanics and foundation, ASCE,1972,98(7):603~642
    [83]庄海洋,陈国兴,土体动非线性黏弹性模型及其ABAQUS软件的实现.岩土力学,2007,28(3):436~442
    [84] American Association of state highway and transportation officials. AASHTO guidespecifications for LRFD seismic bridge design,2009
    [85] European committee for standarization. Eurocode8-Design of structures for earthquakeresisitance-part2:Bridges.
    [86]孙利民,范立础.阪神地震后日本桥梁抗震设计规范的修订.同济大学学报,2001,29(1):60~64.
    [87]建筑抗震设计规范(GB50011-2001),中华人民共和国建设部,2008.
    [88] IBC2003, International building code, International code council,2003
    [89] ASCE7-02, minimum design loads for buildings and other structures,2007
    [90] Richard Dobry, George Gazetas. Dynamic response of arbitrarily shaped foundations. Journalof geotechnical engineering,1986,112(2):109~135
    [91] George Gazetas. Horizontal stiffness of arbitrarily shaped embedded foundations. Journal ofgeotechnical engineering,1986,113(5):440~457.
    [92] Hatzikonstantino. Rocking stiffness of arbitrarily shaped embedded foundations. Journal ofgeotechnical engineering,1989,115(4):457~472.
    [93] George Gazetas. Horizontal damping of arbitrarily shaped embedded foundations. Journal ofgeotechnical engineering,1986,113(5):458~475.
    [94] Martha Fotopoulou. Rocking damping of arbitrarily shaped embedded foundations. Journal ofgeotechnical engineering,1989,115(4):473~490.
    [95] George Gazetas. Vertical response of arbitrarily shaped embedded foundations. Journal ofgeotechnical engineering,1985,111(5):750~771
    [96] Shahid Ahmad. Torsional stiffness of arbitrarily shaped embedded foundations. Journal ofgeotechnical engineering,1992,118(8):1168~1185.
    [97] Shahid Ahmad. Torsional radiation damping of arbitrarily shaped embedded foundations.Journal of geotechnical engineering,1992,118(8):1186~1199.
    [98] George Gazetas. Formulas and charts for impedance of surface and embedded foundations.Journal of geotechnical engineering,1991,117(9):1363~1381.
    [99] Sekhar Chandra Dutta, Response of low-rise buildings under seismic ground motionincorporating soil-structure interaction. Soil dynamic and earthquake engineering,2004,24:893~914.
    [100] Koushik Bhattacharya. Effect of soil flexibility on dynamic behavior of building frames onraft foundation. Journal of sound and vibration,2004,274:111~135.
    [101] Koushik Bhattacharya. Assessing the lateral period of the building frames incoporatingsoil-flexibility. Journal of sound and vibration,2004,269:795~821.
    [102] Wolf, J.P. Dynamic soil structure interaction.1985, Prentice-Hall, Inc., Englewood.
    [103] Wolf,J.P. Foundation vibration analysis using simple physical models.1994,PTRPrentice-Hall, Inc,
    [104]肖晓春.地震作用下土-桩-结构动力相互作用的数值模拟.大连理工大学博士学位论文,2003.
    [105] Matlock,H. SPASM8-A dynamic beam-column program for seismic pile analysis withsupport motion, Fugro, Inc.
    [106] Matlok,H,Simulation of lateral pile behavior. Proceedings of earthquake engineering andSoil dynamics, ASCE, NewYork,1978,600~619.
    [107] Reese,L., Analysis of laterally loaded piles in sand. proceedings of6th offshore conference,1974,2:473~483
    [108] Reese,L., Field testing and analysis of laterally loaded piles in stiff clay. Proceedings of6thoffshore conference,1975,2:671~690
    [109] Reese,L., Handbook on design of piles and drilled shafts under laterally load,Rep.No.FHWA-IP-84-11,1984, department of the transportation, federal highway administration,Washington,D.C.
    [110] Nogami,T., Nonlinear soil-pile interaction model for dynamic lateral motion. Journal ofGeotechnical engineering, ASCE,1992,118(1):889~106
    [111] M. Hesham Ei Naggar, Simplified BNWF model for nonlinear seismic response analysis ofoffshore piles with nonlinear input ground motion analysis. Canadian Geotechnical Journal,2005,42:365~380.
    [112] M. Hesham Ei Naggar, Dynamic analysis for laterally loaded piles and dynamic p-y curves.Canadian Geotechnical Journal,2000,37:1166~1183.
    [113] Ross W. Boulanger, Seismic soil-pile-structure interaction experiments and analysis. Journalof Geotechnical and Geoenvironmental engineering,1999,125(9):750~759
    [114] Sivapalan Gajan, Numerical models for analysis and performance based design of shallowfoundation subjected to seismic loading, PEER2007/04, university of California, Berkeley,2007.
    [115] Chad Harden, Tara Hutchinson, Numerical modeling of the nonlinear cyclic response ofshallow foundation, PEER2005/04, university of California, Berkeley,2005.
    [116] Shaoming Wang. Nonlinear seismic soil-pile-structure interaction, Earthquake spectrum,1998,14(2):377-396.
    [117] Lok, T.M., Effect of soil nonlinearity to the behavior of seismic soil pile structureinteraction. Ph.D dissertation,1999, university of California, Berkeley.
    [118] Meymand,P.J., Large scale Shaking table scale model tests and analysis of seismic soil pilesuperstructure interaction. Proceedings of the second international conference in earthquakegeotechnical,1999,341~346
    [119] Anil K. Chopra. Comparing response of SDOF system to near-fault and far-fault earthquakemotions in the context of spectral regions. Earthquake engineering&structural dynamics,2001,30:1769-1789.
    [120] Praveen K. Malhotra. Response of building to near-field pulse-like ground motions.Earthquake engineering&structural dynamics,1999,28:1309-1326.
    [121] Wen-I Liao. Earthquake responses of RC moment frames subjected to near-fault groundmotions. Earthquake engineering&structural dynamics,2001,10:219-229.
    [122] Wen-I Liao. Comparison of dynamic response of isolated and non-isolated continuous girderbridges subjected to near-fault ground motions. Engineering structures,2004,26:2173-2183.
    [123] Murat Dicleli. Effect of near-fault ground motion and damper characteristics on the seismicperformance of chevron braced steel frames. Earthquake engineering&structural dynamics,2007,36:927-948.
    [124] K. Galal. Effect of soil conditions on the response of reinforced concrete tall structures tonear-fault earthquakes. The structural design of tall and special buildings,2008,17:541-562.
    [125] N.N. Ambraseys, J.Douglas. Near-field horizontal and vertical earthquake ground motion.Soil dynamics and earthquake engineering,2003,23:1-18
    [126] Sashi K.Kunnath. Effect of near-fault vertical ground motions on seismic response ofhighway overcrossings. Journal of bridge engineering,2008,13(3):282-290.
    [127] Amr S. Elnashai, Luigi Di Sarno. Fundamentals of earthquake engineering,2008,161-163
    [128] Nau, J.M, Hall, W.J. scaling methods for earthquake response spectrum. Journal ofstructural engineering, ASCE,1984,110(7):1533-1548.
    [129] Matsumura, k. On the intensity measures of strong motions related to structural failures.Proceedings of the10th world congress on earthquake engineering,1992:375-380.
    [130] Baker J.W. Vector-value ground motion intensity measures for probabilistic seismic demandanalysis. Ph.D. Dissertation, Department of civil and environmental engineering, StanfordUniversity, California.2005
    [131] Jonathan Hancock, Julian J.Bommer. Using spectral matched records to explore theinfluence of strong motion duration on inelastic structural response. Soil Dynamics and earthquakeengineering,2007,27:291-299
    [132] C. Allin Cornell. Engineering seismic risk analysis. Bulletin of the seismological society ofAmerica,1968,58(5):1583-1606.
    [133] Robin K. McGuire. Probabilistic seismic hazard analysis: early history. Earthquakeengineering&Structural dynamics,2008,37:329-338
    [134] Jack W. Backer. Conditional mean spectrum: Tool for ground-motion selection. Journal ofstructural engineering, ASCE,2011,137(3):322-331.
    [135] A.S.Veletsos, V.V.Nair. Seismic interaction of structures on hysteretic foundations.Structureresearch at Rice, Report No.21,1974
    [136] Javier Aviles, Luis E.Pepez-rocha. Effect of foundation embedment during building soilinteraction. Earthquake engineering and structural dynamics,1998,27:1523-1540
    [137] Javier Aviles, Luis E.Pepez-rocha. Soil structure interaction in yielding systems. Earthquakeengineering and structural dynamics,2003,32:174923-1771.
    [138] Javier Aviles, Luis E.Pepez-rocha. Influence of foundation flexibility onR andC factors.Journal of structure engineering,2005,131(2):221-230
    [139] Javier Aviles, Luis E.Pepez-rocha. Design concept for yielding structures on flexiblefoundation. Engineering structures,2005,27:443-454.
    [140] Jennings, p.c, Bielak, J. Dynamics of building-soil interaction. Bulletin of seismologicalsociety of America,1973,63:9-48.
    [141] Bielak, J. Modal analysis for building–soil interaction. Journal of engineering mechanics,1976,102:771-786.
    [142] Veletsos, A.S, Prasad, A.M. Seismic interaction of structures and soils: stochastic approach.1989,Journal of structural engineering,115(4):935-956.
    [143] Kim,S, Stewart,J.P. Kinematic soil structure interaction from strong motion recordings.Journal of geotechnical&Geoenviromental engineering,2003,129(4):323-335.
    [144] Xiaojing Duan. A soil structure interaction analysis of tall buildings.University of southernCalifornia,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700