节段接缝剪切变形及其在桩—土—桥梁体系中的影响效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连续刚构桥是桥梁家族中较为年轻的成员,由于它梁体连续、梁墩固结,既能保持连续梁无伸缩缝、行车平顺的优点,又能保持T型刚构桥不设支座、不需转换体系的优点,能满足特大跨径桥梁的受力要求,在近几年得到迅猛的发展和建设。
     但是,目前很多大跨连续刚构桥在使用过程中出现了一个普遍的问题,就是跨中过度下挠。而连续刚构桥后期的挠度过大不但会破坏桥面的铺装层,影响桥梁的使用寿命和行车舒适性,甚至危及高速行车时的安全。所以跨中下挠成为当前制约大跨径连续刚构发展的一个急待解决的问题。由于问题的复杂性和多种原因并存,本文在总结相关文献的基础上,对主梁悬浇施工质量差而造成的节段接缝的剪切变形会导致结构过度下挠这一因素进行了深入的研究。目前关于这一现象虽然已有学者提出,但是尚缺乏系统、深入的理论研究。因此本文所做的工作对于改善此类桥梁的使用状况,更新设计理念具有重要的意义。
     本文主要研究内容如下:
     (1)以国内已建大跨悬浇PC箱梁桥为例,建立空间有限元模型,研究节段接缝的模拟方法;分析接缝的存在对主梁施工过程中竖向变形的影响。
     (2)研究不同混凝土徐变模式对节段接缝剪切徐变的影响;分析节段接缝的剪切变形对主梁长期挠度的影响。
     (3)基于桩-土-桥梁结构体系模型,分析接缝对全桥结构受力和变形性能的影响,特别是研究节段接缝在移动的汽车荷载下的动力影响效应。
     研究结果表明:
     (1)在主梁悬浇施工过程中,节段接缝的存在会使梁的竖向变形大于完整结构下的计算值。接缝剪切变形对跨中挠度的增加值随着悬浇节段的增加而不断增加,但是当增加到一定数值后又出现了减小的趋势。剪切变形增加值同相应的完整梁挠度的比值在整个悬浇过程中呈不断减小的趋势。
     (2)依据1985年和2004年建议的混凝土徐变的两种计算模式,计算结构长期挠度,结果表明按1985年规范比2004年规范的计算结果要大一些。
     (3)节段接缝对长期挠度影响显著,其挠度增大比例随着龄期的增长而加大,在本文实例计算中,接缝主梁在徐变计算龄期内会比完整梁的挠度增加约一倍左右。
     (4)基于桩-土-连续刚构全桥体系模型,当考虑桩土作用时,全桥结构的固有振动频率值会降低。同样,主梁刚度降低将导致全桥结构的固有振动频率的降低,振动周期加长,振型位移值也会改变。
     (5)桩-土-桥梁结构在动力汽车荷载作用下,结构各部位的位移和内力比静态荷载下均有较大的增加比例,而且这一比例对于完整梁结构取值稍大些,而接缝梁模型略小些,说明当主梁刚度减弱时,结构对动力响应作用的敏感程度有所减弱。
     (6)桩-土-桥梁结构在动力汽车荷载作用下,主梁节段接缝的存在对全桥结构的内力和位移均会产生影响,从动态响应的最不利效应看,随着上部主梁刚度的减弱,跨中挠度将增加,墩顶、桩顶水平位移减小,跨中最大弯矩值减小,主梁最大剪力减小,桩底轴向压力增加。
Continuous rigid frame bridges, as the young bridge family member, has been developed and built rapidly in our and foreign country in recent years, just because of its continuous beam, fixed beam and pier top without support, which leads to traveling comfort. And also it needn’t converting structure system to meet the special loading requires of long span bridges.
     However, a common problem is caused in many long-span continuous frame bridge, which is over-deflection of mid-span section. As we know, over-deflection of this bridge may cause the failure of bridge deck paving, serving life and comfortable traveling in late loading period. So how to control this case becomes an urgent task to improve the property of this kind of bridge. Due to the complexity of the problem and variety of existing reasons, the paper aims at one main factor to study, which is the result of segmental joint shear deformation coming from bad cantilever construction. Although this phenomenon has been put forward by some researchers, but the deep systematic study in theory is lacked. So, the working of this paper may be important to improve the loading property and renovate the design concept of this bridge.
     The studied content of this paper are as follows:
     (1) Taking domestic built long-span cantilever constructed box bridge as an example, a three-dimensional finite element model is built. The simulation method of segmental joint and its influence on deflection in cantilever construction is analysed.
     (2) Using different calculation mode of concrete creep, the influence of shear deflection caused by segmental joint on beam long-term deflection is studied.
     (3) Based on pile-soil-bridge structure system model, dynamic response of the full bridge structure in deformation and loading properties is researched, particularly the dynamic influence of segmental joint with mobile car load.
     Based on the analysis above mentioned, the main achievements are as follows:
     (1)During the beam cantilever construction process, the vertical deflection of beam with segmental joint will be greater than without, because of shear deformation of the joints. The increased deflection value first increases with the increase number of the segment construction, and then it decreases gradually. While in the whole construction procedure, the ratio of joint shear deformation to the corresponding beam deflection without joint is continuously decreasing.
     (2)According to the two calculation modes of concrete creep proposed in 1985 and 2004, the long-term deflection is calculated, which shows that it is greater by specification in 1985 than in 2004.
     (3)The existing of segmental joints may have obvious influence on long-term deflection of beam, resulting in the over-deflection. The deflection increasing ratio increases with the concrete age. In the calculation of the example bridge, during the age of concrete, the beam with joints is about 2 times the deflection of that without joints.
     (4) In pile-soil-full bridge system model, the natural vibration frequency of the full structure is reduced with the consideration of pile-soil action. In same way, the beam stiffness reduction due to joints may cause the reduction of natural vibration frequency too, and also with longer period of vibration and dynamic displacement change.
     (5) In pile-soil-full bridge system model, the displacement and internal force in all pat of structure with dynamic car loading is larger than with static loading, and the increase ratio is different between the structure with segmental joints and without joints. The result shows that the dynamic response of structure with segmental joints is less sensitive to dynamic loading than without joints.
     (6) Based on pile-soil-bridge structure with dynamic vehicle loading, the existence of segmental joints may bring different internal force and displacement. Considering the most disadvantageous effect, with the reduction of upper beam stiffness, the deflection of mid-span l will increase, the horizontal displacement of pier and pile heads will reduce, and the maximum bending moment and shearing force of the main beam will reduce, axial pressure of pile bottom will increase.
引文
[1]赵恒俊,马长青,张涛.公路桥梁建设趋势初探,黑龙江交通科技,2005(5): 47-49
    [2]刘山洪,钱永久.大跨PC箱梁桥腹板裂缝的控制研究[J].重庆交通学院学报,Vol.24,No.4,2005年8月:19-22
    [3]孙军超.悬臂现浇法施工中节段接缝问题分析[J].山西建筑,Vol.33,No.20,2007年7月:339-340
    [4]胡伟雄.大跨径梁桥节段接缝有关问题分析[J].公路与汽运,2004(4):84-86
    [5]王法武.大跨预应力混凝土梁桥长期挠度控制研究[D].同济大学硕士学位论文,2006年3月
    [6]龚昕.大跨度预应力砼连续梁式桥主梁下挠研究[D].西南交通大学硕士学位论文,2004年10月
    [7]张世辉.大跨预应力混凝土连续刚构桥跨中持续下挠原因分析及施工控制实践[D].西南交通大学硕士研究生论文,2007年6月
    [8]贺朋,周志祥,季国富,等.连续刚构桥节段接缝的质量及其对工后挠度的影响[J].重庆交通学院学报,Vol.23,No.1,2004年2月:6-9
    [9]钟明全.预应力混凝土梁分段灌筑接缝的静力性能研究[J].西南交通大学学报,1994,29(4):429-435
    [10]雷宇.节段式桥梁接缝剪切性能试验研究综述[J].山西建筑,Vol.33,No.4,2007年2月:282-283
    [11]Franz G.Versucheüber die Querkraftaufnahem in fugen von Spannebetontr gern aus Fertigteien. Beton-und Stahlbetonbau ,1959 ,54 (6):137-140
    [12]Jones L L.Shear Tests on Joints between Precast Post-Tensioned Units.Magazine of Concrete Research ,1959,11(31):156-158
    [13]Zelger C.and Rusch H.Der Einfuss von Fugen auf die Feistigkeit von Fertigteilen.Beton2und Stahlbetonbau,1961(10):234-237
    [14]Base G. D.Shearing Tests on Thin Epoxy2Resin Joints Between Precast Concrete Units.Concrete and Construction Engineering,1963(7):273-277.
    [15]Gaston J.R.and Kriz L.G.Connections in Precast Concrete Structures.New York,John Wiley and Sons,1964
    [16]Sims F. A.and Woodhead S. Rawcliffe Bridge in Yorkshire. Civil En-gineering and Public Works Review,1968,63(741):385-391
    [17]Finsterwalder U.,J ungwith D. and Bauman T. Tragfahigkeit von Spannebeton balken aus Fertigtelien mit Trockenfugen quer zur Haupttragrichtung. Der Bauingernieur ,1974(10):1-10
    [18]Moustafa S. E. Ultimate Load Test of a segmentally Constructed Prestressed I-beam. PCI Journal,1974,19(4):54-75
    [19]张开敬,赵人达,马忠国.武汉长江斜拉桥主梁分段施工混凝土接缝性能试验[J].西南交通大学学报,Vol.29,No.4,1994年8月:436-441
    [20]张开敬.PC、PPC梁分段施工接缝混凝土抗拉强度降低系数的试验研究[J].桥梁建设,2000(1):6-8
    [21]方亚非.剪切变形对预应力结构变形的影响[J].上海公路,2007(1):31-33
    [22]陈猛,徐咏梅.竖向接缝对连续刚构桥长期变形的影响分析[J].交通标准化,2006(6):39-41
    [23]段云岭,刘华北.材料非线性接缝模型[J].清华大学学报(自然科学版),Vol.40,No.8,2000年:98-101
    [24]童兵,张开敬.移动支架拼架简支箱梁湿接缝段性能的试验研究[J].混凝土与水泥制品,2003(3):28-29
    [25]陈海平.预制混凝土框架结构中后张湿接缝剪力键[J].世界桥梁,1996(2):21-25
    [26] Ian N. Robertson, Prediction of vertical deflections for a long-span prestressed concrete bridge structure, Engineering Structures 27 (2005) : 1820–1827
    [27]许震,张雪松,徐君兰.连续刚构跨中下挠的参数影响分析.重庆交通大学学报(自然科学版) ,2007,26(4):9-13
    [28]李国华,韦珊珊,地基基础-结构动力相互作用的研究进展及计算方法[J].广西大学学报(自然科学版),2003. (增刊):5-10
    [29]杜成斌,赵光恒.分缝浇筑的混凝土拱坝的非线性分析研究综述[J].河海科技进展, 1993, 13(1): 14-21.
    [30]李永梅,孙国富,王松涛,等.桩-土-杆系结构的动力相互作用[J].建筑结构学报,2002.(1):75-81.
    [31]周罡,李三珍,蒲怀仁,宁晓骏。桩土共同工作的桩基内力分析有限-边界元法,昆明理工大学学报(理工版) ,第28卷第3期,2003年6月
    [32]吴鸣,赵明华.大变形条件下桩土共同工作及试验研究[J].岩土工程学报,2001,23(4):436-440.
    [33]赵明华,段少华.考虑桩基共同作用的桩基承台梁内力分析[J].湖南大学学报,2001,28(6):86~91.
    [34]凌治平,易经武,洪毓康.基础工程[M].北京:人民交通出版社,1996.9.
    [35]罗国庆,郑凯锋,桩土作用对连续钢箱梁桥结构的影响.广东公路交通. 2008年第3期
    [36]李围. AVSYS土木工程应用实例(第二版).北京:中国水利水电出版社,2007年1月,76-175。
    [37]尚晓江,邱峰,赵海峰. ANSYS结构有限元高级分析方法与范例应用(第二版).北京:中国水利水电出版社,2005年,210-250
    [38]范立础.预应力混凝土连续梁桥.北京:人民交通出版社, 2001年6月:261-279
    [39]邵旭东.桥梁工程.北京:人民交通出版社, 2005年3月:116-163
    [40]马宝林.高墩大跨连续刚构桥.北京:人民交通出版社, 2001年10月:18-110
    [41]何度心.桥梁振动研究.北京:人民交通出版社, 1989年12月:39-69.
    [42]项海帆.高等桥梁结构理论[M].北京:人民交通出社, 2000.
    [43]周履,陈永春.收缩、徐变[M].北京:人民交通出版社, 1994.
    [44]詹建辉,陈卉.特大跨度连续刚构主梁下挠及箱梁裂缝成因分析[J].中外公路, 2005, 25(1): 56-58.
    [45]唐健慧.预应力砼连续刚构桥梁有关问题的探讨[J].中国建设信息, 2005, (05X): 55-57
    [46]苏智.大跨度连续刚构的施工仿真计算和参数影响分析[博士学位论文].长沙:长沙理工大学, 2004.
    [47]石永燕.大跨度连续刚构的收缩、徐变问题及施工控制[硕士学位论文].重庆:重庆交通学院, 2001.
    [48]雷俊卿.桥梁悬臂施工与设计[M].北京:人民交通出版社,2000.
    [49]徐光辉,姚玲森,桥梁计算示例集(预应力混凝土刚架桥),北京:人民交通出版社,1995,1-230
    [50] Fronteddu Luciano,Leger Pierre,Tinawi Rene·Static and dy-namic behavior of concrete lift joint interfaces[J].Journal of Structural Engineering,1998,124(12):1418-1430
    [51]Lit Q S. Flexural free vibration of cantilevered structures of variable stiffness and mass[J].Structural engineering and me-chanics,1999,8(3):243-256
    [52]中华人民共和国行业标准,JTJ 041—2000公路桥涵施工技术规范[S],北京:人民交通版社, 2000
    [53]马保林.高墩大跨连续刚构桥[M],北京:人民交通出版社,2001
    [54]聂让,许金良,邓云潮.公路施工测量手册[M].北京:人交通出版社, 2001
    [55]向中富.桥梁施工控制技术[M].北京:人民交通出版社,2001
    [56]杜成斌,赵光恒.分缝浇筑的混凝土拱坝的非线性分析研究综述[J].河海科技进展, 1993, 13(1): 14-21
    [57]王学浩.摩擦学概论[M].北京:中国水利电力出版社,1990
    [58] Duan Y, May I M. Mathematical models forconstitutive material laws [A]. In: TawatchaiTingsanchali, Anli Wijeyewickrema. Int Conf onUrban Engineering in Asian Cities in the 21st Century Proceedings [C]. Thailand: School of Civil Engineering of the Asian Institute of Technology,1996,19-24
    [59]北京建达道桥咨询有限公司,六座连续刚构施工图咨询报告[R].重庆:高速公路发展有限公司, 2006: 13-15
    [60]王林.大跨径预应力砼桥梁温度、徐变效应的分析研究[D],杭州:浙江大学, 2005: 64-66
    [61]詹建辉,陈卉.特大跨度连续刚构主梁下挠及裂缝原因分析[J].中外公路, 2005, 25(1): 56-58
    [62]谢功元.在役混凝土梁永存预应力试验研究[D],西安:长安大学, 2004: 43-47
    [63]牛和恩.虎门大桥主跨270 m的连续刚构桥[M].北京:人民交通出版社, 1999: 36-38
    [64]向中富.桥梁施工控制技术仁M」.北京:人民交通出版社,2001.
    [65]向木生,张世瓤,张开银.大跨度预应力混凝土桥梁施工控制技术〔J」.中国公路学报,2002,15(4):37-42
    [66]顾安邦,常英.大跨度预应力连续刚构桥施工控制的理论与方法.重庆交通学院学报,x999,18(4):47-53
    [67]卢树圣.现代预应力砼理论与运用[M].北京:中国铁道出版社,2000.
    [68]徐启友.桥梁修理与技术改造[M].北京:人民交通出版社,1992.
    [69]周军生,宋桂峰.挪威Raftsundet桥简介[J].国外公路,2000,20(5):18-21
    [70]杨志平,朱桂新,李卫.预应力混凝土连续刚构桥挠度长期观测[J].公路,2004,(8):285-289.
    [71]杨小兵,混凝土收缩徐变预测模型研究,硕士学位论文,武汉:武汉大学,2004,14-26
    [72]Z.R,Bazant. Prediction of concrete creep and shrinkage: past,present and future[J]. Nuclear Engineering and Design,203(2001):27-38
    [73]唐崇钊,混凝土的徐变力学与试验技术[M〕,北京:水利电力出版社,1982.
    [74]龚洛书,惠满印,杨蓓.混凝土收缩与徐变的实用数学表达式[J].建筑结构学报,1988(5): 37-42
    [75] Model Code for Conerete Structures[S].CEB-FIP,Paris,1978
    [76] CEB欧洲国际混凝土委员会,1990年CEB-FIP模式规范(混凝土结构)[S].中国建筑科学研究院结构所规范室译. 1991, 12: 57-70
    [77] Z.P.,Bazant and S.Baweja. Creep and Shinkage Prediction Model for Analysis and Design of Conerete Structures-model B3 , RILEM Recommendation[J],Materials and Structures,V.28,1995:357-365
    [78] N.J. ,Gardner,J.W. Zhao. Creep and Shinkage Revisited[J]. ACI Materials Journal,1993,90(3):236-246
    [79]李之达,混凝土徐变及其在桥梁预拱度设置中的应用,交通科技,2006,219(6):14-16
    [80]中华人民共和国行业标准, JTG D60—2004公路桥涵设计通用规范[S],北京:人民交通版社, 2004
    [81]中华人民共和国行业标准, JTG D62—2004公路钢筋混凝土及预应力混凝土桥涵设计规范[S],北京:人民交通版社, 2004
    [82]中华人民共和国行业标准, JTG D63—2007公路桥涵地基与基础设计规范[S],北京:人民交通版社, 2007
    [83]C. G. Koh,K. K. Ang and L.Zhang,Effects of repeated loading on creep deflection of reinforced concrete beams ,Engineering Strtuctures, 1997, Vol.19.No.1,pp.2-18
    [84] Isenberg, J. Finite elemenl analysis on reinforced concrete structuresⅡ,ASCE,New York,1991, pp. 233-280
    [85]Bazant,Z.P. Mathematieal modelling of creep and shrinkage of concrete, John Wiley, New York, 1988
    [86]Sparks, P.R. and Menzies,J.B. The deflection of reinforced concrete members under fluctuating load with a sustained component.J. Struct.Engr.1973,51,413-420
    [87]Lovegrove,J. M. and Salah, E. D. Deflection and cracking of reinforced concrete under repeated loading and fatigue, Fatigue of concrete structures,(ed.Shah,S. P.) ACI, Detroit, 1982, SP-75, pp. 134-152
    [88]Shinzo,N.,Shoichi, I. and Masaru,K.Prediction of deflections and crack widths in reinforced concrete beam under repeated loading. Trans. Japan Concrete Inst. 1985,7,401-406
    [89]Balaguru, P. Prediction of the effect of fatigue loading on the serviceability of reinforced and prestressed concrete members, Int.Symp.Fatigue and Fracture in Steel and Concrete Structures, Madras, India, 1991, pp. 521-535
    [90]陈肇元,朱金锉,吴佩刚.高强混凝土及其应用,北京:清华大学出版社,1992年. 120- 123
    [91]李传习,夏桂云.大跨度桥梁结构计算理论[M〕.北京:人民交通出版社,2002
    [92]孔嘉慧.大跨度预应力混凝土连续梁桥的几个关键问题的探讨侧.华南理工大学,2001. 6
    [93]石现峰,梁志广,李建中.几种常用混凝土收缩徐变模式的比较分析[J].石家庄铁道学院学报,1998(3):8-13
    [94] Bazant, Z. P. and Panula, L. Practical prediction of time-dependent deformation of concrete (Part II: Basic creep), J. Mat. Struct. 1978. 11 (65), 317- 328
    [95]杜拱辰.现代预应力混凝土结构[M].北京:中国建筑工业出版社,1988
    [96]Bazant, Z. P. and Oh, B. H. Deformation of progressively cracking reinforced concrete beams, ACI J, 1984, 81, 268-278
    [97]Willian, W. J. and Paul, R. J. Finite elementsJor structural analysis, Prentice-Hall. Englewood Cliffs. N J, 1984
    [98]Ajibola, O. Long-term deflection on reinforced concrete beams, M. Eng. Thesis, Department of Civil Engineering, National University of Singapore,1991
    [99]马群侠,预应力混凝土箱梁徐变变形的试验研究,中国水运,2007,5(4):86-87
    [100] Z.P.Bazant. Prediction of concrete creep and shrinkage-past,present and future.[J]. Nuclear Engineeringand Design, 2001, 203:27–28
    [101]凌知民,轨道交通预应力混凝土连续梁桥的徐变控制[J],桥梁建设,2002,4:34~36
    [102]何大治,用ANSYS模拟混凝土叠合面受剪试验,国外建材科技,2003,24(5):20-23
    [103]单德山,李乔.考虑桩土作用的铁路曲线梁桥车桥耦合振动分析,重庆交通学院学报,2004年12月,23(6):10-14
    [104]单德山,李乔.车桥耦合振动数值模拟及软件实现[J],西南交通大学学报,1999,34: 663-667
    [105]夏禾,陈英俊.车-桥-墩体系动力相互作用分析[J],土木工程学报,1992,25(2):1-8
    [106]吴定俊,周建民,余华.高速铁路桥梁梁墩基础体系列车过桥动力分析[J].上海铁道大学学报, 21(10):44-49
    [107]王辉,桩-土-结构相互作用三维数值模拟,硕士学位论文,哈尔滨:哈尔滨工业大学,2006
    [108] Goodman R E, et al.A model for the mechanics of joint drock[J].ASCE,1968,94(SM3):637-660
    [109]张胜民.基于有限元软件ANSYS7.0的结构分析[M].北京:清华大学出版社,2003:45-60
    [110]陈国兴,等.土与结构材料界面性状的研究概况[J].世界地震工程,1994,4(1):1-9
    [111]范敏,解有丽,邬玻海.土-桩-结构相互作用体系的非线性地震响应分析.地震工程与工程振动,1987,7(1):30-35
    [112]扶长生等.具有理深基础的土-结构系统的非线性地震内应分析.地震工程与工程振动,1987,(1):43-54
    [113]林皋.土-结构动力相互作用.世界地震工程,1991,(1):4-21
    [114]Goodman R E,et al.A model for the mechanics of jointed rock[J].ASCE,1968,94(SM3):637-660
    [115]Clough G W,Duncan J M. Finite element analysis of retaining wall behavior[J].ASCE,1971,97(SM12):1657-1674
    [116] Desai C S.Behavior of interfaces between structural and geologic media[A].State-of the-Art Paper.Proc 1st Int Conf on Recent Adv In Geot Earthq Engrg[C].Q Soil Dyn,St Louis Mo,1981.1334-1346
    [117]蔡建业,郑史雄.桩—土相互作用对连续梁桥的动力特性影响.岩土工程与地下工程,29(1):96-97
    [118]范立础,胡世德,叶爱君.大跨度桥梁抗震设计[M].北京:人民交通出版社, 2001.
    [119]范立础.桥梁抗震[M].上海:同济大学出版社, 1997: 86-91
    [120]肖晓春,迟世春,林皋.水平地震下土—桩—结构相互作用简化分析方法[J].哈尔滨工业大学学报, 2003, 35(5): 561-564
    [121]孙利民,张晨南,潘龙,等.桥梁桩土相互作用的集中质量模型及参数确定[J].同济大学学报(自然科学版), 2002, 30(4):409-416
    [122]夏雪娇.考虑桩一土一结构相互作用的结构动力数值分析研究:硕士学位论文,大连:大连理工大学,2008
    [123]赵明华.土力学与基础工程.武汉:武汉工业大学出版社,2000年7月.95-120
    [124]JohnP.wolf.Dynamic Soil-structure Interaetion(土一结构动力相互作用,吴世明等译).北京:地震出版社,1989.12-48
    [125]J.P.Stewar,R.B.Seed,G.L.Fenves.Empirical Evaluation of Intertial Soil-Structure Interaction Effects.PEER98/07 , Pacific Earthquake Engineering Researeh Center,1998.
    [126]李辉.土一结构动力相互作用(博士学位论文).重庆:重庆建筑大学,1999.
    [127]熊仲明,赵鸿铁.地震作用下桩一土共同作用对上部结构的影响分析.西安建筑科技大学学报,1999,31(1):44-48
    [128]M.Lou,Z.Zong,W.Niu,G. Chen and F.Y.Cheng.Study on Soil-pile foundation-structure-TLD interac tion system by shaking table model test.Proe.of the Third InternationalConference on Earthquake Engineering,oct.2004,Nanjing China.
    [129]李辉,赖明,白绍良.土一结构相互作用研究综述(2).重庆建筑大学学报,1999,21(5):112-116
    [130]李辉,赖明,白绍良.土一结构相互作用研究综述(3).重庆建筑大学学报,2000,21(1):119-123
    [131]吕大为.桩筏基础中桩与土的相互作用分析(硕士学位论文).大连.大连理工大学,2000年.
    [132]〕姜文辉.地震作用下土一结构相互作用的接触面效应研究(硕士学位论文).上海,同济大学,2002.
    [133]GB50010一2002混凝土结构设计规范[S],北京:中国建筑工业出版社,2002
    [134]段明德.《公路钢筋混凝土及预应力混凝土桥涵设计规范》徐变系数的计算和应用[J].中国公路学报,1998(10):70-76
    [135]钱家欢,殷宗泽.土工原理与计算.北京:中国水利水电出版社,2000年.1-200
    [136]Duncan J.M.and Chang C.Y.Nonlinear analysis of stress and strain in soil.SMDF,ASCE,1970.Application of Computer Methods in Engineering,1970.96(SMS):1629-1653
    [137]廖雄华,李锡夔,关于土一结构相互作用界面力学行为的数值模拟.计算力学学报,2002,19( 4):450-455.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700