1+1/2对转涡轮流动特性分析及其气膜冷却流动机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对转涡轮技术是提高涡轮叶片负荷、减少叶片排数、减轻重量,从而提高发动机推重比的重要方式。近年来,对转涡轮技术越来越受到重视。目前,在欧美等发达国家中,1+1对转涡轮已经开始应用于某些先进的现役航空发动机中,而1+1/2对转涡轮也已经在一些研制中的发动机上得以应用。国际上普遍的看法是,在不久的将来,1+1/2对转涡轮将广泛地应用于各种先进的航空发动机中。然而,与欧美等发达国家相比,我国在这方面的研究上还相对比较落后。因此,为了大力提高我国航空发动机的研发水平,有必要针对对转涡轮这一关键技术进行研究,尤其对1+1/2对转涡轮的变工况特性进行分析。另外,为了达到更高的推重比、更高的热效率,现代燃气轮机的进口温度已经增至2200K以上,远远超过了金属材料的耐热程度。为了保证叶片的安全性和寿命,迫切需要先进、有效的冷却措施。研究和改善对转涡轮叶片的冷却技术,以降低其工作温度,显得尤为重要。国外对燃气轮机技术的垄断也主要集中在高温部件的设计和制造技术,其中包括透平冷却技术。
     正是在此背景下,本文利用先进的CFD技术对1+1/2对转涡轮的变工况特性及其气膜冷却流动机理进行了详细的数值研究,并且利用我所国内首座暂冲式短周期对转涡轮实验台对换热实验件的气膜冷却换热特性进行了实验研究。其中所涉及的重要研究内容如下:
     1.对非设计工况下的1+1/2对转涡轮的流动特性进行了数值研究,并且与实验结果进行了对照。研究得到了该对转涡轮的工作特性,具体表现为,在相同的落压比下,高低压涡轮的出功比和1+1/2对转涡轮的效率随涡轮转速的提高而增大;在非设计工况下,低压涡轮的做功能力随涡轮转速的提高而减弱;1+1/2对转涡轮的有效工作范围随涡轮转速的升高而逐渐变窄。该研究结果表明,借助本文的数值模拟方法能够定性地预测1+1/2对转涡轮的变工况性能。
     2.对1+1/2对转涡轮高压导叶、高压动叶设计了冷却方案,并且对不同冷却方案下的1+1/2对转涡轮流动特性进行了三维数值模拟。探讨了冷气射流在1+1/2对转涡轮中的运动规律,分析了叶片表面冷却气膜形成的特点以及冷气射流与主流的相互作用;冷气喷射对叶片表面气动参数的影响。为了研究变工况下高压动叶气膜冷却性能,对三种典型的工况进行了详细的数值模拟。研究了变工况下转速、吹风比以及落压比对高压动叶气膜冷却效果的影响;揭示了高压动叶前缘、压力面、吸力面冷气射流的流动特征;给出了冷气喷射对高压动叶叶片表面马赫数及压力分布的影响;分析了高压动叶不同位置处冷气射流对气动参数以及高压动叶通道内复杂波系结构的影响。
     3.利用国内首座暂冲式对转涡轮实验台对安装于1+1/2对转涡轮高、低压动叶之间的实验件的气膜冷却换热特性进行了初步的实验研究,并且将实验结果与二维非定常计算结果进行了对比。结果表明引入气膜冷却后,实验件各测点的换热量与无冷却时相比均有明显的降低。实验测量的热流率和二维非定常计算结果虽然在定量上存在一定的差别,但是趋势基本一致,表明数值模拟结果与实验结果定性上基本相符。
Counter-Rotating turbine technology is the most important way to increase blade loading,to decrease blade rows and weight,so as to gain higher thrust-weight ratio.In the recent few years,Counter-Rotating turbine has been more and more regarded.At present,1+1 stage Counter-Rotating turbine has been used in some advanced active duty aero-engines.And,Vaneless Counter-Rotating Turbine(VCRT, 1+1/2 stage counter-rotating turbine),which is composed of a highly loaded single stage high pressure turbine and a vaneless counter-rotating single stage low pressure turbine,has been also applied in some up-to-date test engines in Euro-America developed countries.It is obvious that the VCRT will be widely adopted in real aero-engines in the future.However,the research level of the Counter-Rotating turbine in China greatly lags behind developed countries.So,it is very necessary to perform some systemic investigations focusing on Counter-Rotating turbine, especially on the off-design performance of VCRT.In addition,to achieve higher thrust power and thermal efficiency,the inlet temperature of modern gas turbine has increased to 2200K above,which is far beyond the allowable metal temperature.Thus, to maintain acceptable life and safety standards,calls for an efficient cooling technology.It is important to research and improve cooling technology in order to reduce the operating temperature of high-temperature components.Foreign monopolies on gas turbine technologies are mainly concentrated on the high-temperature component in the design and manufacturing technology,including turbine cooling technology.
     Based on the background,off-design flow characteristics and film cooling mechanisms of VCRT were investigated by means of advanced CFD tools in this paper,film cooling heat transfer characteristics were experimental studied by means of blow-down short duration turbine facility.The blow-down short duration turbine facility is the first and unique in China.The main content in this paper is listed as follows:
     1.Numerical investigations were performed to study the flow characteristics of VCRT at off-design conditions.Numerical results were compared with experimental data.The operating characteristics of the VCRT are obtained depending on these investigations.The results indicate that the ratio of specific work of the high pressure turbine to that of the low pressure turbine and the efficiency are increased in the VCRT as the rotation speed of the rotor increases under the same expansion ratio.And the research results show that when the rotation speed of the rotor increases,the specific work of the low pressure turbine is decreased,and the effective operation range of the VCRT is reduced.The investigation results also indicate that the numerical code in this paper can qualitatively predict the flow characteristics of the VCRT at off-design conditions.
     2.Film cooling schemes were designed for the high pressure stator and the high pressure rotor of the VCRT and 3D numerical simulation were performed.The flow characteristic of coolant injection in the VCRT,the interaction between coolant injection and mainstream,the influence of coolant injection on the blade pressure distribution and Relative Ma distribution were investigated.In order to study the film cooling performance for high pressure rotor at off-design conditions,three typical conditions were simulated.The affect of speed,blowing ratio and pressure ratio on the film cooling effectiveness were considered.The coolant injection characteristic on the leading edge,pressure side and suction side of the high pressure rotor were studied. The influences of coolant injection on the pressure distribution and relative Ma distribution of the high pressure rotor blade were given.The affect of coolant injection at different location of pressure side and suction side of high pressure rotor on the complex shock systems were investigated.
     3.Some preliminarily experimental investigations were performed to study the film cooling heat transfer characteristics of the experimental model which was installed between the high pressure rotor and the low pressure rotor of the VCRT.The experimental data were compared with the 2D unsteady simulation results.And the results show that with film cooling,the heat flux ratio of measured points on the heat transfer experimental model decreased much compared with the data of no film cooling.There are some difference in quantity between the experiment results and 2D numerical simulation data,but the trends are consistent.
引文
[1]韩介勤,桑地普,杜达.燃气轮机传热和冷却技术.西安:西安交通大学出版社,2005.
    [2]韩鸿硕(译).美国国防部关键技术计划.北京:航空航天部航天科技情报研究所,1990.
    [3]Wintucky W T,Stewart W L.Analysis of Two-Stage Counter-Rotating Turbine Efficiencies in Terms of Work and Speed Requirements.NACA RM E57L05,1958.
    [4]Louis J E Axial Flow Counter-Rotating Turbines.ASME Paper 85-GT-218,1985.
    [5]Sotsenko Y V.Thermo-Gas-Dynamic Effects of the Engine Turbines with the Counter-Rotating Rotors.ASME Paper 90-GT-63,1990.
    [6]Ponomariov B A.New Generation of the Small Turboshaft and Turboprop Engines in the USSR.ASME Paper 90-GT-195,1990.
    [7]Ponomariov B A,Sotsenko Y V.Using Contra-Rotating Rotors for Decreasing Sizes and Component Number in Small GTE.ASME Paper 92-GT-414,1992.
    [8]Huber F W,Branstrom B R,Finke A K,Johnson P D,Rowey R J and Veres J P.Design and Test of a Small Two Stage Counter-Rotating Turbine for Rocket Engine Application.AIAA Paper 93-2136,1993.
    [9]Weaver M M,Manwaring S R,Abhari R S,Dunn M G,Salay M J,Frey K K and Heidegger N.Forcing Function Measurements and Predictions of a Transonic Vaneless Counter-Rotating Turbine.ASME Paper 2000-GT-0375,2000.
    [10]Haldeman C W,Dunn M G,Abhari R S,Johnson P D,Montesdeoca X A.Experimental and Computational Investigation of the Time-Averaged and Time-Resolved Pressure Loading on a Vaneless Counter-Rotating Turbine.ASME Paper 2000-GT-0445,2000.
    [11]Keith B D,Basu D K,Stevens C.Aerodynamic Test Results of Controlled Pressure Ratio Engine(COPE)Dual Spool Air Turbine Rotating Rig.ASME Paper 2000-GT-0632,2000.
    [12]Cai R X(蔡睿贤),Wu W(吴文),Fang G(方钢).Basic Analysis of Counter-Rotating Turbines.ASME Paper 90-GT-108,1990.
    [13]蔡睿贤,魏星禄.三对转涡轮及其基本分析.航空动力学报,1992,7(1):72-76.
    [14]蔡睿贤.有关对转涡轮基本设计与应用的进一步思考.航空动力学报,2001,16(3):193-198.
    [15]刘思永,王屏,方祥军,晏山平.无导叶对转涡轮新技术气动设计探讨.燃气涡轮试验与研究,2002,15(1):20-23.
    [16]刘思永,王屏,卢聪明,晏山平,方祥军.超跨音对转涡轮试验台.航空动力学报,2002,17(4):404-406.
    [17]方祥军,刘思永,王屏.轴流超跨音高载荷对转涡轮气动特性分析.北京航空航天大学学报,2003,29(6):475-479.
    [18]方祥军,刘思永,王屏,张维军.一种低压无导叶对转涡轮特性分析与设计.推进技术,2005,26(3):234-238.
    [19]方祥军,刘思永,王屏,晏山平.超跨音对转涡轮大转折角叶片的高次多项式解析造型研究.航空动力学报,2003,18(1):76-81.
    [20]季路成,项林,黄海波,徐建中.1+1/2对转涡轮叶排轴向间距对性能影响的研究.工程热物理学报,2002,23(5):565-568
    [21]权小波,李维,季路成,赵晓路,徐建中.考虑冷却的1+1/2对转涡轮初步设计.工程热物理学报,2002,23(4):433-436.
    [22]秦立森,赵晓路,徐建中.短周期全尺寸涡轮试验台及关键技术.燃气涡轮试验与研究,2002,15(1):47-51.
    [23]季路成,陈江,项林,徐建中.1+1/2对转涡轮模型试验件气动设计.工程热物理学报,2003,24(6):943-946.
    [24]季路成,肖翔,陈江,徐建中.1+1/2对转涡轮设计及控制方法探索.中国工程热物理学会热机气动热力学学术会议论文,032003,2003.
    [25]季路成,黄海波,陈江,于海力,徐建中.1+1/2对转涡轮用超音叶栅设计与 试验.工程热物理学报,2004,25(1):45-48.
    [26]秦立森,赵晓路,陈党慧,唐菲,徐建中.IET短周期涡轮实验台.燃气涡轮试验与研究,2006,19(2):47-52.
    [27]王会社,赵庆军,赵晓路,徐建中.1+1/2对转涡轮中激波结构的数值研究.工程热物理学报,2005,26(2):225-227.
    [28]王会社,赵庆军,张惠,赵晓路,徐建中.1+1/2对转涡轮低压动叶激波结构的研究.工程热物理学报,2006,27(6):941-943.
    [29]赵庆军,王会社,赵晓路,徐建中.无导叶对转涡轮三维流场的非定常数值模拟.工程热物理学报,2006,27(1):35-38.
    [30]赵庆军,王会社,赵晓路,徐建中.无导叶对转涡轮三维流场数值分析.推进技术,2006,27(2):114-118.
    [31]王会社,杨科,赵庆军,张仲柱,赵晓路,徐建中.动叶顶部间隙对1+1/2对转涡轮性能的影响.工程热物理学报,2006,27(3):120-123.
    [32]Wang Huishe(王会社),Zhao Qingjun(赵庆军),Zhao Xiaolu(赵晓路)and Xu Jianzhong(徐建中).Unsteady Numerical Simulation of Shock Systems in Vaneless Counter-Rotating Turbine.ASME Paper 2005-GT-68212,2005.
    [33]Wang Huishe(王会社),Zhao Qingjun(赵庆军),Yang Ke(杨科),Zhao Xiaolu (赵晓路),Xu Jianzhong(徐建中)and Du Jianyi(杜建一).Numerical Simulation of Shock Systems of Low Pressure Turbine in Vaneless CounterRotating Turbine.ASME Paper 2006-GT-90397,2006.
    [34]Zhao Qingjun(赵庆军),Wang Huishe(王会社),Zhao Xiaolu(赵晓路)and Xu Jianzhong(徐建中).Numerical Investigation on the Influence of Hot Streak Temperature Ratio in a High-Pressure Stage of Vaneless Counter-Rotating Turbine.International Journal of Rotating Machinery,2007,2007:56097.
    [35]Bathie W.Fundamental of Gas Turbines,2~(nd).New York:John Wiley & Sons,Inc,1996.
    [36]赵士杭.燃气轮机结构.北京:清华大学出版社,1983.
    [37]Gillespie D R H,et al.Detailed Measurements of Local Heat Transfer Coefficient in the Entrance to Normal and Inclined Film Cooling Holes.Journal of TurboMachinery,1996,118:97-119.
    [38] Kelso R M, Lim T T, Perry A E. An Experimental Study of Round Jets in Cross-flow. Journal of Fluid Machinery, 1996, 306: 111-116.
    [39] Fric T F, Roshko A. Structure of the Near Field of the Transverse Jet. Proceeding of 7th symptoms on Turbulent Shear Flows, 1989,1(2): 351-376.
    [40] Goldstein R J, Eckert R G Effect of Surface Roughness on Film Cooling Performance. Journal of Engineering for Gas Turbine and Power, 1998,114(10): 747-755.
    [41] Sherif S A, Pletcher R H. Measurements of the Flow and Turbulent Characteristics of Round Jets in Crossflow. Journal of Fluid Engineering, 1989, 111:165-171.
    [42] Karagozian A R. An Analytical Model for the Vorticity Associated with a Transverse Jets. AIAA J. 1986,24: 429-436.
    [43] Cho H, Ham J. Influence of Injection Type and Feed Arrangement on Flow and Heat Transfer in an Injection Slot. ASME Paper 2000-GT-238, 2000.
    [44] Polanka M D, Ethridge M I, Cutbirth J M. Effects of Showerhead Injection on Film Cooling Effectiveness for a Downstream Row of Holes. ASME Paper 2000-GT-260,2000.
    [45] Petersen D R, Eckert R G, Goldstein R J. Filming Cooling With Large Density Differences Between the Mainstream and Secondary Fluid Measured by Heat-Mass Transfer Analogy. Journal of Heat Transfer, 1977, 99: 620-627.
    [46] Sinha A K, Bogard D G, Crawford M E. Film-Cooling Effectiveness Down-Streams of a Single Row of Holes with Variable Density Ratio. Journal of Turbomachinery, 1991,113: 441-449.
    [47] Foster D H, Lampard J D. Convection Heat Transfer and Aerodynamics in Axial Flow Turbine. Journal of Turbomachinery, 2001,123(4): 637-686.
    [48] Liess C, Weiss P, Fottner L. The Influence of Load Distribution on Secondary Flow in Straight Turbine Cascade. Journal of Turbomachinery, 1985, 117(3): 732-756.
    [49] Kurse H. Effect of Hole Geometry and Wall Curvature and Pressure Gradient on Film Cooling Downstream of a Single Row. 1991, AD-A (16): 2080-2103.
    [50] Le Broq, Launder P V, Priddin C H. Discrete Hole Injection as a Means of Transpiration Cooling-An Experimental Study. Imp. Coll. Rep. HTS/71/37, 1971.
    [51] Walters D K, Leylek J H. A Detailed Analysis of Film Cooling Physics: Part 1 -Streamwise Injection with Cylindrical Holes. Journal of Turbomachinery, 2000,122:102-112.
    [52] McGovern K T, Leylek J H. A Detailed Analysis of Film Cooling Physics: Part II-Compound-Angle Injection with Cylindrical Holes. Journal of Turbomachinery, 2000, 122: 113 -121.
    [53] Hyams D J, Leylek J H. A Detailed Analysis of Film Cooling Physics: Part II -Streamwise Injection with Shaped Holes. Journal of Turbomachinery, 2000, 122:122-132.
    [54] Brittingham R A, Leylek J H. A Detailed Analysis of Film Cooling Physics: Part III-Compound Angle Injection with Shaped Holes. Journal of Turbomachinery, 2000,122: 133 -145.
    
    [55] Wittig R S. Gas Turbine Heat Transfer: Past and Future Challenges. Journal of Propulsion and Power, 2000, 16(4): 583 - 589.
    [56] Amagasa S, Shimomura K, Kadowaki M, Tadeishi K. Study on the Turbine Vane and Blade for a 1500℃ Class Industrial Gas Turbine. Journal of Engineering for Gas Turbines and Power, 1994, 116: 597 - 604.
    [57] Andrews. Full - Coverage Discrete Hole Film Cooling: Investigation of the Effect of Variable Density Ratio. Journal of Engineering for Gas Turbines and Power, 1994,116:587-596.
    [58] Ligrani P M, Bell C M, Hamakawa H. Film Cooling From Shaped Holes. Journal of Turbomachinery, 2000,122: 224 - 232.
    [59] Goldfield M L, Sargison J E, et al. A Converging Slot-Hole Film Cooling Geometry-Part 2: Transonic Nozzle Guide Vane Heat Transfer and Loss. Journal of Turbomachinery, 2002,124: 461 - 471.
    [60]Chin Han,Shuye Teng.Effect of Film-Hole Shape on Turbine Blade Heat Transfer Coefficient Distribution.Journal of Thermophysics and Heat Transfer,2001,15(3):249-256.
    [61]Brundage A L,Plesniak M W,and Ramadhyani S.Influence of Coolant Feed Direction and Hole Length on Film Cooling Jet Velocity Profiles.ASME Paper 2000-GT-350,2000.
    [62]Kami J,Goldstein R D.Surface Injection Effect on Mass Transfer from a Cylinder in Cross-flow:A Simulation of Film Cooling in the Leading Edge Region of Turbine Blade.Journal of Turbomachinery,1990,112(2):418-427.
    [63]Ito S,Goldstein R J.Aerodynamic Loss in a Gas Turbine Stage with Film Cooling.Journal of Engineering for Power,1980,102(2):964-970.
    [64]Schwarz S G,Goldstein R J.The Two-Dimensional Behavior of Film Cooling Jets on Concave Surfaces.Journal of Turbomachinery,1989,111:124-130.
    [65]Schwarz S G,Goldstein R J,and Eckter E R G.The Influence of Curvature on Film Cooling Performance.Journal of Turbomachinery,2000,113:472-478.
    [66]Bons J P,Macarthur C D,Rivir R B.The Effect of High Free-Stream Turbulence on Film Cooling Effectiveness.Journal of Turbomachinery,1996,118:814-825.
    [67]Bogard D G,Kohli A.Effect of very High Free-stream Turbulence on the Jet-Mainstream Interaction in Film Cooling Flow.Journal of Turbomachinery,1998,120:785-790.
    [68]Ardey S,Wolff S,Fottner L.Turbulence Structures of Leading Edge Film Cooling Jets.ASME Paper 2000-GT-0255,2000.
    [69]Undapalli S,Leylek J H.Ability of a Popular Turbulence Model to Capture Curvature Effects:A Film Cooling Test Case.ASME Paper 2003-GT-38638.
    [70]Suo M.Turbine Blade Cooling.AFAPC-TR-88-52,1988,1:112-117.
    [71]Grisch M,Schulz A,Witting S.Effect of Cross-flows on Discharge of Film Cooling Holes with Varying of Inclination and Orientation.Journal of Turbomachinery,2001,122:66-72.
    [72]Bohn D,Moritz N.Comparison of Cooling Film Development Calculation for Transpiration Cooled Flat Plates with Different Turbulence Models.AMSE paper 2001-GT-0132,2001.
    [73]Ekkad S V,Han J C,Du H.Detailed Film Cooling Measurements on a Cylindrical Leading Edge Model:Effect of Free-stream Turbulence and Coolant Density.ASME Paper 97-GT-0181,1997.
    [74]Mick W J,Mayle R E.Stagnation Film Cooling and Heat Transfer Including Its Effect within the Hole Pattern.Journal of Turbomachinery,1988,110:66-72.
    [75]Garg V K,Gaugler R E.Leading Edge Film-Cooling Effects on Turbine Blade Heat Transfer.Numerical Heat Transfer,Part A:Applications,1996(30):165-187.
    [76]Han J C,Ekkard S V.Detailed Film Cooling Measurement on a Cylindrical Leading Edge Model.Journal of Turbomachinery,1998,120:799-807.
    [77]Chernobrovkin A,Lakshminarayana B.Numerical Simulation and Aero-thermal Physics of Leading Edge Film Cooling.ASME Paper 98-GT-504,1998.
    [78]Bohn D,Becker V.Three Dimensional Flow Analysis of Turbine Blade Cascades with Leading-Edge Ejection.Journal of Propulsion and Power,2000,16:49-55.
    [79]Theodoridis G S,Lakehal D,Rodi W.2001.Three-Dimensional Calculations of the Flow Field around a Turbine Blade with Film Cooling Injection near the Leading Edge.Flow Turbulence and Combustion,2001,66(1):57-83.
    [80]Adami P,Chana K S,Martelli F,Montomoli F.Numerical Predictions of Film Cooled NGV Blades.ASME Paper GT2003-38861,2003.
    [81]安柏涛,刘建军,蒋洪德.空冷透平静叶气膜冷却研究.工程热物理学报,2005(5):55-58.
    [82]杨汇涛,曹玉璋.旋转叶片端部气膜冷却的数值计算.航空动力学报,1998(3):285-289.
    [83]Garg V K.Comparison of Predicted and Experimental Heat Transfer on a Film-Cooled Rotating Blade Using a Two-Equation Turbulence Model.ASME Paper 97-GT-220,1997.
    [84] Abhari R S, Epstein A H. An Experimental Study of Film Cooling in a Rotating Transonic Turbine. Journal of Turbomachinery, 1994,116(1): 63-70.
    [85] Garg V K. Heat Transfer on a Film-cooled Rotating Blade. International Journal of Heat and Fluid Flow, 2001, 21: 134-145.
    [86] Camci C, Art T. Experiment Heat Transfer Investigation around the Film Cooled Leading Edge of a High Pressure Gas Turbine Rotor Blade. Journal of Engineering for Gas Turbines and Power, 1985, 107(1): 1016-1021.
    [87] Vogel D T. N-S Simulation of the Flow around a Leading Edge Film-Cooled Turbine Blade Including the Interior Cooling Systems and Comparison with Experimental Data. ASME Paper 96-GT-71,1996.
    [88] Weigand B, Harsgama S P. Computation of a Film Cooled Turbine Rotor Blade with Non-Uniform Inlet Temperature Distribution Using a Three-Dimensional Viscous Procedure. ASME Paper 94-GT-15,1994.
    [89] Dawes W N. The Extension of a Solution-Adaptive 3D N-S Solver toward Geometries of Arbitrary Complexity. ASME Paper 92-GT-363,1992.
    [90] Dring R P, Blair M F. An Experimental Investigation of Film Cooling on a Turbine Rotor Blade. Journal of Engineering for Power, 1980,102(1): 81-87.
    [91] Garg V K, Abhari R S. Comparison of Predicted and Experimental Nusselt Number for a Film-Cooled Rotor Blade. ASME paper 96-GT-223,1996.
    [92] Abhari R S. Impact of Rotor-Stator Interaction on Turbine Blade Film Cooling. Journal ofTurbomachinery, 1996,118: 123-133.
    [93] Takeishi K, Aoki S, Sato T. Film Cooling on a Gas Turbine Rotor Blade. Journal ofT urbomachinery, 1992, 114: 828-834.
    [94] Camici C, Arts T. Short Duration Measurements and Numerical Simulation of Heat Transfer along the Suction Side of a Gas Turbine Blade. Journal of Engineering for Gas Turbine and Power, 1985,107: 991-997.
    [95] Camici C, Arts T. Experimental Heat Transfer Investigation around the Film Cooled Leading Edge of a High Pressure Gas Turbine Rotor Blades. Journal of Engineering for Gas Turbine and Power, 1985,107: 1016-1021.
    [96] Camici C, Arts T. Effect of Incidence on Wall Heating Rates and Aero-dynamics on a Film-Cooled Transonic Turbine Blade.Journal of Turbomachinery,1991,113:493-500.
    [97]Salcudean M,Gartshore K,Zhang I.An Experimental Study of Film Cooling Effectiveness near the Leading Edge of a Turbine Blade.Journal of Turbomachinery,1994,116(1):71-79.
    [98]Jameson A,Schmidt W,Turkel E.Numerical solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time Stepping Schemes.AIAA Paper 81-1239,1981.
    [99]Jameson A.Time Dependent Calculations Using Multi-grid with Applications to Unsteady Flows Past Airfoils and Wings.AIAA Paper 91-1596,1991.
    [100]Spalart P,Allmaras S.A One-Equation Turbulence Model for Aerodynamic Flows.AIAA Paper 92-0439,1992.
    [101]Fine Turbo User Manual 6-2-9,Brussels:NUMECA International,2005.
    [102]陈矛章.粘性流体动力学基础.第一版.北京:高等教育出版社,2002.
    [103]Hwang C B,Lin C A.Improved Low-Reynolds-Number k-e Model Based on Direct Numerical Simulation Data.AIAA Journal,1998,36(1):38-43.
    [104]Autogrid User Manual 5.1-2,Brussels:NUMECA International,2004.
    [105]Schwab J R,Stabe R G,Whitney W J.Analytical and Experimental Study of Flow through an Axial Turbine Stage with a Non-uniform Inlet Radial Temperature Profile.AIAA Paper 83-1175,1983.
    [106]Stabe R G,Whitney W J,Moffitt T P.Performance of a High-Work Low-Aspect Ratio Turbine Tested with a Realistic Inlet Radial Temperature Profile.AIAA Paper-84-1161,1984.
    [107]Dorney D J,Sondak D L,Cizmas P G A.Effects of Hot Steak/Airfoil Ratio in a High-Subsonic Single-Stage Turbine.AIAA Paper 99-2384,1999.
    [108]季路成.关于复杂流场计算及对转涡轮设计与实验方案的初步研究[D].北京:中国科学院工程热物理研究所,2000.
    [109]季路成,钟文涛,徐建中.关于1+1/2对转涡轮的基本分析和初步设计.工程热物理学报,2001,22(2):167-170.
    [110]季路成,陈江,黄海波.1+1/2对转涡轮应用中的关键技术.工程热物理学报,2003,24(1):35-38.
    [111]Ji L C(季路成),Quan x B(权晓波),Li W(李维)and Xu J Z(徐建中).A Vaneless Counter-Rotating Turbine Design towards Limit of Specific Work Ratio.ISABE Paper 2001-1062,2001.
    [112]Ji L C(季路成),Xiang L(项林),Huang H B(黄海波)and Xu J Z(徐建中).The Revelations from the Research about the Vaneless Counter-Rotating Turbine.ISABE Paper 2003-1040,2003.
    [113]Lin Y L,Shih T I P.Film cooling of a Cylindrical Leading Edge with Injection through Rows of Compound Angle Holes.Journal of Heat Transfer,2001,123(4):645-654.
    [114]Willa D Y,Leylek J H.Leading Edge Film Cooling Physics:Part1-Adiabatic Effectiveness.ASME Paper 2002-30166,2002.
    [115]Willa D Y,Leylek J H.Leading Edge Film Cooling Physics:Part2-Heat Transfer Coefficient.ASME Paper 2002-30167,2002.
    [116]Heidmann J D,Rigby D L.A Three Dimensional Coupled Internal/External Simulation of a Film-Cooled Turbine Vane.Journal of Turbomachinery,2000,122(2):348-359.
    [117]James E,Mayhew J,Baughn W.The Effect of Free-stream Turbulence on Film Cooling Heat Transfer Coefficient.ASME Paper 2002-GT-30173,2002.
    [118]杨科,王松涛,王仲奇,冯国泰.平面叶栅中冷气射流三维分离的数值模拟.推进技术,2003,24(1):43-47.
    [119]俞鸿儒,李仲发.热电模拟在表面热流率测量中的应用.力学与实践,1980,2(1):49-51.
    [120]李静美,赵润民,王吉南.用短周期风洞进行涡轮叶片传热实验的初探.航空动力学报,1987,2(1):18-22.
    [121]曹玉璋,邱绪光.实验传热学.北京:国防工业出版社,1998.
    [122]林宏镇,汪火光,蒋章焰.高性能航空发动机传热技术.北京:国防工业出版社,2005.
    [123]Drost U,Bolcs A.Investigation of Detailed Film Cooling Effectiveness and Heat Transfer Distributions on a Gas Turbine Airfoil. Journal of Turbomachinery, 1999,121(1): 233-242.
    [124] Ginibre P, Lefebvre M, Liamis N. Numerical Investigation of Heat Transfer on Film Cooled Turbine Blades. Annual of the New York Academy of Sciences, 2001,934:377-384.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700