高负荷氦气压气机叶栅和级性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于工质的差异性,采用空气常规设计方法的氦气压气机存在单级压比过小的问题。经验证,适用于氦气的大转折角叶型叶栅可使级负荷成倍增加;氦气压气机采用新型基元级设计方法,实现了提高压比,减少级数的目的。
     本文采用NUMECA的Fine/turbo软件包对5个参变量组合构成的324种新型平面叶栅进行了数值模拟研究,对结果数据进行关联研究,并得到了各参数反映损失规律性的最佳方案,在此基础上,计算了5个参量组合下162种新型基元级的性能。研究结果表明:常规设计下的扩压因子反映叶栅损失的规律在高负荷叶栅下不再适用;相同损失系数条件下,存在一个临界进气角使气流转折角达到最大,该临界进气角几乎仅与稠度相关;在较大稠度时,叶型最大厚度比变化对损失的影响十分可观,应用薄叶型很有利;新型基元级负荷得到大幅度提升,并且级效率还能维持在较高的水平。
     基于平面叶栅和基元级数值计算数据,设计了高负荷三维级和与之对比的常规三维级,并进行三维级数值模拟,模拟结果显示:该新型设计下的三维级方案是可行的,一个高负荷三维级设计方案:中径的马赫数0.465、能量头系数1.0、流量系数1.141、反动度0.5、稠度1.475,设计点的级压比达到1.1388,级效率达到89.86%,90%设计流量点的级压比和级效率为1.137和90.05%,110%设计流量点的级压比和级效率为1.139和88.99%,而作为比较的常规设计方案:中径的马赫数0.281、能量头系数0.419、流量系数0.5998、反动度0.5、稠度1.475,设计点的压比为1.067,效率为87.78%。
As a result of working fluids’difference, there is a problem that the pressure ratio of single stage of the helium compressor designed according to conventional air-compressor rule will be smaller. By way of the verification, the high-turning-angle cascade suitable for helium can make the stage-load level increasing; the helium-compressor using this new stage design method, has realized the improving compression ratio, reducing series.
     In this paper 324 new-type cascades composed of the five parameters combination are simulated by the software Fine/turbo made by NUMECA, and the data of results is studied associatedly. Based on this, 162 types of stages composed of the five parameters combination are calculated. The results of the study indicate that: the rule that the diffusion factor reflects the pressure loss under conventional design in high-load cascade is no longer applicable; under the same loss coefficient conditions, there is a critical inlet-airflow angle making the turning-angle to achieve maximum, this critical intake angle almost only related with solidity; In larger solidity (1.15 and 1.5), the blade maximum thickness ratio affects the loss considerably, applicating of thin blade is advantage; the load of the new stage is greatly enhanced, and the efficiency can maintain at a higher-level. Research data can lay a foundation for further research on high-load helium-compressor.
     Based on the data of the calculation about cascades and stages, the high-load three-dimensional stage and the conventional three-dimensional stage compared to are designed. And the flow of the three-dimensional stage is simulated. Simulation results show that, the project of this new three-dimensional stage design is reasonable. There is a project of the high-load three-dimensional stage that in the middle of the radius every parameter is respective that inlet Mach number is 0.465, the energy coefficient is 1.0, the flux coefficient is 1.141, the reaction is 0.5, the solidity is 1.475. The pressure ratio reaches 1.1388, the stage efficiency is 89.86% as a simulated result under the design condition. The pressure ratio and the stage efficiency is respective 1.137 and 90.05% under the 90% of the design flux. The pressure ratio and the stage efficiency is respective 1.139 and 88.99% under the 110% of the design flux. And that, compared to it, there is a project of the normal three-dimensional stage that in the middle of the radius every parameter is respective that inlet Mach number is 0.281, the energy coefficient is 0.419, the flux coefficient is 0.5998, the reaction is 0.5, the solidity is 1.475. The results of normal design are that the pressure ratio is 1.067, the stage efficiency is 87.78% under the design condition.
引文
[1]魏琳健等译.闭式循环燃气轮机运行经验和将来的潜力[M].美国机械工程师学会.2005:6页
    [2] Dyhr and Holzapfel. Heissluftturbinen fur Heizkraftwerke, Heizkraftwerk Oberhausen[C].“Energie”1961.
    [3] K.Bammert,G.Krey and R.Krapp.Die 50MW-helium-turbine Oberhausen. Schweizerische [C].Bauzeitung,1974.
    [4] Robert Horst Wilzhoff.Die 50MW-He-Gas-turbinenanlage in Oberhausen.Chemie-Techik. 1976.
    [5]吴宗鑫.我国高温气冷堆的发展[C].2004.
    [6] A.И.米哈伊洛夫,B.B.鲍里索夫,З.K.卡利宁.封闭循环气体涡轮装置[M].科学出版社.1964:33-37页
    [7] A.I. Kiryushin,etc. Project of the GT-MHR high-temperature helium reactor with gas turbine. Nuclera Engineering and Design. 173 (1997) 119-129.
    [8] Zuoyi Zhang,Suyuan Yu. Future HTGR developments in China after the criticality of the HTR-10. Nuclear Engineering and Design. 218 (2002) 249–257.
    [9] K.OHASHI, F.OKAMOTO, H.HAYAKAWA. Modular High Temperature Reactor (Modular HTR) Contributing the Global Environment Protection. Progress in Nuclear Energy. 2000, Vol.37, No.1-4, 307-312.
    [10] Yasushi MUTO,etc. DESIGN AND ECONOMICS OF THE HTGR43T POWER PLANT BY JAERI. Proceedings of ASME TURBO EXPO 2002 June 3-6, 2002, Amsterdam, The Netherlands.
    [11] H. van Dam. NUCLEAR GAS TURBINES SMALL-SCALE INHERENTLY SAFE, WELL-PROVEN NUCLEAR POWER, Proceedings of ASME TURBO EXPO 2002, Amsterdam, The Netherlands.
    [12] G.A.K. Crommelin. SMALL-SCALE WELL-PROVEN INHERENTLY SAFE NUCLEAR POWER CONVERSION. Proceedings of ASME TURBO EXPO 2002 June 3-6, 2002, Amsterdam, The Netherlands.
    [13] A.I. van Heek. ACACIA, A SMALL SCALE NUCLEAR POWER PLANT WITH COGENERATION CAPABILITIES. Proceedings of ASME TURBO EXPO 2002, Amsterdam, The Netherlands.
    [14] KN Pradeep Kumar,etc. HTGR CLOSED CYCLE GT PLANT ANALYSIS: OPTIONS AND PROCEDURES FOR STARTUP WITH HOT GAS INJECTION. Proceedings of ASME TURBO EXPO 2002, Amsterdam, The Netherlands.
    [15]顾义华,王捷.高温气冷堆气体透平循环方式的技术评价[J].核动力工程. 2003,24(2):107-111页
    [16]李德衡,徐小琳,曲晓川.10MW高温气冷试验堆回路及其调节系统分析.高技术通讯.1997:53-54页
    [17] Barend W. Botha and Pieter G. Rousseau. SIMULATION INVESTIGATION OF CONTROL OPTIONS FOR FULL LOAD REJECTION IN THE PBMR CLOSED CYCLE GAS TURBINE POWER PLANT. Proceedings of ASME TURBO EXPO 2002[C], Amsterdam, The Netherlands.
    [18]刘泽龙,林汝某,高林.核能湿氦气闭式循环探索研究[J].工程热物理学报.1999,20(5):549-552页吴宗鑫,张作义.先进核能系统和高温气冷堆.清华大学出版社[M].2004:196-208页
    [19]钟胜军.氦气压气机气动特性及空气模拟的研究[D].哈尔滨船舶锅炉涡轮机研究所硕士论文.2006:5页,65-75页
    [20]徐立民.闭式循环燃气轮机面临发展[A].中国造船工程学会轮机学术委员会2006年学术年会,上海,2006:28-32页
    [21]张远君校编.流体力学大全[M].北京航空航天大学出版社,1992:4-5页
    [22]李绍斌,苏杰先,王仲奇.大折转角弯曲静叶在高负荷压气机改型设计中的应用[J].推进技术.2007,28(1):26页
    [23] Jens Friedrichs,Sven Baumgarten,Gunter Kosyna,etc.Effect of stator design on stator boundary layer flow in a highly loaded single-stage axial-flow low-speed compressor[R].ASME.2000-GT-616
    [24] Matthias Boese,Leonhard Fottner. Effects of riblets on the loss behavior of a highly loaded compressor cascade[R].ASME.2002-GT-30438
    [25] Douglas J W,Li S M,Song B,etc.Effects of freestream turbulence on the losses of a highly loaded compressor stator blade[R]. ASME.2003-GT-38604
    [26] Lothar,Hilgenfeld,Michael Pfitzner. Unsteady boundary layer development to wake passing effects on a highly loaded linear compressor cascade[R].ASME 2004-GT-53186
    [27]龙艳丽徐立民.适用于氦气的大转折角叶型初步研究[J].热能动力工程,2010.
    [28]吴宗鑫,张作义.先进核能系统和高温气冷堆.清华大学出版社[M].2004:196-209页
    [29]王捷.高温气冷堆氦气透平循环热工特性的初步研究[J].高技术通讯,2002,12(9):91-95页
    [30]高温气冷堆氦气透平压气机项目介绍.2004
    [31]陈夷华,王捷,张作义.高温气冷堆联合循环技术潜力研究[J].核动力工程.2001,22(5):475-480页
    [32] Xu, Limin.Discussion about several key problems to develop Helium Gas Turbo Compressor system of HTR-10GT[A]. Proceedings of 2nd International Topical Meeting on HTR THECHNOLOGY[C].BeiJing, 2004:446-461
    [33] User Manual Fine/Turbo v8,Numeca International,2007
    [34]张皓光.轴向间隙引气对多级轴流压气机性能及流场影响的数值模拟[D].西北工业大学硕士论文.2006
    [35] Paris J,Whitaker S. Confined wakes: a numerical solution of the Navier-Stokes equations. AIChE J,1965.1033-1041
    [36] Muller T J. Application of numerical methods to physiological flows. In: Numerical methods in fluid dynamics. J H Wirz, J J Smoldern, eds.Washington d C: Hemisphere, 1978.89-159
    [37]陶文铨.数值传热学(第二版)[M].西安交通大学出版社.2001:286-288页
    [38] [美]NASA.轴流压气机气动设计[M].秦鹏译.国防工业出版社.1975:210页
    [39]李根深,陈乃兴,强国芳.船用燃气轮机轴流式叶轮机械气动热力学(原理、设计与试验研究)下册[M].国防工业出版社.1980:1-2页,123-125页
    [40] Lieblein, Seymour,Schwenk,Franois C,and Broderick,Robert L:Diffusion Factor for Estimating Losses and Limiting Blade Loadings in Axial-Flow-Compressor Blade Elements.NACA RM E53D10,1953
    [41]徐立民,龙艳丽.提高氦气压气机级压比的新型基元级初步研究[J]机电设备-轮机专刊, 2006:8-11页
    [42] Lieblein,Seymour,and Roudebush,William H:Theoretical Loss Relations for Low-SpeedTwo-Dimensional-Cascade Flow.NACA TN 3662,1956.
    [43]李超俊,余文龙.轴流压缩机原理与气动设计[M].机械工业出版社.1987:24-27页
    [44]李根深,陈乃兴,强国芳.船用燃气轮机轴流式叶轮机械气动热力学(原理、设计与试验研究)上册[M].国防工业出版社.1980:1-3页
    [45]龙艳丽.氦气压气机新型高负荷叶型初步研究[D].哈尔滨工程大学硕士论文.2008:27-28页
    [46]陈莹.闭式循环氦气压气机气动设计方法的研究[D].哈尔滨船舶锅炉涡轮机研究所博士论文.2007.4:50-51页
    [47]羌晓青.低反动度高负荷吸附式轴流压气机[D].哈尔滨工业大学硕士论文.2006:15页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700