径流透平气动设计及优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
径流式透平作为一类小型热功转换装置,在很多方面得到了应用,例如以其作为关键部件的微小型燃气轮机,广泛用于小型分布式发电、冷热电联供、车辆混合动力以及军用车辆的辅助电站等。本文对微小型燃气轮机径流透平的方案设计、三维造型与优化方法进行了详细研究。具体工作和主要结论如下
     (1)在分析各种因素对径流透平速比和反动度限制的基础上,提出了一种比较合理的速比和反动度的选择方法,并用C语言编写了径流透平一维热力设计计算程序(OCC),通过与已发表文献中的一维热力计算程序(OFC)结果进行比较,发现两者结果基本一致,且OCC设计总对总效率要高于OFC的设计效率;用一维热力设计程序对600kW燃气轮机径流透平导叶和动叶进行了设计,并进行了三维计算,对比发现一维程序计算结果与三维CFD数值模拟结果两者基本一致,验证了本文的设计方法以及一维热力设计程序对于微小型径流透平的方案设计是适用的;
     (2)采用二维分析方法,研究了进气蜗壳设计方法,编写了蜗壳设计计算程序。根据程序计算得到的蜗壳截面的几何参数,可在UG中实现蜗壳的三维造型;
     (3)对600kW整级径流透平进行数值模拟,整级透平包括蜗壳、导叶以及动叶,分析整个透平级的整体性能以及流动特征。整级透平数值模拟结果表明,导叶内的流动相当好,优化的空间不大,叶轮整体上设计比较成功,但仍需要进一步的优化;
     (4)研究了径流透平气动优化设计方法,建立了气动优化设计平台,优化平台包括基于NURBS曲线的参数化造型,CFD数值模拟以及先进的优化算法。针对600kW径流透平的叶轮进行了气动优化设计,使透平总总效率提高了0.12个百分点,透平流动性能得到了进一步改善。
Radial turbine, as a small heat-work conversion unit, is widely used in different fields. Radial turbine, for example, is the key component of small gas turbines and the application areas of such gas turbines include distributed power generation, combined heat and power supply, subsidiary power generation of military vehicle and so on. This dissertation investigates the radial turbine one-dimensional aero-thermal preliminary design,3D modeling and the aerodynamic optimization method. The main contents and results are as follows:
     1) A reasonable method of choosing speed ratio and degree of reaction for the small radial turbines was described. A one-dimensional aero-thermal preliminary design code OCC was programmed by analyzing all kinds of restriction factors on the speed ratio and degree of reaction. The design results for a600kW radial turbine nozzle and rotor blade by using the code OCC were compared with the results by the code OFC in the literature. The main parameters between the two designs were in agreement and the total to total isentropic efficiency of the radial turbine designed by the OCC is larger than that by the OFC. The three-dimensional flow calculation is conducted for the design by the OCC. The comparisons between the CFD results and the OCC results for the radial turbine showed that the results were in agreement. The present design method and the one-dimensional design code OCC are appropriate to the preliminary design of small radial turbines.
     2) The design method based on the two-dimensional analysis of the radial turbine inlet volute was discussed and the design code was programmed. The geometric parameters of the volute cross sections can be obtained by using the method and the design code. The3D volute is modeled with UG according to the volute design results.
     3) The3D flow fields of the whole radial turbine including the inlet volute, all the passages of nozzle and rotor blade are calculated. The flow inside the turbine and the overall performances were analyzed. The results indicate that the design of the stator is rather successful and the impeller still needs to be improved.
     4) An aerodynamic optimization platform for radial turbines is developed, which consists of the modules of geometry parameterization by means of NURBS, CFD flow simulation and advanced optimization algorithm. The optimization of the rotor blade of the600kW radial turbine was carried out and the turbine total to total efficiency increased by0.12%.
引文
[1]魏兵,王志伟,李莉,等.微型燃气轮机冷热电联供系统及其在国外的发展状况.电力需求侧管理,2006,8(6):62-64.
    [2]黄书宝,江伟,林国庆.微型燃气轮机发电的发展及其在福建的应用前景.电力与电工,2011,31(1):4-6.
    [3]李燕生,陆桂林.向心透平与离心式压气机.机械工业出版社,1987.
    [4]Huu, Due, Vo. Role of tip clearance flow on axial compressor stability. PH.D. Thesis, MIT, Department of Aeronautics and Astronautics, 2001.
    [5]宁方飞.考虑真实几何复杂性的跨音压气机内部流动的数值模拟.博士学位论文,北京航空航天大学,2002.
    [6]蒋康涛.低速轴流压气机旋转失速度数值模拟研究.博士学位论文,中国科学院工程热物理研究所,2004.
    [7]戴韧,陈康民.向心透平内部流动的研究.热力透平,2004,33(3):184-189.
    [8]邓清华,丰镇平.微型燃气轮机向心透平导向器的流场分析与设计研究.西安交通大学学报,2005,39(9):963-965.
    [9]邓清华,牛久芳,丰镇平.向心透平内部流动的数值分析及叶轮的改进设计.西安交通大学学报,2005,39(7):685-688.
    [10]Zhengping FENG, Qinghua DENG, Jun LI. Aerothermodynamic desi gn and numerical of radial inflow turbine impeller for a 1OOkW mi croturbine[C]. ASME GT 2005-68276.
    [11]I Watanabe, I Ariga, I Mashimo. Effect of dimensional parameters of Impellers on performance characteristics of a radial-inflow turbine, ASME paper GT 1971.
    [12]Rodgers. The characteristics of radial turbines for small gas turbine s, ASME paper GT2O03-38026.
    [13]Tatsuo Onishi, Stephane Bugruburu, Olivier Derssornes, Yves Ribaud, Numerical design and study of a MEMS-based micro turbine, ASME paper GT2005-6-8168.
    [14]Naoki Watanbe, Susumu Teramoto, Toshio Nagashima, 2003, Numeri cal analysis of 2.5 dimensional geometry turbine performance. Proce edings of the International Gas Turbine Congress 2003 Tokyo.
    [15]Yves Ribaud, 2003, Internal heat mixing and external heat losses in an ultra micro turbine, Proceedings of the International Gas Turbine Congress 2003 Tokyo.
    [16]沈祖达,丰镇平.径流式燃气透平叶轮的内部流场结构及其影响因素的探讨.燃气轮机技术,1994,7(3):44-48.
    [17]温泉,梁德旺.厘米级向心涡轮的三维流动特征分析.推进技术,2004,25(4):330-332.
    [18]李怀志,邓清华,付雷,等.向心透平内三维复杂流动的数值模拟.中国工程热物理学会2011年年会论文集.武汉:中国热物理学会,2011.
    [19]冯涛,周颖,等.向心涡轮内部流动数值模拟分析.航空动力学报,2006,21(3):449-454.
    [20]邓清华,丰镇平.向心涡轮叶轮顶部间隙泄漏流动特性研究.《中国科学》杂志社,2009,39(4):618-625.
    [21]康婷,李雪松,顾春伟.微型燃气轮机向心透平内部流动分析.热力透平,2009,38(2)79-81.
    [22]Yijin Li, Qun Zheng. Numerical simulation of a multistage radial inflow turbine. ASME paper GT2006-91307.
    [23]Abrie Rossouw. Determining the initial design parameters of a radial-inflow turbine[D]. USA:North-West University,2006.
    [24]Glassman, A.J(1976). Computer program for design analysis of radia 1-inflow turbines. NASA TN D-8164, Report N°E-8394, Lewis Rese arch Center, National Aeronautics and Space Administration, Clevela nd, Ohio, USA, 64p.
    [25]Ruben A. Miranda Carrillo, Marco A. R. Nascimento, Elkin I. Gutierrez Velasquez, et al. Radial inflow turbine one and tri-dimensional design analysis of 600kW simple cycle gas turbine engine[R]. ASME Paper 2010-GT-22951,2010.
    [26]Whitfield A. The preliminary design of radial inflow turbines, ASME Journal of Turbomachinery, 1990,112(1).
    [27]叶芳,丰镇平.径流式透平叶轮的一元无量纲设计和优化.燃气轮机技术,1998,11(4):28-31.
    [28]刘惟信.机械最优化设计.清华大学出版社,1994.
    [29]Rohlik H E. Analytical determination of radial inflow turbine design geometry for maximum efficiency. NASA-TN D 4384, Oct 1970.
    [30]舒士甄,朱力,柯玄龄,蒋滋康.叶轮机械原理.清华大学出版社,1991.
    [31]李磊,李元生,敖良波,等.基于NURBS离心式压气机参数化造型设计及气动优化.机械强度,2011,33(1):82-85.
    [32]Goel T, Dorney D J, Haftka R T, et al. Improving the hydrodynamic performance of diffuser vanes via shape optimization[J]. Computers and Fluids,2008,37(6):705-723.
    [33]Hoschek J, Muller R. Turbine blade design by lofted B-spline surfa ces[J]. Journal of Computational and Applied Mathematics, 2000, 11 9(1-2):235-248.
    [34]肖敏,刘波.轴流压气机超音叶片叶型几何设计方法研究.航空动力学报,2000,15(3)237-240.
    [35]方祥军,刘思永,王屏,等.超跨音对转涡轮大转折角叶片的高次多项式解析造型研究.航空动力学报,2003,18(1):76-81.
    [36]戴韧.透平叶片型线Bezier曲线构造方法的研究.中国工程热物理学会热机气动热力学学术会议论文集,2000,210-215.
    [37]Burguburu S, Toussaint C, Bonhomme C, et al. Numerical optimizat ion of turbomachinery bladings. Journal of Turbomachinery,2004,1 26(1):91-100.
    [38]靳军,刘波,曹志鹏,等.基于NURBS的三维轴流压气机叶片的几何型面优化研究[J].航空动力学报,2005,20(4):625-629.
    [39]Ghaly W S, Mengistu T T. Optimal geometric representation of tur bomachinery cascades using NURBS[J]. Inverse Probl. Eng, 2003,1 1(5):359-373.
    [40]赖宇阳.叶片气动设计中组合优化方案的算法研究和系统实现[D].北京:清华大学,2002:32-77.
    [41]Sieros G, Kefalakis M. Improving turbine performance by use of CFD[C]. ASME GT2004-53737.
    [42]Arens K, Rentrop P, Stoll S O, et al. An adjoint approach to opti mal design of turbine blades[J]. Applied Numerical Mathematics,20 05,53(2-4):93-105.
    [43]谢商育,王书义.基于遗传算法的涡轮增压器叶轮优化设计.装甲兵 工程学院学报,2001,15(3):72-76.
    [44]周文哲,杨策.径流式涡轮三维叶型优化设计.车辆与动力技术,2009,4:2-5.
    [45]Yonghui XIE, Qinghua DENG, Di ZHANG, Zhenping FENG. Stren gth designand numerical analysis of radial inflow turbine impeller f or a 1OOkW microturbine[C]. ASMEGT2005-68302.
    [46]Peng SONG, Jinju SUN, Ke WANG, Zhilong HE. Development of an optimization design method for turbomachinery by incorporating the cooperative coevolution genetic algorithm and adaptive approximate model. [C]. ASMEGT2011-45411
    [47]http://www.peraglobal. com. AEA CFX5 Help and User manual.
    [48]刘润泽.透平叶片气动优化设计方法研究[D].北京:中国科学院工程热物理所,2009.
    [49]胡捷.燃气轮机透平导叶闭式蒸汽冷却研究[D].北京:中国科学院工程热物理所,2008.
    [50]http://www.softinway.com/products/turbine-blade-design. asp
    [51]朱大鑫.涡轮增压与涡轮增压器.机械工业出版社.1992.
    [52]张鹏刚.微型燃气轮机向心透平气动性能的数值模拟[D].大连理工大学,2005
    [53]李人宪.有限体积法基础[M].国防工业出版社,2008.
    [54]Gupta R N, Yos J M, Thompson R A, et al. A Review of Reactio n Rates and Thermodynamic and Transport Properties for an 11-spe cies Air Model for Chemical and Thermal Nonequilibrium Calculati ons to 30000K. N9027064.
    [55]邓清华,倪平,丰镇平.微型燃气轮机向心透平的性能试验.动力工程,2008,28(2):196-199.
    [56]邓清华,牛久芳,丰镇平.叶轮顶部间隙对向心透平总体性能影响的研究.工程热物理学报,2006,27(3):408-410.
    [57]朱心雄.自由曲线曲面造型技术[M].北京:科学出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700