“1+1”两万吨组合列车模式下机车钩缓装置的承载特性与结构参数优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以往,由于我国铁路机车的牵引重量小、列车长度短、机车处于列车前部,列车的纵向冲击不足以将车钩纵向力转化为较大横向力,从而对机车的运行安全形成威胁。但在大秦线开行“1+1”2万吨重载组合列车后,列车中最大纵向力由原来距列车前部2/3处转移到列车中部机车(1/2)处,因此,对机车钩缓装置承载特性的研究就突显出来。
     本文针对大秦线重载组合列车的运行安全问题,从机车的实际工况出发,在国内首次将列车安全性理论、机车动力学和多体动力学分析方法应用于重载机车钩缓装置性能与结构的研究,采用系统工程理论,将钩缓、钩缓与机车、机车与列车作为一个有机整体进行了系统化的分析,开辟了钩缓装置研究的新领域和新方法。提出了钩缓系统的受压稳定性概念,并从车钩连挂面的受压稳定性和钩尾部与缓冲器前挡板之间的动态对中控制作用等两个层面进行了分析。通过分析得出,当车钩的连接轮廓形状、连挂间隙、三态作用、防脱连锁装置等在结构不破坏的情况下,车钩连挂面的受压稳定性是有保证的;具有对中控制功能的DFC-E100型钩缓装置,能有效地传递列车纵向力,对大秦线双机重联牵引1万吨重载列车和“1+1”2万吨重载组合列车,将车钩最大自由摆角确定为2.5-3.5°、最大摆角确定为12°,可满足机车的最小曲线通过能力,使车钩动态对中控制功能充分发挥;确保机车钩缓系统受压稳定性和列车的安全运行,还应结合列车的合理编组、机车的正确操控、电制的使用限制、线路维护等技术措施,合理地选用车钩材质、制定车钩强度指标、设计“钩缓--车体”系统的强度梯度和优化缓冲器的性能参数。
     通过仿真计算得出,基于以上车钩设计参数,在直线轨道上,所研究机车车钩可承担的压钩力限值为4500kN;机车以70km/h速度安全通过R300m曲线线路时可承担的最大纵向压钩力为1500kN,以50km/h速度安全通过R300m曲线线路时可承担的最大纵向压钩力为2000kN,以80km/h速度安全通过R600m曲线线路时可承担的最大纵向压钩力为2500kN。
     应用列车纵向动力学理论及系统分析软件,对比分析了MT-2型、弹性胶泥型和DFC-E100型钩缓装置的TPEE缓冲器等三种缓冲器以及TPEE缓冲器的性能参数变化对列车纵向力的影响,并对TPEE缓冲器的性能参数进行优化,提出优化建议。
     通过机车牵引单机万吨、双机重联万吨、双机牵引组合万吨和双机牵引组合2万吨及其增载的列车安全性线路试验,测试机车或相邻车辆上的脱轨系数、轮轴横向力、轮重减载率、车钩纵向力以及车钩的横向摆角等参数。试验结果表明:机车钩缓装置结构参数优化后满足大秦线列车运行的安全性要求。
     本文从理论层面上研究机车钩缓装置的性能与结构参数对重载组合列车安全性的影响规律;从工程应用上解决了“1+1”2万吨重载组合列车的安全运行问题。
The traction tonnage of past loco is lighter, the length of train is shorter and the locomotive is often in front of the train, the longitudinal impact is not great enough to convert the longitudinal force to lateral force which will impact the train safety. But after the "1+1" 20,000T train operated in Datong-qinhuangdao railway line, the max longitudinal force among the heavy-haul train occurs in the middle locomotive (1/2) instead of 2/3 among the past one, so it becomes more important to study the locomotive coupler & draft gear.
     Aiming at the safety issue of heavy-haul multiple trains Datong-qinhuangdao railway line, the paper will study it from the operating situation. This is the first time in China which apply the dynamics, safety theory and multi-body dynamics in the performance and structure research of coupler & draft gear, adopt the system engineering theory to make a systematic analysis which takes the coupler & draft gear, coupler & draft gear and loco, loco and train as an integration. This develops a new area and method for the coupler & draft gear, the research makes clear that the pressing stability are show in two aspects:the pressing stability of coupling link surface and the dynamic centering control between the coupler tail and the front spacing plate of draft gear; under the condition that the coupling profile, coupling clearance and the functions of three states, anti-creep lock is not destructed, the stability of coupling link surface can be guaranteed. The DFC-E100 coupler & draft gear, which adopt the function of alignment control, could transmit the longitudinal force efficiently. For the train which tows 10,000T by double locos and "1+1" 20,000T train in Datong-qinhuangdao railway line, the max free tilt angle is defined less than 2.5-3.5°, the max tilt angle is 12°, combining in the proper coupler material,strength and strength grade in coupler-body system, which can make the coupler dynamic alignment control play a important hole in the locomotive curve passing and the train safety with the proper train organization, correct loco operating and electric braking and the line maintenance etc.
     The simulation shows by multi-body dynamics software that the coupler press limits for the studied locomotive are 4500kN in straight line,1500kN at 70km/h speed in curve line R300m,2000kN at 50km/h in curve line R300m and 2500kN at 80km/h speed in curve R600m.
     The train longitudinal forces impact against three kinds of draft gears (i.e. MT-2 type, elastic clay type and temperature plastic elastic maquetteTPEE) and parameter change of the TPEE draftgear were analyzed and compared by loco longitudinal dynamics theory and system analyzing software, and the performance parameters for the draft gear of macromolecule plastic elastic maquette was optimized and a suggestion was given.
     The line test for safety traction of 10,000T train by one loco,10,000T by multiple locos,10,000T by two locos,20,000T by two locos and the 22,000T by two locos are accomplished. The line test of train safety is mainly aimed at the parameters such as the derailment coefficient of loco or adjacent vehicle, wheelset lateral force, wheel unloading rate, longitudinal force of coupler and the coupler swing angle etc. The tests results show that the structure parameters of improved coupler and the draftgear may comply with the safety requirement.
     In the paper, the impact principle of heavy-duty train safety against the performance and structure parameter of coupler & draft gear was got theoretically. And the safety operating of "1+1" 20,000T heavy-haul combined train was also done practically.
引文
[1]王璐科.闵阳春.刘晓波.重载机车连挂仿真算法及仿真结果的有效性分析[J].北京:铁道机车车辆.2008.增刊;
    [2]阳光武.肖守讷.张卫华.曲线通过时车钩偏角对机车车体横向载荷的影响[J].北京:中国铁道科学.2008.No6;
    [3]严隽耄.翟婉明.陈清.傅茂海.重载列车系统动力学[M].北京:中国铁道出版社.2003.12;
    [4]宁如斌.杨俊杰.赵明元.HXD2型大功率交流传动电力机车[J].株洲:机车电传动.第1期,2008;
    [5]青岛四方车辆研究所.国外重载铁路运输情况介绍[R].2008.04;
    [6]张曙光.大功率交流传动机车丛书——HXD2型电力机车[M].北京:中国铁道出版社.2009.09;
    [7]钱立新.国际重载机车车辆的最新进展[J].株洲:机车电传动.2002No2;
    [8]曾雨清.王卫东.贺启庸.车辆激励谱的时频转换复现技术[J].北京:中国铁道科学.1996,17(4):26-31;
    [9]陈果.翟婉明.铁路轨道不平顺随机过程的数值模拟[J].成都:西南交通大学学报.1999.34(2):138-141;
    [10]Richad.美国铁路车钩缓冲装置的发展_待续[J].青岛:国外铁道车辆.2001No1;
    [11]常崇义.王成国.马大炜.重载列车缓冲器的应用现状与发展趋势[J].北京:世界轨道交通.2004No3;
    [12]B.B.Konomhh(俄).俄罗斯自动车钩的发展前景[J].青岛:国外铁道车辆.1995No1;
    [13]A.M.B(俄).俄罗斯自动车钩缓冲器结构[J].青岛:国外铁道车辆.2006No3;
    [14]Yang Yonglin. Zhang Dayong. Yang Junjie. Zhao Mingyuan.The Heavy-haul Technology in HXD2 Locomotive[J].Shanghai:9th IHHA,2009.06.;
    [15]赵永翔.李扬辉等.铁路货车新型橡胶缓冲器设计[J].交通运输工程学报.2002No3;
    [16]于润华.郑企芳.2号缓冲器配件裂损原因分析及改进建议[J].青岛:铁道车辆.1993No4;
    [17]Qi chang.Wang gaofeng.Shi xinzhi.Buffer and Wire sizing Optimization under the Distributed RLC Model with Crosstalk Constraint[J].Wuhan:Wuhan University Journal of Natural Science.2007No6;
    [18]严隽耄.傅茂海.车辆工程(第三版)[M].北京:中国铁道出版社.2007.12;
    [19]曾庆元等.列车脱轨分析理论与应用[M].长沙:中南大学出版社.2006.12;
    [20]马大炜.冀彬.王成国.大秦线开行2万t级重载列车的关键技术问题和对策[J].北京:铁道机车车辆.2007No4;
    [21]吴礼本(译).俄罗斯弹性胶泥缓冲器[J].青岛:国外铁道车辆.1997No4;
    [22]Alstom. Specification Function B061025780Bo[R].NCR Datong Electric locomotive Co,LTD.20050902.
    [23]Alstom.General Technical Specification B061023602B1[R].NCR Datong Electric locomotive Co,LTD.20050902.
    [24]P.Chanal. Specification Technique Des Besoins Locomotive Electric Chine B061025864Ao[R].NCR Datong Electric locomotive Co,LTD.2005,10;
    [25]洪嘉振.计算多体系统动力学[M].北京:高等教育出版社.1999.05;
    [26]张世华.货车车钩摆头的原因及预防措施[J].青岛:铁道车辆.1996No6;
    [27]姜洪亮.利用纵向动力学软件设计缓冲器特性曲线[J].青岛:铁道车辆.1998No4;
    [28]王明星.货车弹性体缓冲器性能研究[D].成都:西南交通大学硕士论文.2006;
    [29]缪炳荣.基于多体动力学和有限元法的机车车体结构疲劳仿真研究[D].成都:西南交通大学博士论文.2006;
    [30]缪炳荣.方向华.傅秀通.SIMPACK动力学分析基础教程[M].成都:西南交通大学出版社.2008.03;
    [31]Winfrey R.C.Elastic link mechanism dynamics[J], J.Eng.Ind.,Trans.ASME,S er.B93(1),Feb 1971,pp.263-272;
    [32]Alstom.The Function Diagrame B061023666[R].NCR Datong Electric locomotive Co,LTD. 20050902;
    [33]苗伟明.孙丽萍.基于装配体的13号车钩有限元分析[J].大连:大连交通大学学报.2007No4;
    [34]徐荣华.建国50年货车发展概况[J].青岛:铁道车辆.2000No3;
    [35]刘凤刚.日本车辆连接装置综述[J].青岛:铁道车辆.1998No4;
    [36]钱立新.世界铁路重载运输技术的最新进展[J].北京:世界轨道交通.2007.12;
    [37]薛海.瞿孝文.谈我国缓冲器的材料与工艺[J].青岛:铁道车辆.1995No10;
    [38]李立恒.刘玉民.快轨车辆用车钩缓冲装置和贯通道装置[J].天津:现代城市轨道.2007.06;
    [39]吴礼本.国内外货车缓冲器发展趋势简评[J].青岛:铁道车辆.1994No3;
    [40]李明.缪忠海.王悦明.我国铁路货车缓冲器的现状及其发展中的几个问题[J].北京:中国铁道科学.1994No9;
    [4l]王福天.车辆系统动力学[M].北京:中国铁道出版社.1994.09;
    [42]晏红文.田红旗等.机车用橡胶缓冲器的研制[J].北京:铁道机车车辆.2007No2;
    [43]B.M.T(俄).货车自动车钩装置零件的堆焊工艺改进[J].青岛:国外铁道车辆.2008No1;
    [44]缪猛跃.货物列车分离事故的原因分析及对策[J].青岛:铁道车辆.2007No9;
    [45]王华清.机车车钩防脱装置设计与改造[J].株洲:机车电传动.2007No5;
    [46]蒋尧生.货车缓冲器现状和发展方向[J].常州:机车车辆工艺.1995No.1;
    [47]孟庆民.姜岩.牵引杆技术在大秦铁路重载货车上的应用.北京:铁道机车车辆.2008No28;
    [48]任尊松.车辆系统动力学[M].北京:中国铁道出版社.2007.09;
    [49]翟婉明.车辆-轨道耦合动力学[M].北京:中国铁道出版社.2001.12;
    [50]王传勇.货车13号和13A型上作用车钩新型防跳装置常见故障探讨[J].青岛:铁道车辆.2008No1;
    [51]许运习.胡庆武.货车车钩焊后裂纹原因分析及解决方法[J].常州:机车车辆工艺.2007No.6;
    [52]阚凤英.孙洪涛.戴新鎏.丁源.对我国铁路重载运输发展的建议[J].北京:铁道标准设计.2006,增刊;
    [53]钱立新.世界铁路重载运输技术[J].北京:中国铁路.2007(06);
    [54]孙翔.车钩、缓冲器、制动装置与重载列车的纵向冲动[J].青岛:铁道车辆.1988(10);
    [55]赵鑫.王成国.机车无线同步控制技术对2万吨重载组合列车纵向力的影响[J].北京:中国铁道科学.2008No5;
    [56]王成国.大秦线2万吨重载组合列车纵向动力学研究报告[R].北京:铁道科学研究院.2005.12;
    [57]常崇义.王成国.2万吨重载组合列车纵向力计算研究[J].北京:铁道学报.2006No8;
    [58]常崇义.王成国.铁道车辆缓冲器弹性胶泥粘弹性参数的数值反演[J].北京:中国铁道科
    学.2005No4;
    [59]金鼎昌.陈光雄.车钩力对脱轨的影响[J].成都:西南交通大学学报.1990No1;
    [60]孙翔.余民宜.缓冲器动力学分析[J].成都:西南交通大学学报.1990No1;
    [61]RF.Liu.Analysis on Coupler Performance of Derailments Locomotive HXD2[R].Alstom Tansport.2008.04;
    [62]Kenneth GEllsworth.The Car and Locomotive Cyclopedia of American Practice[M]. New York City in USA:Simmons-boardman Publication Corporation.1980;
    [63]Alstom.HXD2 Expertise Following Derailments[R].Belfort in France.2008.04;
    [64]Schuler.Static Strength Calcaulation Coupler Body 13 Contour[R].Faiveley Transport Remscheid-GmbH.2007.07;
    [65]Kevin N.Otto.Kristin L.Wood.Production Design[M],Beijing :Electronic Industry Public-house.200610.
    [66]田葆全.中国铁路长大货物列车使用手册[M].北京:中国铁道出版社.No6,2003;
    [67]L.J.Howell.Power spectral density analysis of vehical vibration using the NASTRAN computer program [J].SAE Trans.,V83,Section2.1974,1415-1424;
    [68]GDiana, F.Cheli, S.Bruni and A.Collina. Dynamic interaction between rail vehicles and track for high speed train [J].Vehicle system dynamics supplement,23(1994),75-86;
    [69]GDiana, F.Cheli, S.Bruni and A.Collina. Dynamic interaction between rail vehicles and track for high speed train [J].Vehicle system dynamics supplement,24(1995),18-27;
    [70]GDiana, F.Cheli, A.Collina, R.Corradi and S.Melzi.The development of a numerical model for railway vehicles comfort assessment through comparison with experimental measuremnet[J].Vehicle system dynamics,V38,No3,2002,165-183;
    [71]陈泽深.王成国.铁道车辆动力学与控制[M].北京:中国铁道出版社.2004.5;
    [72]Carliss Y.Baldwin. Design Rules:Vol.1:The Power of Modularity[S]. The MIT Press.200603.
    [73]张曙光.池茂儒.刘丽.机车车辆动力学研究与进展[J].中国铁道科学.V28.2007.56-62;
    [74]S.D.Iwnicki. Computer simulation of rail vehicle dynamics[J].Vehicle system dynamics,V1.30,No3,3-4,1998;
    [75]T.R.Kane and D.A.Levinson Multibody Dynamics[J].J.Applied Mechanics.50(4).1983;
    [76]张卫华.机车车辆动态模拟[M].北京:中国铁道出版社.2006.12;
    [77]S.Iwnicki. The Manchester benchmarks for rail vehicle simulation[M].Supplement to Vehicle system dynamics.V31.Swets & Zeitlinger Publishers.1999;
    [78]T.R.Kane and D.A.Levinson. Dynamics:Theory and Applications[M].McGraw-Hill Book Company.1985;
    [79]Mechanical Dynamics.Inc.USING ADAMS/FLEX.1998;
    [80]O.Wallrapp,A.Eichberger and J.Gerl.FEMBS-An interface between FEM codes and MBS codes:User Manual for ANSYS.NASTRAN and ABAQUS.INTEC GmbH.Wessling.Report V3.0.January 1997;
    [81]W.Rulka.SIMPACK.an computer program for simulations of large-motion multibody system-Multibody system handbook[M].Schiehlen(Editor).Springer Verlag,1990;
    [82]BS 5760-7. IEC 1025. Reliability of systems, equipment and components-Part 7:Guide to fault tree analysis[S].
    [83]C.Cole. Improvements to wagon conection modeling for longitudinal train simulation[C].Conferrence on railwayengineering(CORE).Rockhampton,Sept.1998;
    [84]Masayuki Miyamoto,Horoshi Fujimoto.A study of lateral dynamic behavior of rail vehicle in curves by measurement and computer simulation[J].AR of RTRI,1990,30(2).79-88;
    [85]V.K.Grag and R.V.Dukkiparti dynamics of railway vehicle systems[M].Academic Press,Canada,1984;
    [86]Stefano Bruni, Andrer Collina,G.Diana and P.Vanolo.Lateral dynamics of a railway vehicle in tangent track and curve:test and simulation[J].Vehicle system dynamics.1999.Supplement33;
    [87]原亮明.王成国.刘金朝.梁国平.一种求解多体系统微分代数方程的拉格朗日乘子方法[J].中国铁道科学.V22,No.2,2001:51-54;
    [88]龚曙光.ANSYS基础应用计算范例解析[M].北京:机械工业出版社.2002.1;
    [89]李克兴.国外客车缓冲器综述[J].青岛:国外铁道车辆.1996No6;
    [90]世界机电工程文摘.缓冲器[J].机械工程通用零部件.2005 No6;
    [9l]李伟.长大重载列车断钩事故的思考[J].北京:铁道机车车辆.2005No2;
    [92]上西.道雄.车辆缓冲装置[J].青岛:国外铁道车辆.1993No1;
    [93]杜利清.城市轨道车用弹性胶泥缓冲器及其应用[J].常州:铁道机车车辆工艺.2005No.2;
    [94]马培忠.弹簧缓冲器缓冲过程分析及设计要点[J].维普资讯.http//www.cqvip.com;
    [95]苗明.孙爽.苗文博.多孔式液压缓冲器仿真与优化设计[J].大连:起重运输机械.2007No10:
    [96]齐丕强.牟让科.飞机起落架缓冲性能分析[J].试验\设计一体化技术.北京:航空学报.1998No3:
    [97]张崇峰等.飞行器对接机构缓冲器的设计研究[J].哈尔滨:哈尔滨工业大学学报.1998No5:
    [98]马大炜.王成国.张波.2万吨重载列车的技术对策及其纵向力研究[J].北京:铁道机车车辆.2008.第28卷增刊;
    [99]张友南.黄友剑.陈忠海.弹性胶泥车钩缓冲器的研究和应用进展[J].维普资讯.http//www.cqvip.com;
    [100]李克兴.林乐.弹性胶泥缓冲器试验研究情况[J].青岛:铁道车辆.1996No10;
    [101]李克兴.戴家冀.弹性胶泥减振器在国内外的研究和应用[J].青岛:铁道车辆.1995No07;
    [102]陈凯.地铁列车连挂冲击问题研究[J].青岛:铁道车辆.2002No02;
    [103]周长峰.张建润.橡胶缓冲器有限元分析[J].南京:工艺装备.2004No1;
    [104]Raidt J B.Shum K L.Martin GC,et al.Detailed vertical train stability model-technical documentation. Research Report R-297 [R]. Chicago:Association of AmericanRailroads.1977;
    [105]黄运华.李市.傅茂海.廖小平.新型铁道车辆液气缓冲器动态特性[J].西安:交通运输工程学报.2005.12.;
    [106]徐力.黄运华.李市.液气缓冲器的发展及其应用[J].北京:铁道机车车辆.2007.10(增刊);
    [107]谢汉波.王秀伦.一种新型摩擦缓冲器机构原理[J].北京:铁道机车车辆.2007.10(增刊);
    [108]任玉君.陈凯.宋国文.刘凤刚.关于机车车辆车钩缓冲装置的选型分析[J].青岛:铁道车辆.2009No5:
    [109]翟婉明.货物列车动力学性能评定标准的研究与建议方案[J].青岛:铁道车辆.2002No3;
    [110]刘建新.装用LAF车钩的HXD2机车牵引2万吨列车车钩运动特性测试报告[R].成都:西南交通大学.2008.10;
    [111]黄运华.李市.傅茂海.车辆缓冲器特性研究[J].北京:中国铁道科学.2005No1;
    [112]林纯.大容量缓冲器参数的确定及其适应性[J].青岛:铁道车辆.1997No8;
    [113]陈慧.魏伟.万吨列车缓冲器特性优化研究[J].北京:铁道机车车辆.2007.10(增刊);
    [114]马大炜.关于5000t级重载列车车钩力的研究[J].青岛:铁道车辆.1995No9;
    [115]Gogineni B R.Garg V K.A dynamic model for longitudinal train action. Research Report R-297 [R].Chicago:Association of American Railroads.1978;
    [116]早势刚(日).铁道车辆用高性能车钩缓冲装置的研究[J].青岛:国外机车车辆工艺.2007No5;
    [117]秦东升.12t落锤机使用中应注意的几个问题[J].青岛:铁道车辆.2005No6;
    [118]赵惟岳.ST缓冲器落锤试验合格率低的原因分析及改进措施[J].常州:机车车辆工艺.2005No8;
    [119]阎利.ST型缓冲器检修后行程落锤试验方法分析与改进[J].常州:机车车辆工艺.2006No1;
    [120]王凤洲.MT—2型大容量缓冲器的落锤试验研究[J].青岛:铁道车辆.1993No12;
    [12l]房文彦.MX—1型缓冲器失效原因分析[J].北京:铁道机车车辆.1996No2;
    [122]胡光能.MX—1型缓冲器检修性能试验分析[J].株洲:电力机车技术.1996No4;
    [123]梁宝庆.周晓峰.ST货车缓冲器弹簧的断裂分析[J].北京:铁道机车车辆.2003No1;
    [124]傅茂海.车辆缓冲器特性研究[J].北京:中国铁道科学.2007No1;
    [125]刘玉晶.车钩、缓冲器常见故障的成因与处理[J].常州:铁道机车车辆工艺.2007No.1;
    [126]樊连波.MT-2型缓冲器的技术要求及其与通用货车匹配关系的研究[J].青岛:铁道车辆.1994No12;
    [127]余民宜.孙翔.车辆的速度型冲动与载荷型冲动[J].成都:西南交通大学学报.1990No3;
    [128]余民宜.缓冲器动态特性初步分析[J].成都:西南交通大学学报.1991No1;
    [129]李志新.缓冲器常见故障分析及检查[J].青岛:铁道车辆.2004No10;
    [130]齐清涛.孙翔.对Mark50,MT—2和Ⅲ—1—TM型缓冲器性能的综合评价(上[J]).青岛:铁道车辆.1995No10;
    [131]郎学孝.对美国Mark—50缓冲器弹簧的分析[J].常州:机车车辆工艺.1994No.1;
    [132]王金.对通用货车用缓冲器的探讨.维普资讯.]http//www.cqvip.com;
    [133]王凤洲.戴家冀.对我国铁路货车缓冲器性能的综合评价[J].青岛:铁道车辆.1994No8;
    [134]陈雷.姜岩.孙蕾.关于重载铁路货车缓冲器技术的研究[J].青岛:铁道车辆.2007No8;
    [135]马大炜.关于大秦线重载列车下坡道安全运行和纵向力问题[J].青岛:铁道车辆.2005No1;
    [136]沈大庆.机车车辆车钩缓冲器初压力探讨[J].青岛:铁道车辆.2005No7;
    [137]常崇义.王成国等.基于响应面方法的车钩缓冲器特性曲线优化分析[J].北京:中国铁道科学.2007No6;
    [138]刘凤刚.林乐.缓冲器性能的综合试验研究[J].青岛:铁道车辆.1996No4;
    [139]詹成富.机车牵引缓冲装置的改进建议[J].株洲:电力机车技术.2001No1;
    [140]许东祝.橡胶缓冲器性能变化及改进建议[J].青岛:铁道车辆.1995No4;
    [141]Mertens. High Performance Polymer-springs[R].Germany.2007.10;
    [142]王成国.常崇义.弹性胶泥缓冲器性能的计算分析研究[R].北京:中国铁道科学研究院.2006.01。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700