内源性大麻素系统与OSA及其临床症状的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:阻塞性睡眠呼吸暂停低通气综合征(obstructive sleep apnea-hyponea syndrome, OSA)是睡眠呼吸暂停综合症中最为常见的类型,具体表现为睡眠过程中咽部气道塌陷,是一种以上气道狭窄甚至完全闭塞导致的频繁呼吸暂停为特征的睡眠呼吸障碍性疾病。国外的调查显示,成年人阻塞性睡眠呼吸暂停综合征的平均发病率为4%[1],近年报道发病率有增长的趋势,患者多在40岁以上,且发病率为男性高于女性。2003年到2004年,上海[2]、承德[3]、太原[4]等城市进行了阻塞性睡眠呼吸暂停综合征的流行病学调查,累计调查170821人,平均患病率为3.5-4.8%。OSA是一种累计多系统并造成多器官损害的睡眠呼吸疾病,是高血压、冠心病、心率失常、脑卒中等多种疾病的独立危险因素,其对机体的损害还包括精神系统、泌尿生殖系统、内分泌系统、呼吸系统、消化系统、肌肉系统等全身多个系统,理论上讲,人体内凡是与氧代谢相关的部分都会被波及影响,对人类的健康和生命构成了严重的威胁。临床统计显示,未经治疗的OSA患者5年病死率达11%-13%,.呼吸紊乱指数(Apnea Hypopnea Index, AHI)高于20者8年病死率高达37%[5],全球每天约有3000人的死亡与OSA有关。OSA的主要病理损伤因素包括:睡眠结构破坏、胸腔压力异常改变和慢性缺氧,其中关键的病理损伤因素就是体内长期慢性间歇性低氧环境的存在及其通过对体内氧化应激炎症反应通路等信号网络通道的影响,造成对多个靶向器官的损伤。
     内源性大麻素系统是一种新近阐明的信号系统,参与了神经系统以及周围器官的多种生理功能,广泛涉及机体多种病理过程:近来研究提示内源性大麻素系统可调控下列过程:1.血管收缩;2.炎症过程;3.免疫调节;4.生殖行为及生育过程;5.血栓形成;6.通过对脑、小肠及迷走神经张力的影响直接和间接影响食欲;7.脂肪沉积,脂质在肝脏和脂肪细胞中的氧化;8.胰岛素分泌,肌肉和脂肪组织对葡萄糖的摄取;9.骨质代谢[6]。内源性大麻素系统对食欲、能量平衡、免疫调节、炎症反应、及血管张力的影响引起了广泛关注,目前认为内源性大麻素系统为发挥负性调节的内源性脂性信号系统,在维持机体稳态的调节中发挥重要作用[7]。
     我们推测OSA病情可能会干扰内源性大麻素系统,影响其维持机体稳态的作用。紊乱的内源性大麻素系统与其他同样受到OSA影响的氧化应激炎症反应通路等信号通道网络共同构成了OSA并发症发生发展的病理学基础。在下面的研究中我们将探讨内源性大麻素系统与OSA及其并发症的关系,验证我们的推论,为进一步阐明OSA并发症的病理生理机制,提供新思路。
     目的:(1)通过对正常及糖尿病人群外周血单个核细胞内源性大麻素系统组份表达量的检测,证实:①外周血单个核细胞拥有完整的内源性大麻素系统活性功能成分,为全身内源性大麻素系统的一部分;②糖尿病患者体内的内源性大麻素系统发生了变化;③外周血单个核细胞上内源性大麻素系统的活性可反应整体的病理生理变化。(2)通过分析OSA患者内源性大麻素系统组份表达的变化及其与OSA临床表现的相关性,证实:①OSA患者内源性大麻素系统发生了变化,且与OSA病情指标相关,提示OSA患者出现了内源性大麻素系统的失衡和紊乱;②内源性大麻素系统与OSA并发症存在相关性,可能与其他发生紊乱的信号系统一起构成了OSA并发症的发生发展的病理生理基础;(3)研究OSA患者睡前及晨起内源性大麻素系统组份表达的变化,进一步证实OSA夜间的病理生理变化可影响内源性大麻素系统组分的表达。
     方法:采用病例对照研究方法,(1)晨起抽血提取30例无心脑血管并发症临床表现的新发2型糖尿病患者及30例正常对照者的单个核细胞,运用实时定量PCR检测内源性大麻素的受体及合成降解酶类的表达水平变化,比较分析两组之间的差异;(2)选择无心脑血管并发症、糖脂代谢紊乱、感染等疾病的83例OSA患者和30例正常对照志愿者,通过问卷量化受试者临床表现,提取晨起外周血单个核细胞,运用细胞免疫组化、流式细胞术和实时定量PCR检测内源性大麻素的受体及合成降解酶类的表达水平变化,分析内源性大麻素系统组份表达的变化与OSA病情指标及临床症状的相关性。(3)睡前和晨起抽血提取24例OSA患者及18例健康志愿者单个核细胞,检测内源性大麻素系统各组分的变化,比较OSA夜间病理生理变化对内源性大麻素系统的影响。
     结果:
     (1)外周血单个核细胞检测出了内源性大麻素系统的两种受体大麻素受体1(cannabinoid receptor 1, CB1)、大麻素受体2 (cannabinoid receptor 2, CB2),两种主要配体N-花生四烯酸氨基乙醇(anandamide, AEA)和2-花生四烯酸甘油(2-arachidonoyl glycbrol,2-AG)合成和降解的关键酶:脂肪酰胺水解酶(fatty acid amide hydrolase, FAAH)、丝氨酸水解酶(monoacylglycerol lipase, MGL)、二酰基甘油脂肪酶(diacylglycerol lipase, DAGL)和N-酰基磷脂酰乙醇胺-磷酸酯水解酶(N-acylphosphatidylethanolamine-hydrolyzing phospholipase D, NAP)清晰的扩增曲线,表明其可能拥有完整的内源性大麻素系统活性功能成分;与正常组相比糖尿病组受体CB1mRNA表达量明显上升,CB2mRNA表达量明显下降, t值和P值分别为1.54、2.76;0.05、0.01。
     (2)免疫组化和流式结果均提示,与正常组相比,OSA组受体CB2蛋白表达量明显升高,t值分别为0.95和1.82,其P值分别为0.008和0.049;OSA组受体CB2、内源性大麻素AEA合成酶NAPmRNA表达量明显升高,内源性大麻素2-AG主要降解酶MGLmRNA表达量明显降低,t值分别为1.97、1.99和2.06,其P值分别为0.05、0.05和0.04。
     (3)相关分析发现CB2、NAP两指标均与最长呼吸暂停时间及平均氧饱和度相关,相关系数和P值分别为:0.26、0.26,0.27、0.40;0.03、0.03,0.02、0.00。MGL与最长呼吸暂停时间、最低氧饱和度和平均氧饱和度均具有相关性相关系数和P值分别为-0.31、0.34、-0.38;0.01、0.00、0.00。多重线性回归分析提示CB2和NAP多重回归模型成立,微觉醒指数进入CB2回归模型,标准化回归系数为0.26,t值为2.69,P值为0.01;微觉醒指数和SaO2进入NAP模型,标准化回归系数分别为0.27和0.24,t值和P值分别为2.86,2.58;0.01,0.01。
     (4)出现认知功能受损OSA患者的内源性大麻素AEA主要合成酶NAPmRNA表达量明显升高,t值为2.48, P值为0.02;最低氧饱和度及微觉醒指数两组间比较有显著差异t值和P值为分别为1.79、1.69;0.05、0.05。
     (5)性功能受损组OSA患者内源性大麻素2-AG主要降解酶MGLmRNA表达量明显降低,t值为1.68, P值为0.05;微觉醒指数两组间比较有显著差异t值和P值为分别为1.46;0.05。
     (6)伴发高血压OSA患者内源性大麻素AEA主要降解酶FAAHmRNA表达量明显降低,t值为0.77, P值为0.01。微觉醒指数两组间比较有显著差异t值和P值为分别为1.68;0.04。
     (7)睡眠前后两个时间点两组间各指标mRNA△CT的变化趋势及比较发现,患OSA及夜间睡眠对MGL均有影响,处理主效应(OSA)(F=3.996,P=0.035)、时间主效应(夜间睡眠)(F=4.131,P=0.025)均有统计学意义,处理效应与时间效应的交互作用无统计学意义(F=0.956,P=0.338)。
     结论和意义:
     (1)人类外周血单个核细胞表达了从结合到代谢AEA和2-AG的全部生物活性物质,结果提示单个核细胞是内源性大麻素系统的组成部分。其组分表达水平变化与糖代谢紊乱相关,说明单个核细胞的内源性大麻素系统可能反应整体的生理病理状况,同时也支持内源性大麻素信号系统与代谢及能量平衡关系密切。本结果为第二部分研究提供了理论和实验基础。
     (2)在OSA人群中发现内源性大麻素系统的组分变化与反应OSA病情的PSG监测指标,特别是与微觉醒指数和夜间平均血氧饱和度关系密切,OSA患者内源性大麻素系统总体表现为活性增强。活性增强的内源性大麻素系统通过其广泛的负性调节作用,促使机体内环境能够重新恢复平衡。活化的内源性大麻素系统可能通过抑制外周交感神经系统的活性,降低血压,为机体再次应对应激做准备,但同时也可能促进了对认知功能和性功能的抑制。
     (3)晨起和睡前内源性大麻素系统各组分发生了变化,进一步证实OSA的夜间睡眠紊乱病理状态与文献报道的其他急性应激一样,均可引起以2-AG作用增强为表现的内源性大麻素系统的变化。此变化可能是机体应对应激的保守反应,并参与终止应激反应、恢复机体平衡状态。这一结果进一步支持了第二部分的结论。
Background:Obstructive sleep apnea hypopnea syndrome (OSA) is a highly prevalent sleep disorder and its evidence is up to 3-4%in the population. The current knowledges on the OSA suggests that it is an independent risk factor for many kinds of diseases, such as hypertension, coronary heart disease, stroke, metabolize dysfunction, sexual dysfunction and so on. It is said that OSA would affect every physiological mechanism that correlation with oxygen metabolism. Main pathological damages of OSA include sleep structure damage, chest abnormal pressure change and chronic hypoxia, where the key factors in pathological damage is the existence of the long-term chronicintermittenthypoxia(CIH) environment and the inflammatory response pathway inside oxidatie stress signal channel network, causing damage to multiple target organs. The endocannabinoid (EC) system is an endogenous signaling system which is involved in numerous physiological functions, both in the central and peripheral nervous systems and in peripheral organs. It is composed of the cannabinoid receptors, endocannabinoids and the molecular machinery required for their synthesis and degradation. The EC system has been implicated in a wide range of pathological conditions ranging from mood and anxiety disorders, movement disorders, hypertension to the metabolize dysfunction. Now, EC system is belived to be a neuroactive lipid signaling system that functions to gate homeostasis maintainence. OSA may interfere with endocannabinoids system, and affect its steady-state function. Disorder of endocannabinoids system and other signal network influenced by OSA will constitute the pathological basis for the development of OSA complications. In the following study, we will examine the relationship between endocannabinoids system and OSA and its complications.
     Objective:(1) The expression of endocannabinoids system component in peripheral mononuclear cells of normal and diabetic population were tested, to confirm①peripheral mononuclear cells have complete functional components of endogenous cannabinoid system;②endogenous cannabinoid system has changed in diabetes;③the activity of endocannabinoids system on peripheral mononuclear cells can reflect the overall pathological physiological changes. (2) detected the expression of endogenous cannabinoids and its relationship with clinical manifestations in OSA patients, to confirm④endocannabinoids system changes in OSA patients;②endocannabinoids system is associated with OSA complications; (3) Through exploring the expression changes of endocannabinoid system in patients before and after sleep to further evidence the influence of OSA pathophysiology on endocannabinoid system.
     Methods:Cast-control studies were adopted to do the following research.①Real-time quantitative PCR was used to detect the difference of endocannabinoid system in type 2 diabetes and normal controls groups;②The differences of endocannabinoid system in OSA and normal controls groups were detected and the correlation between endocannabinoids system component changes and the clinical manifestations in OSA patients were also analysised.③Mononuclear cells were extracted from peripheral blood samples of 24 cases of OSA patients and 18 healthy volunteers before and after sleep, and changing of endocannabinoid system were also detected to explore the influence of the pathological physiology change of OSA on it.
     Results:
     1. Clear amplification curves of the two kinds of endocannabinoid receptors CB1, CB2, and FAAH, MGL, DAGL and Nape, the key-synthesis and degradation enzymes of the two main ligands endocannabinoid AEA and 2-AG, were detected from peripheral blood mononuclear cells. Indicating that mononuclear cells might have the total functional compositions of endocannabinoid system. Compared with the normal control, in diabetic group, mRNA of CB1 increased noticeable(t=1.54, P=0.05), and CB2 decreased significantly(t=2.76, P=0.01)
     2. Results from immunohistochemistry and flow cytometry showed that, compared with the normal group, CB2 receptor protein expression was significantly higher in OSA (t=0.95,1.82; P=0.008,0.049). In OSA group, mRNA of CB2 increased significantly(t=1.97, P=0.05); NAP, key synthase of AEA, increased significantly(t=1.99, P=0.05); MGL, main 2-AG-degrading enzyme, decreased significantly(t=2.06, P=0.04).
     3. Correlation analysis showed that CB2 and NAP were correlation with the longest apnea time(Tmax) and the average oxygen saturation(SaO2min). MGL was correlation with Tmax, SaO2min and the average oxygen saturation (SaO2). Multiple linear regression analysis showed that multiple regression models of CB2 and NAP were established, micro-arousal index into the CB2 regression model, standardized regression coefficient 0.26, t=2.69, P=0.01; micro-arousal index and the SaO2 into the NAP model, standardized regression coefficient respectively,0.27 and 0.24, t=2.86,2.58 and P=0.01,0.01.
     4. In the group of OSA patients with cognitive impairment, mRNA of NAP was significantly higher, t=2.48,P=0.02; SaO2min and arousal index between the two groups have more significant difference, t=1.79,1.69; P=0.05,0.05.
     5. In the group of OSA patients with impaired sexual function, mRNA of MGL was significantly reduced, t=1.68, P=0.05; micro-arousal index between the two groups were significantly different, t=1.46, P=0.05.
     6. In OSA patients with hypertension, mRNA of FAAH, main AEA-degrading enzyme was significantly lower, t=0.77, P=0.01. Micro-arousal index between the two groups were significantly different, t=1.68; P=0.04.
     7. MGL was influenced by OSA and nocturnal sleep, the treatment main effect (OSA) (F=3.996,P=0.035) and time main effect (nocturnal sleep) (F=4.131, P=0.025) were statistically significant, the interaction between treatment effect and time effect has no statistical significance (F=0.956, P=0.338).
     Conclusion:
     1. Human peripheral blood mononuclear cells expresses the full biochemical substances to bind and metabolize AEA and 2-AG The finding that human mononuclear cells show a functional "endocannabinoid system" indicates that peripheral actions of the endocannabinoids may have a role in mononuclear cells. Expression level of endocannabinoids system components changes with glucose metabolism disorder, indicating mononuclear cells may respond to physiological and pathological conditions as a whole. This section provided a theoretical and experimental basis for the following research.
     2. In OSA group, changes of the endocannabinoids system component correlated with PSG, especially with nocturnal arousal index and SaO2. The endocannabinoids system of OSA patients enhance overall performance of activity. Through its regulatory role in a wide range of negative, endocannabinoids system would prompt the body to regain balance. It would lower blood pressure, inhibit the activity of peripheral sympathetic nervous system, in order to cope with stress, but may also promote inhibition of cognitive and sexual function.
     3. Like other acute stress in the literature, nocturnal pathological state of OSA may lead to the enhanced role of 2-AG and participate in the termination of the stress response and restore the body balance. This section further supports the results of the second part.
引文
1. Young T, P.M., Dempsey J, et al., The occurrence of sleep-disordered breathing among middle-aged adults. N Engl Med,1993.328(17):p.1230-1235.
    2. 上海市医学会呼吸病学分会睡眠呼吸疾病学组,上海市 30岁以上人群阻塞性睡眠呼吸暂停低通气综合征流行病学调查.中华结核和呼吸杂志,2003.26(5):p.268-273.
    3. 张庆.何权瀛.杜秋艳,承德市区居民睡眠呼吸暂停低通气综合征患病率入户调查.中华结核和呼吸杂志,2003.26(5):p.273-275.
    4. 王蓓.邢景才.韩长旭,太原市睡眠呼吸暂停低通气综合征的流行病调查.中华结核和呼吸杂志,2004.27(11):p.760-762.
    5. Shamsuzzaman, A.S., B.J. Gersh, and V.K. Somers, Obstructive sleep apnea:implications for
    cardiac and vascular disease. JAMA,2003.290(14):p.1906-14.
    6. Battista, N., et al., Interplay between endocannabinoids, steroids and cytokines in the control of human reproduction. J Neuroendocrinol,2008.20 Suppl 1:p.82-9.
    7. Hill, M.N. and B.S. McEwen, Involvement of the endocannabinoid system in the neurobehavioural effects of stress and glucocorticoids. Prog Neuropsychopharmacol Biol Psychiatry,2009.
    8. Pertwee, R.G., Medical uses of cannabinoids:the way forward. Addiction,1999.94(3):p. 317-320.
    9. Devane, W.A., L. Hanus, and A. Breuer, Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science,1992.258(5090):p.1946-1949.
    10. Kunos, G. and S. Batkai, The quest for a vascular endothelial cannabinoid receptor. Chem Physi Lipids,2002.121(1):p.45-56.
    11. Pagotto, U., et al., The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev,2006.27:p.73-100.
    12. Witkin, J.M., E.T. Tzavara, and G.G. Nomikos, A role for cannabinoid CB1 receptors in mood and anxiety disorders. Behav Pharmacol,2005.16(5-6):p.315-31.
    13. Ashton, J.C., Cannabinoids for the treatment of inflammation. Curr Opin Investig Drugs,2007. 8(5):p.373-84.
    14. Ashton, J.C. and M. Glass, The Cannabinoid CB2 Receptor as a Target for Inflammation-Dependent Neurodegeneration. Curr Neuropharmacol,2007.5(2):p.73-80.
    15. Kirkham, T.C. and S.A. Tucci, Endocannabinoids in appetite control and the treatment of obesity. CNS Neurol Disord Drug Targets,2006.5(3):p.272-92.
    16. Wang, H., S.K. Dey, and M. Maccarrone, Jekyll and hyde:two faces of cannabinoid signaling in male and female fertility. Endocr Rev,2006.27(5):p.427-48.
    17. Pertwee, R.G., Cannabinoids and multiple sclerosis. Pharmacol Ther,2002.95(2):p.165-74.
    18. Hohmann, A.G. and R.L. Suplita,2nd, Endocannabinoid mechanisms of pain modulation. AAPS J,2006.8(4):p. E693-708.
    19. Pacher, P., S. Batkai, and G. Kunos, The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev,2006.58:p.389-462.
    20. Yates, M.L. and E.L. Barker, Inactivation and biotransformation of the endogenous cannabinoids anandamide and 2-arachidonoylglycerol. Mol Pharmacol,2009.76(1):p.11-7.
    21. Herkenham, M., et al., Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A, 1990.87(5):p.1932-6.
    22. Osei-Hyiaman, D., et al., Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J Clin Invest,2005.115(5):p. 1298-305.
    23. Pertwee, R.G., Cannabinoids and the gastrointestinal tract. Gut,2001.48(6):p.859-67.
    24. Juan-Pico, P., et al., Cannabinoid receptors regulate Ca(2+) signals and insulin secretion in pancreatic beta-cell. Cell Calcium,2006.39(2):p.155-62.
    25. Cota, D., et al., The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest,2003.112(3):p.423-31.
    26. Parolaro, D., Presence and functional regulation of cannabinoid receptors in immune cells. Life Sci,1999.65(6-7):p.637-44.
    27. Van Sickle, M.D., et al., Identification and functional characterization of brainstem
    cannabinoid CB2 receptors. Science,2005.310(5746):p.329-32.
    28. Bermudez-Siva, F.J., et al., Activation of cannabinoid CB1 receptors induces glucose intolerance in rats. Eur J Pharmacol,2006.531(1-3):p.282-4.
    29. Ishac, E.J., et al., Inhibition of exocytotic noradrenaline release by presynaptic cannabinoid CBl receptors on peripheral sympathetic nerves. Br J Pharmacol,1996.118(8):p.2023-8.
    30. Tam, J., et al., The cannabinoid CB1 receptor regulates bone formation by modulating adrenergic signaling. FASEB J,2008.22(1):p.285-94.
    31. Godlewski, G., B. Malinowska, and E. Schlicker, Presynaptic cannabinoid CB(1) receptors are involved in the inhibition of the neurogenic vasopressor response during septic shock in pithed rats. Br J Pharmacol,2004.142(4):p.701-8.
    32. Frieling, H., et al., Elevated cannabinoid 1 receptor mRNA is linked to eating disorder related behavior and attitudes in females with eating disorders. Psychoneuroendocrinology,2009. 34(4):p.620-4.
    33. Matsuda, L.A., et al., Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990;.346:p.561-4.
    34. Munro, S., K.L. Thomas, and M. Abu-Shaar, Molecular characterization of a peripheral receptor for cannabinoids. Nature,1993.365:p.61-5.
    35. Lutz, B., Molecular biology of cannabinoid receptors. Prostaglandins Leukot Essent Fatty Acids 2002.66:p.123-42.
    36. Howlett, A.C., et al., Nonclassical cannabinoid analgetics inhibit adenylate cyclase: development of a cannabinoid receptor model. Mol Pharmacol,1988.33(3):p.297-302.
    37. Derkinderen, P., et al., Cannabinoids activate p38 mitogen-activated protein kinases through CB1 receptors in hippocampus. J Neurochem,2001.77(3):p.957-60.
    38. Daaka, Y., et al., Induction of interleukin-2 receptor alpha gene by delta9-tetrahydrocannabinol is mediated by nuclear factor kappaB and CB1 cannabinoid receptor. DNA Cell Biol,1997.16(3):p.301-9.
    39. Rueda, D., et al., The CB(1) cannabinoid receptor is coupled to the activation of c-Jun N-terminal kinase. Mol Pharmacol,2000.58(4):p.814-20.
    40. Gomez Del Pulgar, T., et al., Cannabinoids protect astrocytes from ceramide-induced apoptosis through the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem, 2002.277(39):p.36527-33.
    41. Williams, C.M., P.J. Rogers, and T.C. Kirkham, Hyperphagia in pre-fed rats following oral delta9-THC. Physiol Behav,1998.65(2):p.343-6.
    42. Di Marzo, V., et al., Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature,2001.410(6830):p.822-5.
    43. Ravinet Trillou, C., et al., CB1 cannabinoid receptor knockout in mice leads to leanness, resistance to diet-induced obesity and enhanced leptin sensitivity. Int J Obes Relat Metab Disord,2004.28(4):p.640-8.
    44. Nakata, M. and T. Yada, Cannabinoids inhibit insulin secretion and cytosolic Ca2+ oscillation in islet beta-cells via CB1 receptors. Regul Pept,2008.145(1-3):p.49-53.
    45. Ferrer, B., et al., Cannabinoid CB1 receptor antagonism markedly increases dopamine receptor-mediated stereotypies. Eur J Pharmacol,2007.559(2-3):p.180-3.
    46. Herling, A.W., et al., CB1 receptor antagonist AVE1625 affects primarily metabolic parameters independently of reduced food intake in Wistar rats. Am J Physiol Endocrinol Metab,2007.293(3):p. E826-32.
    47. Carr, T.P., E.D. Jesch, and A.W. Brown, Endocannabinoids, metabolic regulation, and the role of diet. Nutr Res,2008.28(10):p.641-50.
    48. Katzman, R., et al., A Chinese version of the Mini-Mental State Examination; impact of illiteracy in a Shanghai dementia survey. J Clin Epidemiol,1988.41(10):p.971-8.
    49. 临床记忆量表编制协作组,临床记忆量表手册.中国科学院心理研究所,1996.
    50. O'Leary, M.P., et al., A brief male sexual function inventory for urology. Urology,1995.46(5): p.697-706.
    51. EI-Ad, B. and P. Lavie, Effect of sleep apnea on cognition and nood. Int Rev Psychiatry,2005. 17(4):p.277-282.
    52. Schroder, C.M. and R. O'Hara, Depression and Obstructive Sleep Apnea(OSA). Ann Gen Psychiatry,2005.27(4):p.13.
    53. Sateia, M.J., Neuropsychological impairment and quality of life in obstructive sleep apnea. Clin Chest Med,2003.24(2):p.249-59.
    54. Shen, J., et al., Polysomnographic and symptomatological analyses of major depressive disorder patients treated with mirtazapine. Can J Psychiatry,2006.51(1):p.27-34.
    55. Fisar, Z., Phytocannabinoids and endocannabinoids. Curr Drug Abuse Rev,2009.2(1):p. 51-75.
    56. Breivogel, C.S. and S.R. Childers, The functional neuroanatomy of brain cannabinoid receptors. Neurobiol Dis,1998.5(6 Pt B):p.417-31.
    57. Elphick, M.R. and M. Egertova, The neurobiology and evolution of cannabinoid signalling. Philos Trans R Soc Lond B Biol Sci,2001.356(1407):p.381-408.
    58. Sanudo-Pena, M.C., K. Tsou, and J.M. Walker, Motor actions of cannabinoids in the basal ganglia output nuclei. Life Sci,1999.65(6-7):p.703-13.
    59. Hoffman, A.F. and C.R. Lupica, Mechanisms of cannabinoid inhibition of GABA(A) synaptic transmission in the hippocampus. J Neurosci,2000.20(7):p.2470-9.
    60. Fanfulla, F., et al., Erectile dysfunction in men with obstructive sleep apnea:an early sign of nerve involvement. Sleep,2000.23(6):p.775-81.
    61. Arruda-Olson, A.M., et al., Sleep apnea and cardiovascular disease. Implications for understanding erectile dysfunction. Herz,2003.28(4):p.298-303.
    62. Hirshkowitz, M., et al., Prevalence of sleep apnea in men with erectile dysfunction. Urology, 1990.36(3):p.232-4.
    63. Mayer, P., et al., Peripheral neuropathy in sleep apnea. A tissue marker of the severity of nocturnal desaturation. Am J Respir Crit Care Med,1999.159(1):p.213-9.
    64. Teloken, P.E., et al., Defining association between sleep apnea syndrome and erectile dysfunction. Urology,2006.67(5):p.1033-7.
    65. Goncalves, M.A., et al., Erectile dysfunction, obstructive sleep apnea syndrome and nasal CPAP treatment. Sleep Med,2005.6(4):p.333-9.
    66. Luboshitzky, R., et al., Disruption of the nocturnal testosterone rhythm by sleep fragmentation in normal men. J Clin Endocrinol Metab,2001.86(3):p.1134-9.
    67. Luboshitzky, R., et al., Decreased pituitary-gonadal secretion in men with obstructive sleep apnea. J Clin Endocrinol Metab,2002.87(7):p.3394-8.
    68. Phillips, B.G., et al., Effects of obstructive sleep apnea on endothelin-1 and blood pressure. J Hypertens,1999.17(1):p.61-6.
    69. Schulz, R., et al., Decreased plasma levels of nitric oxide derivatives in obstructive sleep apnoea:response to CPAP therapy. Thorax,2000.55(12):p.1046-51.
    70. Ip, M.S., et al., Circulating nitric oxide is suppressed in obstructive sleep apnea and is reversed by nasal continuous positive airway pressure. Am J Respir Crit Care Med,2000. 162(6):p.2166-71.
    71. Karacan, I. and M. Karatas, Erectile dysfunction in sleep apnea and response to CPAP. J Sex Marital Ther,1995.21(4):p.239-47.
    72. Perimenis, P., et al., Erectile dysfunction in men with obstructive sleep apnea syndrome:a randomized study of the efficacy of sildenafil and continuous positive airway pressure. Int J Impot Res,2004.16(3):p.256-60.
    73. Coddington, E., et al., Endocannabinoids mediate the effects of acute stress and corticosterone on sex behavior. Endocrinology,2007.148(2):p.493-500.
    74. Gorzalka, B.B., M.N. Hill, and S.C. Chang, Male-female differences in the effects of cannabinoids on sexual behavior and gonadal hormone function. Horm Behav,2009.
    75. Lugaresi, E., F. Ciribnotta, and G. Coccagna, Some epidemiological data on snoring and cardiocirculatory disturbances. Sleep,1980.3:p.221-224.
    76.王蓓.刘辉.刘卓拉.,阻塞性睡眠呼吸暂停低通气综合征对患者左心结构和功能的影响.中华结核和呼吸杂志,2007.30(1):p.55-56
    77. Pacher, P., S. Batkai, and G. Kunos, The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev,2006.58(3):p.389-462.
    78. Varga, K., et al., Novel antagonist implicates the CB1 cannabinoid receptor in the hypotensive action of anandamide. Eur J Pharmacol,1995.278(3):p.279-83.
    79. Niederhoffer, N., K. Schmid, and B. Szabo, The peripheral sympathetic nervous system is the major target of cannabinoids in eliciting cardiovascular depression. Naunyn Schmiedebergs Arch Pharmacol,2003.367(5):p.434-43.
    80. Deutsch, D.G., et al., Production and physiological actions of anandamide in the vasculature of the rat kidney. J Clin Invest,1997.100(6):p.1538-46.
    81. Varga, K., et al., Platelet-and macrophage-derived endogenous cannabinoids are involved in endotoxin-induced hypotension. FASEB J,1998.12(11):p.1035-44.
    82. Wagner, J.A., et al., Activation of peripheral CB1 cannabinoid receptors in haemorrhagic shock Nature,1997.390(6659):p.518-21.
    83. Wagner, J.A., et al., Endogenous cannabinoids mediate hypotension after experimental myocardial infarction. J Am Coll Cardiol,2001.38(7):p.2048-54.
    84. Batkai, S., et al., Endocannabinoids acting at cannabinoid-1 receptors regulate cardiovascular function in hypertension. Circulation,2004.110(14):p.1996-2002.
    85. Somers, V.K., et al., Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest, 1995.96(4):p.1897-904.
    86. Schlicker, E., et al., Cannabinoid CB1 receptor-mediated inhibition of noradrenaline release in the human and guinea-pig hippocampus. Naunyn Schmiedebergs Arch Pharmacol,1997. 356(5):p.583-9.
    87. Pertwee, R.G., G. Joe-Adigwe, and G.M. Hawksworth, Further evidence for the presence of cannabinoid CB1 receptors in mouse vas deferens. Eur J Pharmacol,1996.296(2):p.169-72.
    88. Di, S., et al., Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus:a fast feedback mechanism. J Neurosci,2003.23(12):p.4850-7.
    89. Di, S., et al., Rapid glucocorticoid-mediated endocannabinoid release and opposing regulation of glutamate and gamma-aminobutyric acid inputs to hypothalamic magnocellular neurons. Endocrinology,2005.146(10):p.4292-301.
    90. Di, S., et al., Activity-dependent release and actions of endocannabinoids in the rat hypothalamic supraoptic nucleus. J Physiol,2005.569(Pt 3):p.751-60.
    91. Di, S., et al., Glucocorticoids regulate glutamate and GABA synapse-specific retrograde transmission via divergent nongenomic signaling pathways. J Neurosci,2009.29(2):p. 393-401.
    92. Malcher-Lopes, R., et al., Opposing crosstalk between leptin and glucocorticoids rapidly modulates synaptic excitation via endocannabinoid release. J Neurosci,2006.26(24):p. 6643-50.
    93. Felder, C.C., et al., LY320135, a novel cannabinoid CB1 receptor antagonist, unmasks coupling of the CB1 receptor to stimulation of cAMP accumulation. J Pharmacol Exp Ther, 1998.284(1):p.291-7.
    94. Derkinderen, P., et al., Regulation of a neuronal form of focal adhesion kinase by anandamide. Science,1996.273(5282):p.1719-22.
    95. Malinowska, B., et al., Cannabinoid CB1 receptor-mediated inhibition of the neurogenic vasopressor response in the pithed rat. Naunyn Schmiedebergs Arch Pharmacol,1997.356(2): p.197-202.
    96. Christopoulos, A., et al., Pharmacological analysis of cannabinoid receptor activity in the rat vas deferens.Br J Pharmacol,2001.132(6):p.1281-91.
    97. Batkai, S., et al., Endocannabinoids acting at vascular CB1 receptors mediate the vasodilated state in advanced liver cirrhosis. Nat Med,2001.7(7):p.827-32.
    98. Pfitzer, T., N. Niederhoffer, and B. Szabo, Search for an endogenous cannabinoid-mediated effect in the sympathetic nervous system. Naunyn Schmiedebergs Arch Pharmacol,2005. 371(1):p.9-17.
    99. Aso, E., et al., BDNF impairment in the hippocampus is related to enhanced despair behavior in CB1 knockout mice. J Neurochem,2008.105(2):p.565-72.
    100. Steiner, M.A., et al., Antidepressant-like behavioral effects of impaired cannabinoid receptor type 1 signaling coincide with exaggerated corticosterone secretion in mice. Psychoneuroendocrinology,2008.33(1):p.54-67.
    101. Hill, M.N., et al., Circulating endocannabinoids and N-acyl ethanolamines are differentially regulated in major depression and following exposure to social stress. Psychoneuroendocrinology,2009.34(8):p.1257-62.
    1. Young T, P.M., Dempsey J, et al., The occurrence of sleep-disordered breathing among middle-aged adults. N Engl Med,1993.328(17):p.1230-1235.
    2. 上海市医学会呼吸病学分会睡眠呼吸疾病学组,上海市 30岁以上人群阻塞性睡眠呼吸暂净低通气综合征流行学调查.中华结核和呼吸杂志,2003.26(5):p.268-273.
    3. 张庆.何权瀛.杜秋艳,承德市区居民睡眠呼吸暂停低通气综合征患病率入户调查.中华结核和呼吸杂志,2003.26(5):p.273-275.
    4. 王蓓.邢景才.韩长旭,太原市睡眠呼吸暂停低通气综合征的流行病学调查.中华结核和呼吸杂志,2004.27(11):p.760-762.
    5. Shamsuzzaman, A.S., B.J. Gersh, and V.K. Somers, Obstructive sleep apnea:implications for cardiac and vascular disease. JAMA,2003.290(14):p.1906-14.
    6. McNicholas, W.T., M.R. Bonsignore, and E.C.A.B. the Management Committee of, Sleep apnoea as an independent risk factor for cardiovascular disease:current evidence, basic mechanisms and research priorities. Eur Respir J,2007.29(1):p.156-178.
    7. Wolk, R., T. Kara, and V.K. Somers, Sleep-disordered breathing and cardiovascular disease. Circulation,2003.108(1):p.9-12.
    8. Pack, A.I., Advances in sleep-disordered breathing. Am J Respir Crit Care Med,2006.173:p. 7-15.
    9. Narkiewicz, K., et al., Selective potentiation of peripheral chemoreflex sensitivity in obstructive sleep apnea. Circulation,1999.99:p.1183-9.
    10. Dimsdale, J.E., J.S. Loredo, and J. Profant, Effect of continuous positive airway pressure on blood pressure:A placebo trial. Hypertension,2000.35:p.144-7.
    11. Hersi, A.S., Obstructive sleep apnea and cardiac arrhythmias. Ann Thorac Med,2010.5:p. 10-17.
    12. Peppard, P.E., et al., Prospective study of the association between sleep-disordered breathing and hypertension. N Eng J Med,2000.342(19):p.1378-1384.
    13. Marin, J., et al., Long term cardiovascular outcomes in men with obstructive sleep apnea syndrome with CPAP:an observational study. Lancet,2005.365(9464):p.1046-1053.
    14. Young, T. and P. Peppard, Sleep-disordered breathing for a relationship. Sleep,2000. 23(Suppl 4):p.122-126.
    15. Quan, S., B. Howard, and C. Iber, The Sleep Heart Health Study:design, rationale, and
    methods. Sleep,1997.20:p.1077-1085.
    16. Lugaresi, E., F. Ciribnotta, and G. Coccagna, Some epidemiological data on snoring and cardiocirculatory disturbances. Sleep,1980.3:p.221-224.
    17. Nathaniel, S., K.H. Keith, and P. Wong, Sleep Apnea as an Independent Risk Factor for All-Cause Mortality. The Busselton Health Study. RAPID PUBLICATION,2008.31:p. 1079-1085.
    18.王蓓.刘辉.刘卓拉.,阻塞性睡眠呼吸暂停低通气综合征对患者左心结构和功能的影响.中华结核和呼吸杂志,2007.30(1):p.55-56
    19. Wang, J.S., et al., Effects of moderate and severe intermittent hypoxia on vascular endothelial function and haemodynamic control in sedentary men. Eur J Appl Physiol,2007.100(2):p. 127-35.
    20.王强.王蓓.刘卓拉,阻塞性睡眠呼吸暂停低通气综合征患者心血管疾病相关因子血清水平的变化分析.中国循环杂志,2009.24(6):p.441-445.
    21. Coughlin, S.R., et al., Obstructive sleep apnoea is independently associated with an increased prevalence of metabolic syndrome. Eur Heart J,2004.25(9):p.735-41.
    22. Reichmuth, K.L., D. Austin, and J.B. Skatrud, Association of sleep apnea and type 2 diabetes:a population-based study. Am J Respir Crit Care Med,2005.172(12):p.1590-1595.
    23. 王强.樊利萍.王蓓.刘卓拉,OSAHS患者血浆抵抗素和脂联素水平与胰岛素抵抗的相关研究.中国综合临床,2009.25(10):p.1018-1020.
    24. 张希龙.殷凯生.王虹,阻塞性睡眠呼吸暂停与代谢综合征相关机理的探讨.中华结核和呼吸2004.2004(27):p.9.
    25. Shinohara, E., et al., Visceral fat accumulation as an important risk factor for obstructive sleep apnoea syndrome in obese subjects. J Intern Med,1997.241(1):p.11-8.
    26. Grunstein, R.R., et al., Central sleep apnea is associated with increased ventilatory response to carbon dioxide and hypersecretion of growth hormone in patients with acromegaly. Am J Respir Crit Care Med,1994.150(2):p.496-502.
    27. Pelttari, L., et al., Upper airway obstruction in hypothyroidism. J Intern Med,1994.236(2):p. 177-81.
    28. Isono, S., et al., Collapsibility of passive pharynx in patients with acromegaly. Am J Respir Crit Care Med,1999.160(1):p.64-8.
    29. Mello, P., et al., Night and day proteinuria in patients with sleep apnea. Am J Kidney Dis, 2004.44(4):p.636-41.
    30. Sklar, A.H., B.A. Chaudhary, and R. Harp, Nocturnal urinary protein excretion rates in patients with sleep apnea. Nephron,1989.51(1):p.35-8.
    31. Iliescu, E.A., et al., Do patients with obstructive sleep apnea have clinically significant proteinuria? Clin Nephrol,2001.55(3):p.196-204.
    32. Zhang, L., et al., Alterations in renal function in patients with obstructive sleep apnea syndrome and effects of continuous positive airway pressure. Chin Med J (Engl),1997. 110(12):p.915-8.
    33. Fanfulla, F., et al., Erectile dysfunction in men with obstructive sleep apnea:an early sign of nerve involvement. Sleep,2000.23(6):p.775-81.
    34. Arruda-Olson, A.M., et al., Sleep apnea and cardiovascular disease. Implications for understanding erectile dysfunction. Herz,2003.28(4):p.298-303.
    35. Hirshkowitz, M., et al., Prevalence of sleep apnea in men with erectile dysfunction. Urology, 1990.36(3):p.232-4.
    36. Mayer, P., et al., Peripheral neuropathy in sleep apnea. A tissue marker of the severity of nocturnal desaturation. Am J Respir Crit Care Med,1999.159(1):p.213-9.
    37. Teloken, P.E., et al., Defining association between sleep apnea syndrome and erectile dysfunction. Urology,2006.67(5):p.1033-7.
    38. Goncalves, M.A., et al., Erectile dysfunction, obstructive sleep apnea syndrome and nasal CPAP treatment. Sleep Med,2005.6(4):p.333-9.
    39. Luboshitzky, R., et al., Disruption of the nocturnal testosterone rhythm by sleep fragmentation in normal men. J Clin Endocrinol Metab,2001.86(3):p.1134-9.
    40. Luboshitzky, R., et al., Decreased pituitary-gonadal secretion in men with obstructive sleep apnea. J Clin Endocrinol Metab,2002.87(7):p.3394-8.
    41. Phillips, B.G., et al., Effects of obstructive sleep apnea on endothelin-1 and blood pressure. J Hypertens,1999.17(1):p.61-6.
    42. Schulz, R., et al., Decreased plasma levels of nitric oxide derivatives in obstructive sleep apnoea:response to CPAP therapy. Thorax,2000.55(12):p.1046-51.
    43. Ip, M.S., et al., Circulating nitric oxide is suppressed in obstructive sleep apnea and is reversed by nasal continuous positive airway pressure. Am J Respir Crit Care Med,2000. 162(6):p.2166-71.
    44. Karacan, I. and M. Karatas, Erectile dysfunction in sleep apnea and response to CPAP. J Sex Marital Ther,1995.21(4):p.239-47.
    45. Perimenis, P., et al., Erectile dysfunction in men with obstructive sleep apnea syndrome:a randomized study of the efficacy of sildenafil and continuous positive airway pressure. Int J Impot Res,2004.16(3):p.256-60.
    46. Casado-Naranjo, I. and J.M. Ramirez-Moreno, Prevalence of breathing disorders during sleep in patients with cerebrovascular disease. Rev Neurol,2005.41 Suppl3:p. S7-S12.
    47. Somers, V.K., et al., Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest, 1995.96(4):p.1897-904.
    48. Aaslid, R., Cerebral autoregulation and vasomotor reactivity. Front Neurol Neurosci,2006. 21:p.216-28.
    49. Wessendorf, T.E., et al., Fibrinogen levels and obstructive sleep apnea in ischemic stroke. Am J Respir Crit Care Med,2000.162(6):p.2039-42.
    50. Sanner, B.M., et al., Platelet function in patients with obstructive sleep apnoea syndrome. Eur Respir J,2000.16(4):p.648-52.
    51. Okabe, S., et al., Pontine injections of nitric oxide synthase inhibitor l-name consolidate episodes of rem sleep in the rat. Sleep Res Online,1998.1(1):p.41-8.
    52. Bixler, E.O., et al., Excessive daytime sleepiness in a general population sample:the role of sleep apnea, age, obesity, diabetes, and depression. J Clin Endocrinol Metab,2005.90(8):p. 4510-5.
    53. Pelin, Z., et al., The role of mean inspiratory effort on daytime sleepiness. Eur Respir J,2003. 21(4):p.688-94.
    54. Haraldsson, P.O. and T. Akerstedt, Drowsiness-greater traffer hazard than alcohol.Cause,risk and treatment. Lakartidningen,2001.98(25):p.3018-3023.
    55. El-Ad, B. and P. Lavie, Effect of sleep apnea on cognition and nood. Int Rev Psychiatry,2005. 17(4):p.277-282.
    56. Schroder, C.M. and R. O'Hara, Depression and Obstructive Sleep Apnea(OSA). Ann Gen Psychiatry,2005.27(4):p.13.
    57. Sateia, M.J., Neuropsychological impairment and quality of life in obstructive sleep apnea. Clin Chest Med,2003.24(2):p.249-59.
    58. Shen, J., et al., Polysomnographic and symptomatological analyses of major depressive disorder patients treated with mirtazapine. Can J Psychiatry,2006.51(1):p.27-34.
    1. Pertwee, R.G., Medical uses of cannabinoids:the way forward. Addiction,1999.94(3):p. 317-320.
    2. Devane, W.A., L. Hanus, and A. Breuer, Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science,1992.258(5090):p.1946-1949.
    3. Kunos, G. and S. Batkai, The quest for a vascular endothelial cannabinoid receptor. Chem Physi Lipids,2002.121(1):p.45-56.
    4. Hill, M.N. and B.S. McEwen, Involvement of the endocannabinoid system in the neurobehavioural effects of stress and glucocorticoids. Prog Neuropsychopharmacol Biol Psychiatry,2009.
    5. Pagotto, U., et al., The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev,2006.27:p.73-100.
    6. Witkin, J.M., E.T. Tzavara, and G.G. Nomikos, A role for cannabinoid CB1 receptors in mood and anxiety disorders. Behav Pharmacol,2005.16(5-6):p.315-31.
    7. Ashton, J.C., Cannabinoids for the treatment of inflammation. Curr Opin Investig Drugs,2007. 8(5):p.373-84.
    8. Ashton, J.C. and M. Glass, The Cannabinoid CB2 Receptor-as a Target for Inflammation-Dependent Neurodegeneration. Curr Neuropharmacol,2007.5(2):p.73-80.
    9. Kirkham, T.C. and S.A. Tucci, Endocannabinoids in appetite control and the treatment of obesity. CNS Neurol Disord Drug Targets,2006.5(3):p.272-92.
    10. Wang, H., S.K. Dey, and M. Maccarrone, Jekyll and hyde:two faces of cannabinoid signaling in male and female fertility. Endocr Rev,2006.27(5):p.427-48.
    11. Pertwee, R.G., Cannabinoids and multiple sclerosis. Pharmacol Ther,2002.95(2):p.165-74.
    12. Hohmann, A.G. and R.L. Suplita,2nd, Endocannabinoid mechanisms of pain modulation. AAPS J,2006.8(4):p. E693-708.
    13. Pacher, P., S. Batkai, and G. Kunos, The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev,2006.58:p.389-462.
    14. Yates, M.L. and E.L. Barker, Inactivation and biotransformation of the endogenous cannabinoids anandamide and 2-arachidonoylglycerol. Mol Pharmacol,2009.76(1):p.11-7.
    15. Matsuda, L.A., et al., Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990;.346:p.561-4.
    16. Munro, S., K.L. Thomas, and M. Abu-Shaar, Molecular characterization of a peripheral receptor for cannabinoids. Nature,1993.365:p.61-5.
    17. Fride, E., et al., Milk intake and survival in newborn cannabinoid CB1 receptor knockout mice: evidence for a "CB3" receptor. Eur J Pharmacol,2003.461(1):p.27-34.
    18. Lutz, B., Molecular biology of cannabinoid receptors. Prostaglandins Leukot Essent Fatty Acids 2002.66:p.123-42.
    19. Howlett, A.C., et al., Nonclassical cannabinoid analgetics inhibit adenylate cyclase: development of a cannabinoid receptor model. Mol Pharmacol,1988.33(3):p.297-302.
    20. Derkinderen, P., et al., Cannabinoids activate p38 mitogen-activated protein kinases through CBl receptors in hippocampus. J Neurochem,2001.77(3):p.957-60.
    21. Daaka, Y., et al., Induction of interleukin-2 receptor alpha gene by delta9-tetrahydrocannabinol is mediated by nuclear factor kappaB and CB1 cannabinoid receptor. DNA Cell Biol,1997.16(3):p.301-9.
    22. Rueda, D., et al., The CB(1) cannabinoid receptor is coupled to the activation of c-Jun N-terminal kinase. Mol Pharmacol,2000.58(4):p.814-20.
    23. Gomez Del Pulgar, T., et al., Cannabinoids protect astrocytes from ceramide-induced apoptosis through the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem, 2002.277(39):p.36527-33.
    24. Schwartz, M.W., et al., Central nervous system control of food intake. Nature,2000. 404(6778):p.661-71.
    25. Herkenham, M., et al., Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A, 1990.87(5):p.1932-6.
    26. Osei-Hyiaman, D., et al., Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J Clin Invest,2005.115(5):p. 1298-305.
    27. Pertwee, R.G., Cannabinoids and the gastrointestinal tract. Gut,2001.48(6):p.859-67.
    28. Juan-Pico, P., et al., Cannabinoid receptors regulate Ca(2+) signals and insulin secretion in pancreatic beta-cell. Cell Calcium,2006.39(2):p.155-62.
    29. Cota, D., et al., The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest,2003.112(3):p.423-31.
    30. Liu, J., et al., Functional CB1 cannabinoid receptors in human vascular endothelial cells. Biochem J,2000.346 Pt 3:p.835-40.
    31. Gebremedhin, D., et al., Cannabinoid CB1 receptor of cat cerebral arterial muscle functions to inhibit L-type Ca2+ channel current. Am J Physiol,1999.276(6 Pt 2):p. H2085-93.
    32. Parolaro, D., Presence and functional regulation of cannabinoid receptors in immune cells. Life Sci,1999.65(6-7):p.637-44.
    33. Di Marzo, V., CB(1) receptor antagonism:biological basis for metabolic effects. Drug Discov Today,2008.13(23-24):p.1026-41.
    34. Van Sickle, M.D., et al., Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science,2005.310(5746):p.329-32.
    35. Roche, R., et al., Presence of the cannabinoid receptors, CB1 and CB2, in human omental and subcutaneous adipocytes. Histochem Cell Biol,2006.126(2):p.177-87.
    36. Blazquez, C., et al., Inhibition of tumor angiogenesis by cannabinoids. FASEB J,2003.17(3): p.529-31.
    37. Berry, E.M. and R. Mechoulam, Tetrahydrocannabinol and endocannabinoids in feeding and appetite. Pharmacol Ther,2002.95(2):p.185-90.
    38. Devane, W.A., et al., Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science,1992.258(5090):p.1946-9.
    39. Mechoulam, R., et al., Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol,1995.50(1):p.83-90.
    40. Pagotto, U., et al., The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev,2006.27(1):p.73-100.
    41. Sugiura, T., et al., Biosynthesis and degradation of anandamide and 2-arachidonoylglycerol and their possible physiological significance. Prostaglandins Leukot Essent Fatty Acids,2002. 66(2-3):p.173-92.
    42. Smita, K., V. Sushil Kumar, and J.S. Premendran, Anandamide:an update. Fundam Clin Pharmacol,2007.21(1):p.1-8.
    43. McAllister, S.D. and M. Glass, CB(1) and CB(2) receptor-mediated signalling:a focus on endocannabinoids. Prostaglandins Leukot Essent Fatty Acids,2002.66(2-3):p.161-71.
    44. Sugiura, T., et al., Biochemistry, pharmacology and physiology of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand. Prog Lipid Res,2006.45(5):p.405-46.
    45. Ishac, E.J., et al., Inhibition of exocytotic noradrenaline release by presynaptic cannabinoid CB1 receptors on peripheral sympathetic nerves. Br J Pharmacol,1996.118(8):p.2023-8.
    46. Tam, J., et al., The cannabinoid CB1 receptor regulates bone formation by modulating adrenergic signaling. FASEB J,2008.22(1):p.285-94.
    47. Carr, T.P., E.D. Jesch, and A.W. Brown, Endocannabinoids, metabolic regulation, and the role of diet. Nutr Res,2008.28(10):p.641-50.
    48. Schmid, H.H., Pathways and mechanisms of N-acylethanolamine biosynthesis:can anandamide be generated selectively? Chem Phys Lipids,2000.108(1-2):p.71-87.
    49. Schmid, H.H., P.C. Schmid, and V. Natarajan, N-acylated glycerophospholipids and their derivatives. Prog Lipid Res,1990.29(1):p.1-43.
    50. Di Marzo, V., et al., Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature,1994.372(6507):p.686-91.
    51. Hansen, H.S., et al., N-Acylethanolamines and precursor phospholipids-relation to cell injury. Chem Phys Lipids,2000.108(1-2):p.135-50.
    52. Okamoto, Y., et al., Molecular characterization of a phospholipase D generating anandamide and its congeners. J Biol Chem,2004.279(7):p.5298-305.
    53. Wang, J., et al., Functional analysis of the purified anandamide-generating phospholipase D as a member of the metallo-beta-lactamase family. J Biol Chem,2006.281(18):p.12325-35.
    54. Moesgaard, B., et al., Substantial species differences in relation to formation and degradation of N-acyl-ethanolamine phospholipids in heart tissue:an enzyme activity study. Comp Biochem Physiol B Biochem Mol Biol,2002.131(3):p.475-82.
    55. Schmid, P.C., et al., Metabolism of N-acylethanolamine phospholipids by a mammalian phosphodiesterase of the phospholipase D type. J Biol Chem,1983.258(15):p.9302-6.
    56. Liu, Q., T. Tonai, and N. Ueda, Activation of N-acylethanolamine-releasing phospholipase D by polyamines. Chem Phys Lipids,2002.115(1-2):p.77-84.
    57. Petersen, G., K.D. Chapman, and H.S. Hansen, A rapid phospholipase D assay using zirconium precipitation of anionic substrate phospholipids:application to n-acylethanolamine formation in vitro. J Lipid Res,2000.41(9):p.1532-8.
    58. Deutsch, D.G. and S.A. Chin, Enzymatic synthesis and degradation of anandamide, a cannabinoid receptor agonist. Biochem Pharmacol,1993.46(5):p.791-6.
    59. Deutsch, D.G, et al., The cellular uptake of anandamide is coupled to its breakdown by fatty-acid amide hydrolase. J Biol Chem,2001.276(10):p.6967-73.
    60. Day, T.A., et al., Role of fatty acid amide hydrolase in the transport of the endogenous cannabinoid anandamide. Mol Pharmacol,2001.59(6):p.1369-75.
    61. Cravatt, B.F., et al., Super sensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci U S A,2001.98(16): p.9371-6.
    62. Cravatt, B.F., et al., Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature,1996.384(6604):p.83-7.
    63. Wei, B.Q., et al., A second fatty acid amide hydrolase with variable distribution among placental mammals. J Biol Chem,2006.281(48):p.36569-78.
    64. Giang, D.K. and B.F. Cravatt, Molecular characterization of human and mouse fatty acid amide hydrolases. Proc Natl Acad Sci U S A,1997.94(6):p.2238-42.
    65. McFarland, M.J. and E.L. Barker, Anandamide transport. Pharmacol Ther,2004.104(2):p. 117-35.
    66. McKinney, M.K. and B.F. Cravatt, Structure and function of fatty acid amide hydrolase. Annu Rev Biochem,2005.74:p.411-32.
    67. Gasperi, V., et al., Further insights into the regulation of human FAAH by progesterone and leptin implications for endogenous levels of anandamide and apoptosis of immune and neuronal cells. Neurotoxicology,2005.26(5):p.811-7.
    68. Monteleone, P., et al., The cDNA 385C to A missense polymorphism of the endocannabinoid degrading enzyme fatty acid amide hydrolase (FAAH) is associated with overweight/obesity but not with binge eating disorder in overweight/obese women. Psychoneuroendocrinology, 2008.33(4):p.546-50.
    69. Sugiura, T., et al.,2-Arachidonoylglycerol:a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun,1995.215(1):p.89-97.
    70. Prescott, S.M. and P.W. Majerus, Characterization of 1,2-diacylglycerol hydrolysis in human platelets. Demonstration of an arachidonoyl-monoacylglycerol intermediate. J Biol Chem, 1983.258(2):p.764-9.
    71. Bisogno, T., et al., Cloning of the first snl-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J Cell Biol,2003.163(3):p.463-8.
    72. Yoshida, T., et al., Localization of diacylglycerol lipase-alpha around postsynaptic spine suggests close proximity between production site of an endocannabinoid, 2-arachidonoyl-glycerol, and presynaptic cannabinoid CB1 receptor. J Neurosci,2006.26(18): p.4740-51.
    73. Katona, I., et al., Molecular composition of the endocannabinoid system at glutamatergic synapses. J Neurosci,2006.26(21):p.5628-37.
    74. Suarez, J., et al., Immunohistochemical description of the endogenous cannabinoid system in the rat cerebellum and functionally related nuclei. J Comp Neurol,2008.509(4):p.400-21.
    75. Matias, I. and V. Di Marzo, Endocannabinoid synthesis and degradation, and their regulation in the framework of energy balance. J Endocrinol Invest,2006.29(3 Suppl):p.15-26.
    76. Dinh, T.P., T.F. Freund, and D. Piomelli, A role for monoglyceride lipase in 2-arachidonoylglycerol inactivation. Chem Phys Lipids,2002.121(1-2):p.149-58.
    77. Saario, S.M. and J.T. Laitinen, Monoglyceride lipase as an enzyme hydrolyzing 2-arachidonoylglycerol. Chem Biodivers,2007.4(8):p.1903-13.
    78. Karlsson, M., et al., cDNA cloning, tissue distribution, and identification of the catalytic triad of monoglyceride lipase. Evolutionary relationship to esterases, lysophospholipases, and haloperoxidases. J Biol Chem,1997.272(43):p.27218-23.
    79. Dinh, T.P., S. Kathuria, and D. Piomelli, RNA interference suggests a primary role for monoacylglycerol lipase in the degradation of the endocannabinoid 2-arachidonoylglycerol. Mol Pharmacol,2004.66(5):p.1260-4.
    80. Long, J.Z., et al., Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat Chem Biol,2009.5(1):p.37-44.
    81. Wang, J. and N. Ueda, Biology of endocannabinoid synthesis system. Prostaglandins Other Lipid Mediat,2009.89(3-4):p.112-9.
    82. Williams, C.M., P.J. Rogers, and T.C. Kirkham, Hyperphagia in pre-fed rats following oral delta9-THC. Physiol Behav,1998.65(2):p.343-6.
    83. Frieling, H., et al., Elevated cannabinoid 1 receptor mRNA is linked to eating disorder related behavior and attitudes in females with eating disorders. Psychoneuroendocrinology,2009. 34(4):p.620-4.
    84. Williams, C.M. and T.C. Kirkham, Reversal of delta 9-THC hyperphagia by SR141716 and naloxone but not dexfenfluramine. Pharmacol Biochem Behav,2002.71(1-2):p.333-40.
    85. Greenberg, I., et al., Effects of marihuana use on body weight and caloric intake in humans. Psychopharmacology (Berl),1976.49(1):p.79-84.
    86. Foltin, R.W., J.V. Brady, and M.W. Fischman, Behavioral analysis of marijuana effects on food intake in humans. Pharmacol Biochem Behav,1986.25(3):p.577-82.
    87. Williams, C.M. and T.C. Kirkham, Anandamide induces overeating:mediation by central cannabinoid (CB1) receptors. Psychopharmacology (Berl),1999.143(3):p.315-7.
    88. Kirkham, T.C, et al., Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation:stimulation of eating by 2-arachidonoyl glycerol. Br J Pharmacol,2002.136(4):p.550-7.
    89. Di Marzo, V., et al., Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature,2001.410(6830):p.822-5.
    90. Colombo, G., et al., Appetite suppression and weight loss after the cannabinoid antagonist SR 141716. Life Sci,1998.63(8):p. PL113-7.
    91. Bensaid, M., et al., The cannabinoid CB1 receptor antagonist SR141716 increases Acrp30 mRNA expression in adipose tissue of obese fa/fa rats and in cultured adipocyte cells. Mol Pharmacol,2003.63(4):p.908-14.
    92. Ravinet Trillou, C., et al., CB1 cannabinoid receptor knockout in mice leads to leanness, resistance to diet-induced obesity and enhanced leptin sensitivity. Int J Obes Relat Metab Disord,2004.28(4):p.640-8.
    93. Jbilo, O., et al., The CB1 receptor antagonist rimonabant reverses the diet-induced obesity phenotype through the regulation of lipolysis and energy balance. FASEB J,2005.19(11):p. 1567-9.
    94. Nakata, M. and T. Yada, Cannabinoids inhibit insulin secretion and cytosolic Ca2+ oscillation in islet beta-cells via CB1 receptors. Regul Pept,2008.145(1-3):p.49-53.
    95. Engeli, S., et al., Activation of the peripheral endocannabinoid system in human obesity. Diabetes,2005.54(10):p.2838-43.
    96. Bermudez-Siva, F.J., et al., Activation of cannabinoid CB1 receptors induces glucose intolerance in rats. Eur J Pharmacol,2006.531(1-3):p.282-4.
    97. Cote, M., et al., Circulating endocannabinoid levels, abdominal adiposity and related cardiometabolic risk factors in obese men. Int J Obes (Lond),2007.31(4):p.692-9.
    98. Bluher, M., et al., Dysregulation of the peripheral and adipose tissue endocannabinoid system in human abdominal obesity. Diabetes,2006.55(11):p.3053-60.
    99. Sipe, J.C., et al., Overweight and obesity associated with a missense polymorphism in fatty acid amide hydrolase (FAAH). Int J Obes (Lond),2005.29(7):p.755-9.
    100. Gazzerro, P., et al., Association between cannabinoid type-1 receptor polymorphism and body mass index in a southern Italian population. Int J Obes (Lond),2007.31(6):p.908-12.
    101. Pacher, P., S. Batkai, and G. Kunos, Blood pressure regulation by endocannabinoids and their receptors. Neuropharmacology,2005.48(8):p.1130-8.
    102. Szmitko, P.E. and S. Verma, The endocannabinoid system and cardiometabolic risk. Atherosclerosis,2008.199(2):p.248-56.
    103. Matias, I., et al., Regulation, function, and dysregulation of endocannabinoids in models of adipose and beta-pancreatic cells and in obesity and hyperglycemia. J Clin Endocrinol Metab, 2006.91(8):p.3171-80.
    104. Pacher, P., S. Batkai, and G. Kunos, The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev,2006.58(3):p.389-462.
    105. Varga, K., et al., Novel antagonist implicates the CB1 cannabinoid receptor in the hypotensive action of anandamide. Eur J Pharmacol,1995.278(3):p.279-83.
    106. Niederhoffer, N., K. Schmid, and B. Szabo, The peripheral sympathetic nervous system is the major target of cannabinoids in eliciting cardiovascular depression. Naunyn Schmiedebergs Arch Pharmacol,2003.367(5):p.434-43.
    107. Deutsch, D.G., et al., Production and physiological actions of anandamide in the vasculature of the rat kidney. J Clin Invest,1997.100(6):p.1538-46.
    108. Varga, K., et al., Platelet-and macrophage-derived endogenous cannabinoids are involved in endotoxin-induced hypotension. FASEB J,1998.12(11):p.1035-44.
    109. Wagner, J.A., et al., Activation of peripheral CB1 cannabinoid receptors in haemorrhagic shock. Nature,1997.390(6659):p.518-21.
    110. Wagner, J.A., et al., Endogenous cannabinoids mediate hypotension after experimental myocardial infarction. J Am Coll Cardiol,2001.38(7):p.2048-54.
    111. Batkai, S., et al., Endocannabinoids acting at cannabinoid-1 receptors regulate cardiovascular function in hypertension. Circulation,2004.110(14):p.1996-2002.
    112. Lara-Castro, C., et al., Adiponectin and the metabolic syndrome:mechanisms mediating risk for metabolic and cardiovascular disease. Curr Opin Lipidol,2007.18(3):p.263-70.
    113. Szmitko, P.E., et al., Adiponectin and cardiovascular disease:state of the art? Am J Physiol Heart Circ Physiol,2007.292(4):p. H1655-63.
    114. Osei-Hyiaman, D., et al., Cocaine-and amphetamine-related transcript is involved in the orexigenic effect of endogenous anandamide. Neuroendocrinology,2005.81(4):p.273-82.
    115. Padwal, R.S. and S.R. Majumdar, Drug treatments for obesity:orlistat, sibutramine, and rimonabant. Lancet,2007.369(9555):p.71-7.
    116. Guindon, J. and A.G. Hohmann, Cannabinoid CB2 receptors:a therapeutic target for the treatment of inflammatory and neuropathic pain. Br J Pharmacol,2008.153(2):p.319-34.
    117. Montecucco, F., et al., CB(2) cannabinoid receptor activation is cardioprotective in a mouse model of ischemia/reperfusion. J Mol Cell Cardiol,2009.46(5):p.612-20.
    118. Marchalant, Y., H.M. Brothers, and G.L. Wenk, Inflammation and aging:can endocannabinoids help? Biomed Pharmacother,2008.62(4):p.212-7.
    119. Gill, E.W., W.D. Paton, and R.G. Pertwee, Preliminary experiments on the chemistry and pharmacology of cannabis. Nature,1970.228(5267):p.134-6.
    120. Caulfield, M.P. and D.A. Brown, Cannabinoid receptor agonists inhibit Ca current in NG108-15 neuroblastoma cells via a pertussis toxin-sensitive mechanism. Br J Pharmacol, 1992.106(2):p.231-2.
    121. Mackie, K. and B. Hille, Cannabinoids inhibit N-type calcium channels in neuroblastoma-glioma cells. Proc Natl Acad Sci U S A,1992.89(9):p.3825-9.
    122. Hampson, R.E., et al., Role of cyclic AMP dependent protein kinase in cannabinoid receptor modulation of potassium "A-current" in cultured rat hippocampal neurons. Life Sci,1995. 56(23-24):p.2081-8.
    123. Breivogel, C.S. and S.R. Childers, The functional neuroanatomy of brain cannabinoid receptors. Neurobiol Dis,1998.5(6 Pt B):p.417-31.
    124. Elphick, M.R. and M. Egertova, The neurobiology and evolution of cannabinoid signalling. Philos Trans R Soc Lond B Biol Sci,2001.356(1407):p.381-408.
    125. Sanudo-Pena, M.C., K. Tsou, and J.M. Walker, Motor actions of cannabinoids in the basal ganglia output nuclei. Life Sci,1999.65(6-7):p.703-13.
    126. Consroe, P., et al., The perceived effects of smoked cannabis on patients with multiple sclerosis. EurNeurol,1997.38(1):p.44-8.
    127. Baker, D., et al., Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature,2000.404(6773):p.84-7.
    128. Hoffman, A.F. and C.R. Lupica, Mechanisms of cannabinoid inhibition of GABA(A) synaptic transmission in the hippocampus. J Neurosci,2000.20(7):p.2470-9.
    129. Trazzi, S., et al., CB1 cannabinoid receptors increase neuronal precursor proliferation through AKT/GSK-3/{beta}-catenin signaling. J Biol Chem,2010(1).
    130. Adams, I.B. and B.R. Martin, Cannabis:pharmacology and toxicology in animals and humans. Addiction,1996.91(11):p.1585-614.
    131. Murillo-Rodriguez, E., The role of the CB1 receptor in the regulation of sleep. Prog Neuropsychopharmacol Biol Psychiatry,2008.32(6):p.1420-7.
    132. Navarro, L., et al., Potential role of the cannabinoid receptor CB1 in rapid eye movement sleep rebound. Neuroscience,2003.120(3):p.855-9.
    133. Martinez-Vargas, M., et al., Sleep modulates cannabinoid receptor Ⅰ expression in the pons of rats. Neuroscience,2003.117(1):p.197-201.
    134. Felder, C.C., et al., Isolation and measurement of the endogenous cannabinoid receptor agonist, anandamide, in brain and peripheral tissues of human and rat. FEBS Lett,1996. 393(2-3):p.231-5.
    135. Bisogno, T., et al., Brain regional distribution of endocannabinoids:implications for their biosynthesis and biological function. Biochem Biophys Res Commun,1999.256(2):p. 377-80.
    136. 朱涛.江佩芳.夏哲智,睡眠剥夺对大鼠脑干和海马大麻素 CB-1 受体的影响.中华精神科杂志,2006.39(4):p.236-240.
    137. Egertova, M., et al., A new perspective on cannabinoid signalling:complementary localization of fatty acid amide hydrolase and the CB1 receptor in rat brain. Proc Biol Sci,1998. 265(1410):p.2081-5.
    138. Schlicker, E., et al., Cannabinoid CB1 receptor-mediated inhibition of noradrenaline release in the human and guinea-pig hippocampus. Naunyn Schmiedebergs Arch Pharmacol,1997. 356(5):p.583-9.
    139. Pertwee, R.G., G. Joe-Adigwe, and G.M. Hawksworth, Further evidence for the presence of cannabinoid CB1 receptors in mouse vas deferens. Eur J Pharmacol,1996.296(2):p.169-72.
    140. Di, S., et al., Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus:a fast feedback mechanism. J Neurosci,2003.23(12):p.4850-7.
    141. Di, S., et al., Rapid glucocorticoid-mediated endocannabinoid release and opposing regulation of glutamate and gamma-aminobutyric acid inputs to hypothalamic magnocellular neurons. Endocrinology,2005.146(10):p.4292-301.
    142. Di, S., et al., Activity-dependent release and actions of endocannabinoids in the rat hypothalamic supraoptic nucleus. J Physiol,2005.569(Pt 3):p.751-60.
    143. Di, S., et al., Glucocorticoids regulate glutamate and GABA synapse-specific retrograde transmission via divergent nongenomic signaling pathways. J Neurosci,2009.29(2):p. 393-401.
    144. Malcher-Lopes, R., et al., Opposing crosstalk between leptin and glucocorticoids rapidly modulates synaptic excitation via endocannabinoid release. J Neurosci,2006.26(24):p. 6643-50.
    145. Orchinik, M., T.F. Murray, and F.L. Moore, A corticosteroid receptor in neuronal membranes. Science,1991.252(5014):p.1848-51.
    146. Patel, S., et al., Endocannabinoid signaling negatively modulates stress-induced activation of the hypothalamic-pituitary-adrenal axis. Endocrinology,2004.145(12):p.5431-8.
    147. Rademacher, D.J., et al., Effects of acute and repeated restraint stress on endocannabinoid content in the amygdala, ventral striatum, and medial prefrontal cortex in mice. Neuropharmacology,2008.54(1):p.108-16.
    148. Aso, E., et al., BDNF impairment in the hippocampus is related to enhanced despair behavior in CB1 knockout mice. J Neurochem,2008.105(2):p.565-72.
    149. Steiner, M.A., et al., Antidepressant-like behavioral effects of impaired cannabinoid receptor type 1 signaling coincide with exaggerated corticosterone secretion in mice. Psychoneuroendocrinology,2008.33(1):p.54-67.
    150. Hill, M.N., et al., Suppression of amygdalar endocannabinoid signaling by stress contributes to activation of the hypothalamic-pituitary-adrenal axis. Neuropsychopharmacology,2009. 34(13):p.2733-45.
    151. Hill, M.N., et al., Circulating endocannabinoids and N-acyl ethanolamines are differentially regulated in major depression and following exposure to social stress. Psychoneuroendocrinology,2009.34(8):p.1257-62.
    152. Felder, C.C., et al., LY320135, a novel cannabinoid CB1 receptor antagonist, unmasks coupling of the CB1 receptor to stimulation of cAMP accumulation. J Pharmacol Exp Ther, 1998.284(1):p.291-7.
    153. Derkinderen, P., et al., Regulation of a neuronal form of focal adhesion kinase by anandamide. Science,1996.273(5282):p.1719-22.
    154. Malinowska, B., et al., Cannabinoid CB1 receptor-mediated inhibition of the neurogenic vasopressor response in the pithed rat. Naunyn Schmiedebergs Arch Pharmacol,1997.356(2): p.197-202.
    155. Christopoulos, A., et al., Pharmacological analysis of cannabinoid receptor activity in the rat vas deferens. Br J Pharmacol,2001.132(6):p.1281-91.
    156. Godlewski, G., B. Malinowska, and E. Schlicker, Presynaptic cannabinoid CB(1) receptors are involved in the inhibition of the neurogenic vasopressor response during septic shock in pithed rats. Br J Pharmacol,2004.142(4):p.701-8.
    157. Batkai, S., et al., Endocannabinoids acting at vascular CB1 receptors mediate the vasodilated state in advanced liver cirrhosis. Nat Med,2001.7(7):p.827-32.
    158. Pfitzer, T., N. Niederhoffer, and B. Szabo, Search for an endogenous cannabinoid-mediated effect in the sympathetic nervous system. Naunyn Schmiedebergs Arch Pharmacol,2005. 371(1):p.9-17.
    159. Battista, N., et al., Interplay between endocannabinoids, steroids and cytokines in the control of human reproduction. J Neuroendocrinol,2008.20 Suppl 1:p.82-9.
    160. Coddington, E., et al., Endocannabinoids mediate the effects of acute stress and corticosterone on sex behavior. Endocrinology,2007.148(2):p.493-500.
    161. Gorzalka, B.B., M.N. Hill, and S.C. Chang, Male-female differences in the effects of cannabinoids on sexual behavior and gonadal hormone function. Horm Behav,2009.
    162. Wang, H., et al., Aberrant cannabinoid signaling impairs oviductal transport of embryos. Nat Med,2004.10(10):p.1074-80.
    163. Maccarrone, M., et al., Characterization of the endocannabinoid system in boar spermatozoa and implications for sperm capacitation and acrosome reaction. J Cell Sci,2005.118(Pt 19): p.4393-404.
    164. Battista, N., et al., Regulation of female fertility by the endocannabinoid system. Hum Fertil (Camb),2007.10(4):p.207-16.
    165. Walker, J.M., et al., Pain modulation by release of the endogenous cannabinoid anandamide. Proc Natl Acad Sci U S A,1999.96(21):p.12198-203.
    166. Ledent, C., et al., Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science,1999.283(5400):p.401-4.
    167. Di Marzo, V, et al.,.Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson's disease. FASEB J, 2000.14(10):p.1432-8.
    168. Hohmann, A.G., et al., An endocannabinoid mechanism for stress-induced analgesia. Nature, 2005.435(7045):p.1108-12.
    169. Pelorosso, F.G., et al., The endocannabinoid anandamide inhibits kinin BI receptor sensitization through cannabinoid CB1 receptor stimulation in human umbilical vein. Eur J Pharmacol,2009.602(1):p.176-9.
    170. Quartilho, A., et al., Inhibition of inflammatory hyperalgesia by activation of peripheral CB2 cannabinoid receptors. Anesthesiology,2003.99(4):p.955-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700